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\S 0. Introduction.

The purpose of this paper is to give a non-existence result for har-
monic mappings defined on the whole $R^{n}$ , a Euclidean n-space $(n\geqq 2)$ ,
into a real hyperbolic n-space $H^{n}$ .

For harmonic mappings $U:M\rightarrow N(M,$ $N$: complete Riemannian mani-
folds) some Liouville type theorems have been proved. By S. Hildebrandt–
J. $Jost-K.- 0$ . Widman [4] it has been shown that a harmonic mapping
$U:M\rightarrow N$ must be a constant mapping if $M$ is simple and image $U(M)$
is contained in a geodesic ball $B_{R}(Q)\subset N$ with $R<\pi/(2\sqrt{\kappa})$ where $\kappa$ denotes
the maximum of the sectional curvatures of $N$. Here, a Riemannian
manifold is said to be simple, if it is topologically $R^{m}$ furnished with a
metric for which the associated Laplace-Beltrami operator is uniformly
elliptic on $R^{m}$ . (See also [1] and [6].) Moreover by L. Karp [5] it has
been shown that, for a complete, noncompact Riemannian manifold $M$

and a simply-connected Riemannian manifold $N$ with nonpositive sectional
curvature, a nonconstant harmonic mapping $U:M\rightarrow N$ satisfies a certain
growth-order condition. This implies a non-existence theorem for harmonic
mappings under some growth condition. On the contrary, our non-existence
theorem in this paper requires no growth condition.

In order to describe our main result precisely we introduce some
notations: We use a standard coordinate system $x=(x^{1}, \cdots, x^{n})$ on $R^{n}$

and a normal coordinate system $u=(u^{1}, \cdots, u^{n})$ centered at some point
$P_{0}$ on $H^{n}$ . $\langle\cdot, \cdot\rangle$ and . $|$ stand for the Euclidean scalar product and norm.
We shall write $(g_{ij}(u))$ for the metric tensor on $H^{n}$ with respect to the
normal coordinate system $(u^{i})_{1\leqq i\leq n},$ $(g^{j}(u))$ for the inverse of $(g_{ij}(u))$ , and
the Christoffel symbols of the first and second kind of the Levi-Civita
connection on $H^{n}$ will be denoted by $\Gamma_{i\dot{J}k}$ and $\Gamma_{\dot{g}k}^{i}$ .

A mapping $U:R^{n}\rightarrow H^{n}$ is said to be a harmonic mapping if it is of
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class $C^{2}$ and the representation $u(x)$ of $U$ in the coordinate systems
$(x^{1}, \cdots, x^{n})$ and $(u^{1}, \cdots, u^{n})$ satisfies the system of quasilinear elliptic

partial differential equations

(0.1) Au’ $+\sum_{\alpha=1}^{n}\Gamma_{jk}(u)\frac{\partial u^{j}}{\partial x^{\alpha}}\frac{\partial u^{k}}{\partial x^{\alpha}}=0$ for $1\leqq i\leqq n$ ,

where $\Delta$ denotes the standard Laplacian on $R^{n}$ , i.e. $\Delta=\sum_{\alpha=1}^{n}(\partial/\partial x^{\alpha})^{2}$ .
Our main result may be stated as follows.

THEOREM 0.1. There exists no harmonic mapping $U:R^{n}\rightarrow H^{n}$ which
is defined on the whole $R^{n}$ and a coordinate representation $u(x)$ with
respect to the normal coordinate system centered at $U(O)$ satisfies

(0.2) $\sum_{i=1}^{n}\sum_{\alpha=1}^{n}(\frac{\partial}{\partial x^{\alpha}}(\frac{u(x)}{|u(x)|}))^{2}\geqq\frac{n-1}{|x|^{2}}$ for all $x\in R^{n}$ .

For example, the mappings which can be written as $u(x)=(x/|x|)\mu(x)$

with $\mu:R^{n}\rightarrow R$ satisfy the condition (0.2). It should be noted that ro-
tationally symmetric mappings $u(x)=(xl|x|)\rho(|x|)$ with $\rho:R\rightarrow R$ satisfy

the condition (0.2), and therefore Theorem 0.1 shows that there exists no
rotationally symmetric harmonic mapping from $R^{n}$ to $H^{n}$ . This contrasts
with the result of [7] which asserts the existence of rotationally symmetric

harmonic mappings from $R^{n}$ onto a warped product manifold $R_{+f}\times S^{n-1}$

whose warping function $f:R_{+}\rightarrow R_{+}$ satisfies the following conditions;

(0.3) $f(t)>0,$ $f^{\prime}(t)>0$ on $R_{+}$ ,

$\lim^{\underline{f(t)}}=1$ ,(0.4)
$\rightarrow+0$ $t$

and

(0.5) $f\cdot f^{\prime}(t)$ is at most of linear growth as $ t\rightarrow\infty$ .
Remark that if we take $f(t)=\sinh t,$ $R_{+}\times_{f}S^{n-1}$ coincides with $H^{n}$ and the

conditions (0.3) and (0.4) are satisfied.

REMARK 0.1. For the case that $n=2$ , using polar coordinates, we
can replace the condition (0.2) with slight stronger but simpler one. Let
$(r, \theta)(0\leqq\theta\leqq 2\pi)$ and $(R, \Theta)$ be the polar coordinate systems on $R^{2}$ and
$H^{2}$ respectively and write a mapping $u:R^{2}\rightarrow H^{I}$ as $(u^{1}(x), u^{2}(x))=$

$(R(r, \theta)\cos\Theta(r, \theta),$ $R(r, \theta)\sin\Theta(r, \theta))$ . Then it is easy to see that the

condition
(0.6) $\frac{\partial\Theta}{\partial\theta}\geqq 1$
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implies (0.2). On the other hand the condition (0.6) implies that $\Theta$ moves
from $0$ to $ 2\pi$ when $\theta$ moves from $0$ to $ 2\pi$ . Thus the condition (0.2) can
be considered as a kind of condition for nondegeneracy.

\S 1. Equation for $|u|$ .
Since we are using a normal coordinate system $(u^{1}, \cdots, u^{n})$ on $H^{n}$ ,

the coefficients $g_{i\dot{f}}(u)$ of the metric tensor can be written as

(1.1) $g_{ij}(u)=\frac{u^{i}u^{j}}{|u|^{2}}+\frac{(\sinh|u|)^{2}}{|u|^{2}}\cdot(\delta_{ij}-\frac{u^{i}u^{j}}{|u|^{2}})$ .

From (1.1), by direct calculations, we get the following lemma.

LEMMA 1.1. Let $(g_{ij}(u))$ be as above and $\Gamma_{\dot{g}k}^{i}(u)$ be the coefficients of
the second kind of Christoffel symbols of the Levi-Civita connection on
$H^{n}$ . Then we have

(1.2) $g_{i\dot{f}}(u)(\xi^{i}\xi^{j}+u^{k}\Gamma_{kn*}(u)\xi^{m}\xi^{j})=|\xi_{t}|^{2}+(\frac{1}{2|u|}\sinh(2|u|))|\xi_{n}|^{2}$

for all $u$ and $\xi\in R^{n}$ ,

where $\xi_{t}=(\langle\xi, u\rangle/|u|^{2})u$ and $\xi_{n}=\xi-\xi_{t}$ .
PROOF. From (1.1) we have

$g_{ij}(u)\Gamma_{ku}(u)=\frac{1}{|u|^{4}}\cdot(1-\frac{(\sinh|u|)^{2}}{|u|^{2}})\cdot(\delta_{km}u^{j}|u|^{2}-u^{k}u^{j}u^{m})$

$+\frac{1}{|u|^{3}}\cdot\frac{\sinh|u|}{|u|}\cdot\frac{|u|\cosh|u|-\sinh|u|}{|u|^{2}}$

$\{(\delta_{k\dot{g}}u^{m}+\delta_{jm}u^{k}-\delta_{km}u^{j})|u|^{2}-u^{k}u^{\dot{g}}u^{m}\}$ ,

and therefore

(1.3) $g_{ij}(u)u^{k}\Gamma_{kn}(u)\xi^{m}\xi^{\dot{g}}$

$=\left\{\begin{array}{ll}0 & for \xi//u\\(-\frac{(\sinh|u|)^{2}}{|u|^{2}}+\frac{1}{2|u|}\sinh 2|u|)|\xi|^{2} & for \langle\xi, u\rangle=0.\end{array}\right.$

Moreover for the case that $\xi//u$ and $\langle\eta, u\rangle=0$ , we get

(1.4) $g_{\iota l}(u)u^{k}\Gamma_{kn*}(u)\xi^{m}\eta^{j}=0$ .
On the other hand we have
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(1.5) $g_{\dot{u}}(u)\xi\xi^{f}=|\xi|^{2}+\frac{(\sinh|u|)^{2}}{|u|^{2}}|\xi_{n}|^{2}$ .

From (1.3), (1.4) and (1.5) we obtain (1.2). $\square $

Now, let $u:R^{n}\rightarrow H^{n}$ be a harmonic mapping. Then $u$ satisfies the
following equation of weak form,

(1.6) $\int,\sum_{R\alpha=1}^{n}g_{\dot{u}}(u)(D_{\alpha}u^{i}D_{\alpha}\psi^{j}+\psi^{k}\Gamma_{k-}^{j}D_{\alpha}u^{n}D_{\alpha}u)dx=0$

for all $\psi eC_{0}^{\infty}(R^{n}, R^{n})$ .
Here and in the sequel we write $D_{\alpha}$ for $\partial/\partial x^{\alpha}$ .

Now we can prove the following proposition.

PROPOSITION 1.1. Let $u:R^{n}\rightarrow H^{n}$ be a harmonic mapping. Then $|u|$

satisfies the following elliptic equation

(1.7) $\Delta|u|-\frac{\sinh 2|u|}{2|u|^{2}}(|Du|^{2}-|D|u||^{2})=0$

on $\Omega=\{xeR^{n}:u(x)\neq 0\}$ , where $|Du|^{2}=\sum_{=1}^{n}\sum_{\alpha=1}^{n}(D_{\alpha}u)^{2}$ and Dlul $|^{2}=$

$\sum_{\alpha=1}^{n}(D_{\alpha}|u|)^{2}$ .
PROOF. Taking $\psi=u\eta,$ $\eta\in C_{0}^{\infty}(R^{n}, R)$ , in (1.6), we get

(1.8) $\int\sum_{\alpha=1}^{n}g_{\dot{u}}(u)\{u^{j}D_{\alpha}uD_{\alpha}\eta+(D_{\alpha}u^{i}D_{\alpha}u^{j}+u^{k}\Gamma_{k’*}^{\dot{f}}(u)D_{\alpha}u^{\alpha*}D_{\alpha}u)\eta\}dx=0$ .
Since we are using a normal coordinate system on $H^{n}$ , by Gauss’ lemma
(cf. [3], p. 136), we see that

$g_{ij}(u)u^{j}=u^{i}$ .
Thus (1.8) becomes

(1.9) $\int\sum_{\alpha=1}^{n}\{\frac{1}{2}D_{\alpha}|u|^{2}D_{\alpha}\eta+g_{ij}(u)(D_{\alpha}u^{i}D_{\alpha}u^{j}+u^{k}\Gamma_{kn}^{j}D_{\alpha}u^{n}D_{\alpha}u^{l})\eta\}dx=0$

for all $\eta\in C_{0}^{\infty}(R^{n}, R)$ .
Now, using Lemma 1.1, we obtain from (1.9) an equation for $|u|$ ,

(1.10) $\int\sum_{\alpha=1}^{n}\{\frac{1}{2}D_{\alpha}|u|^{2}D_{\alpha}\eta+(|\xi|^{2}+(\frac{1}{2|u|}$ sinh $2|u|$) $|\zeta|^{2})\eta\}dx=0$

for all $\eta eC_{0}^{\infty}(R^{n}, R)$ ,
where we are writing
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$\xi=(\xi_{\alpha}^{i})=(\frac{\langle u,D_{\alpha}u\rangle}{|u|^{2}}u^{i})$ and $\zeta=(\zeta_{\alpha}^{i})=(D_{\alpha}u)-(\xi_{\alpha}^{i})$ ,

and therefore

$|\xi|^{2}=\sum_{i=1}^{n}\sum_{\alpha=1}^{n}(\xi_{\alpha})^{2}=\frac{|D|u|^{2}|^{2}}{4|u|^{2}}$ ,

$|\zeta|^{2}=\sum_{i=1}^{n}\sum_{\alpha=1}^{n}(\zeta_{\alpha}^{i})^{2}=|Du|^{2}-\frac{|D|u|^{2}|^{2}}{4|u|^{2}}$ .

Thus from (1.10), we can see that $|u|$ satisfies the following equation
on $\Omega$ ;

(1.11) $\frac{1}{2}\Delta|u|^{2}-\frac{|D|u|^{2}|^{2}}{4|u|^{2}}-\frac{1}{2|u|}$ sinh $2|u|(|Du|^{2}-\frac{|D|u|^{2}|^{2}}{4|u|^{2}})=0$ .

Now, from (1.11) we obtain (1.7). $\square $

\S 2. Proof of Theorem 0.1.

First of all let us consider the case that $u$ is a rotationally symmetric
mapping. Let $u_{\iota}:R^{n}\rightarrow H^{n}$ be a rotationally symmetric mapping which can
be written as

$u.(x)=\frac{x}{|x|}\rho(|x|)$ ,

with the radius function $\rho:R_{+}\rightarrow R_{+}$ . For rotationally symmetric mappings
the equation (1.7) is reduced to an equation for $\rho$ ,

(2.1) $\Delta\rho-\frac{n-1}{2|x|^{2}}\sinh(2\rho)=0$ .

Now, by direct calculations we get the following lemma.

LEMMA 2.1. Let $\rho_{R}(t)=2\tanh^{-1}(t/R)$ . Then $\rho_{R}(|x|)$ satisfies

(2.2) $\Delta\rho_{R}-\frac{n-1}{2|x|^{2}}\sinh(2\rho_{R})\leqq 0$

for all $R>0$ and for all $n\geqq 2$ .
Using above lemma, we can prove Theorem 0.1 by a comparison

theorem for elliptic equations.

PROOF OF THEOREM 0.1. Let $U:R^{n}\rightarrow H^{n}$ be a harmonic mapping
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whose coordinate representation $u$ with respect to normal coordinate
system centered at $U(O)$ satisfies (0.2). Then from (0.2) and (1.7) we
can see that $|u|$ satisfies

(2.3) A $|u|-\frac{n-1}{2|x|^{2}}\sinh 2|u|\geqq 0$ ,

for we can see from (0.2) that

$\frac{|Du|^{2}-|D|u||^{2}}{|u|^{2}}=|D(\frac{u}{|u|})|^{2}\geqq\frac{n-1}{|x|^{2}}$ .

Since (0.2) implies that $u$ is not a constant mapping, we can choose
a compact set $D\subset\subset R^{n}-\{0\}$ on which $|u|\geqq\epsilon_{0}$ for sufficiently small $\epsilon_{0}>0$ .

Take $R_{0}$ sufficiently large so that

$\rho_{R}(|x|)<\epsilon_{0}$ on $D$ for $R>R_{0}$ .
Remarking that $\rho_{R}\rightarrow\infty$ as $|x|\rightarrow R$ while $u$ remains to be bounded on every
bounded set, we can see that for every $R\geqq R_{0}$ there exists a bounded
domain $\Omega_{R}\supset D,$ $\not\supset 0$ such that $|u|=\rho_{R}$ on $\partial\Omega_{R}$ . Now, from (2.2) and (2.3)
we can use a comparison theorem (see for example [2] Theorem 10.1) to
get $|u|\leqq\rho_{R}$ in $\Omega_{R}$ for all $R>R_{0}$ . This implies that $|u|=0$ on $D$, which is
a contradiction. Thus Theorem 0.1 is proved. $\square $

References

[l] M. GIAQUINTA and S. HILDEBRANDT, A priori estimates for harmonic mapping8, J. Reine
Angew. Math., 336 (1982), 124-164.

[21 D. GILBARG and N. S. TRUDINGER, Euiptic Partial Diferential Equations of Second
Order (second ed.), Springer, $19\mathfrak{B}$ .

[31 D. GROMOLL, W. KLnNGENBERG and W. MEYER, Riemannsche Geometrie im Grossen,
Lecture Notes in Math., 471 (1968), Springer.

[41 S. HILDEBRANDT, J. JOST and K.-O. WIDMAN, Harmonic mappings and minimal sub-
manifolds, Invent. Math., 62 (1980), $\mathfrak{B}9-298$ .

[51 L. KARP, The growth of harmonic functions and mappings, Diferential Geometry
Proceedings, Special Year, Maryland 1981-1982, Progress in Math., 32 (1983),
153-161, Birkh\"auser.

[61 A. TACHIKAWA, On interior regularity and Liouville’s theorem for harmonic mappings,
Manuscripta Math., 42 (1983), 11-40.

[71 A. TACHIKAWA, Rotationally symmetric harmonic maps from a ball into a warped
product manifold, Manuscripta Math., 53 (1985), $\mathfrak{B}5-254$ .

Present Address:
DEPARTMENT OF MATHEMATICS, FACULTY OF LIBERAL ARTS, SHIZUOKA UNIVERSITY
OHYA, SHIZUOKA 422, JAPAN


