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§0. Introduction.

The purpose of this paper is to give a non-existence result for har-
monic mappings defined on the whole R”, a Euclidean n-space (n=2),
into a real hyperbolic n-space H".

- For harmonic mappings U: M— N (M, N: complete Riemannian mani-
folds) some Liouville type theorems have been proved. By S. Hildebrandt -
J. Jost - K.-O. Widman [4] it has been shown that a harmonic mapping
U: M— N must be a constant mapping if M is simple and image U(M)
is contained in a geodesic ball B;(Q)C N with R< 7/(2V &) where £ denotes
the maximum of the sectional curvatures of N. Here, a Riemannian
manifold is said to be simple, if it is topologically R™ furnished with a
metric for which the associated Laplace-Beltrami operator is uniformly
elliptic on R™. (See also [1] and [6].) Moreover by L. Karp [5] it has
been shown that, for a complete, noncompact Riemannian manifold M
and a simply-connected Riemannian manifold N with nonpositive sectional
curvature, a nonconstant harmonic mapping U: M— N satisfies a certain
growth-order condition. This implies a non-existence theorem for harmonic
mappings under some growth condition. On the contrary, our non-existence
theorem in this paper requires no growth condition.

In order to describe our main result precisely we 1ntroduce some
notations: We use a standard coordinate system z=(x -+, ") on R"
and a normal coordinate system w=(u}, - ., ") centered at some point
P, on H*. {(-,-) and |:| stand for the Euchdean scalar product and norm.
We shall write (g,;(x)). for the metric tensor on H* with respect to the
normal coordinate system (u')<;<., (9*/(u)) for the inverse of (g.5(w)), and
the Christoffel symbols of the first and second kind of the Lev1—Clv1ta
connection on H" will be denoted by I',;, and I, .

A mapping U: R*— H" is said to be a harmomc mapping if it is of

Received August 26, 1987




312 ATSUSHI TACHIKAWA

class C? and the representation u(x) of U in the coordinate systems
(@, ++-, %) and (u!, *--, u") satisfies the system of quasilinear elliptic
partial differential equations

n ] k
0.1) AU+ M) 3% 9%_—0  for 1<i=n,
a=1 ox* ox”
where A denotes the standard Laplacian on R, i.e. A=235, Gl
Our main result may be stated as follows.

THEOREM 0.1. There exists no harmonic mapping U: R*— H" which
is defined on the whole R* and a coordinate representation wu(x) with
respect to the mormal coordinate system centered at U(0) satisfies

n 8 [ w(x) \\V's n—1 n
0.2) > 3 (52 e )) = L Jorall seR.
For example, the mappings which can be written as u(x) = (x/|z]) p(x)
with p#: R*— R satisfy the condition (0.2). It should be noted that ro-
tationally symmetric mappings w(x)=(x/lz))o(x]) with po: R— R satisfy
the condition (0.2), and therefore Theorem 0.1 shows that there exists no
rotationally symmetric harmonic mapping from R" to H*. This contrasts
with the result of [7] which asserts the existence of rotationally symmetric
harmonic mappings from R" onto a warped product manifold R, x,S*™
whose warping function f: R, — R, satisfies the following conditions;

(0.3) f&)>0, f/¢)>0 on R.,
0.4) tim S =1,
t—+0
and
(0.5) f-f'(t) is at most of linear growth as t—co .

Remark that if we take f(t)=sinht, R,.%,S" coincides with H" and the
conditions (0.3) and (0.4) are satisfied.

REMARK 0.1. For the case that n=2, using polar coordinates, we
can replace the condition (0.2) with slight stronger but simpler one. Let
(r, ) (0=0=2r) and (R, 6) be the polar coordinate systems on R* and
H*® respectively and write a mapping u: R*—H* as (u'(x), v’(x)=
(R(r, §)cos 8(r, §), R(r, 6)sin 6(r, 9)). Then it is easy to see that the
condition

06
0.6 —==1
(0.6) 0 =
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implies (0.2). On the other hand the condition (0.6) implies that & moves
from 0 to 27 when # moves from 0 to 2z. Thus the condition (0.2) can
be considered as a kind of condition for nondegeneracy.

§1. Equation for |ul.

Since we are using a normal coordinate system (u!, :--:, u*) on H",
the coefficients g¢,;(u) of the metric tensor can be written as

(1.1) gy =4, (sinh [u])’ ,(3 utwd ) .
13 |u|2 |%l2 t‘J Iulz

From (1.1), by direct calculations, we get the following lemma.

LEMMA 1.1. Let (g.;(uw)) be as above and I'y(u) be the coefficients of
the second kind of Christoffel symbols of the Levi-Civita conmnection on
H". Then we have

1 . 2
5 sinh(@tu) e

for all w and € R",

12 gu)EE +w T =1+ (

where &,=(¢& w/lul)u and &,=£&—¢,.

PrROOF. From (1.1) we have
9 (W im(u) = —1—4 (1 - M) o (Ormtf | U2 — uruiu™)
|l |l

4 1 _ sinh |u| _ |u|cosh |u|—sinh |u]
luf® |ul lul®

{(0r U™+ 0 — Opmtt?)| U —uruium} ,

and therefore

(1.8) g ()t ia(u)eme?
0 for &//u
= (_ (sinh |u|)? 1

ettt sinh2|ul)lgf  for (& up=0.

Moreover for the case that &//u and <%, uy=0, we get
1.4) 9w u I m(u)e™ni=0 .

On the other hand we have
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1.5) guges=lef+ SR 1
From (1.3), (1.4) and (1.5) we obtain (1.2). O

Now, let u: R*— H" be a harmonic mapping. Then u satisfies the
following equation of weak form,

9 |, 32 00Dt Do+ 4* T Dorm D) =0
for all 4 eCy(R", R™) .

Here and in the sequel we write D, for o/ox”.
Now we can prove the following proposition.

PROPOSITION 1.1. Let u: R*—H" be a harmonic mapping. Then |u
satisfies the following elliptic equation

@7 Alu|—SBB 2] (5l | Dl =0
2 |ul?

on R={xreR" u(x)+*0}, where |Dul*=3>7, 3., (Du*)} and |D|u|l|*=
a=1(De [ul)’. ;

ProOF. Taking «=u7, 7€ CZ(R", R), in (1.6), we get
(1.8) S S 9.(w){wi Do Dy + (Dot Dod + 4 Tim(26) Dy Dt} das =0
a=1

Since we are using a normal coordinate éystem onv H*, b‘y- Gauss’ lemma
(cf. [3], p. 136), we see that

gi(w)ui=ut .

Thus (1.8) becomes

(1.9) S z=, {% [42Do7) -+ g.5(w)(Do* Dy +u* o D™ au‘)?]}dw:O

for all 7eCe(R" R) .

Now, using Lemma 1.1, we obtain from (1.9) an equation for |u|,

(1.10) S > {—;—Da [wD.y +(lel+ (5 sinh 2|u|)|C|”>7)}dx=0

2|ul
for all neCy(R™ R),
where we are writing :
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e=(0=(3%D0) and C=ED=(Da)—()

and therefore

gr=3 31 =0T ‘Q‘I“'P’ :

ler=3; 3% (€ =IDult— 'IZ‘“""JZ
==y [ul

Thus from (1.10), we can see that |lu| satisfies the following equation
on £2;

L, [DufP 1 e DI
a1 gap— Bt sinh 2ju(Dw i)

Now, from (1.11) we obtain (1.7). |

- §2. Proof of Theorem O.1.

First of all let us consider the case that u is a rotationally symmetric
mapping. Let u,: R*— H" be a rotationally symmetric mapping which can
be written as ’

u,(@)=-p(x|) ,
o]

with the radius function p: R, — R,. For rotationally symmetric mappings
the equation (1.7) is reduced to an equation for p,

@2.1) T l} sinh(20)=0 .

Now, by direct calculations we get the following lemma.

LEMMA 2.1. Let px(t)=2tanh™*(¢t/R). Then px(|x|) satisfies

2.2) Aps— G |} sinh(20) <0

for all R>0 and for all n=2.

Using above lemma, we can prove Theorem 0.1 by a comparison
theorem for elliptic equations.

PROOF OF THEOREM 0.1. Let U: R*—H" be a harmonic mapping
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whose coordinate representation # with respect to normal coordinate
system centered at U(0) satisfies (0.2). Then from (0.2) and (1.7) we
can see that |u| satisfies

2.3) Au|—2=L ginh o0,
2|z

for we can see from (0.2) that

|Dul*— |Dju| | _ ID( u )

22 n— 1
|l lu|

I

Since (0.2) implies that % is not a constant mapping, we can choose
a compact set DccR"—{0} on which |u|=¢, for sufficiently small ¢,>0.
Take R, sufficiently large so that

oz(2)) <e, on D for R>R,.

Remarking that p,— « as |x|— R while u remains to be bounded on every
bounded set, we can see that for every R=R, there exists a bounded
domain 2;5D, 30 such that |u|=pz on 02;. Now, from (2.2) and (2.8)
we can use a comparison theorem (see for example [2] Theorem 10.1) to
get |u|=<p0r in 2, for all R>R, This implies that |u|=0 on D, which is

a contradiction. Thus Theorem 0.1 is proved. [}
References
[1] M. GiaQuiNTA and S. HILDEBRANDT, A priori estimates for harmonic mappings, J. Reine
Angew. Math., 336 (1982), 124-164.
[2] D. GIiLBARG and N.S. TRUDINGER, Elliptic Partial Differential Equations of Second
Order (second ed.), Springer, 1983.
[8] D. GRoMOoLL, W. KLINGENBERG and W. MEYER, Riemannsche Geometrie im Grossen,

Lecture Notes in Math., 471 (1968), Springer. .
HILDEBRANDT, J. JosT and K.-O. WiDMAN, Harmonic mappings and minimal sub-
manifolds, Invent. Math., 62 (1980), 269-298.
[6] L. Karp, The growth of harmonic functions and mappings, Differential Geometry
Proceedings, Special Year, Maryland 1981-1982, Progress in Math., 32 (1983),
153-161, Birkh:iuser.
[6] A. TacHIRAWA, On interior regularity and Liouville’s theorem for harmonic mappings,
Manuscripta Math., 42 (1983), 11-40.
[7] A. TacHiRawA, Rotationally symmetric harmonic maps from a ball into a warped
product manifold, Manuscripta Math., 53 (1985), 235-254.

n

[4]

Present Address:
DEPARTMENT OF MATHEMATICS, FACULTY OF LIBERAL ARTS, SHIZUOKA UNIVERSITY
OHYA, SHIZUOKA 422, JAPAN




