# A Non-Existence Result for Harmonic Mappings from $\boldsymbol{R}^{\boldsymbol{n}}$ into $\boldsymbol{H}^{\boldsymbol{n}}$ 

Atsushi TACHIKAWA<br>Keio University<br>(Communicated by M. Obata)

## § 0. Introduction.

The purpose of this paper is to give a non-existence result for harmonic mappings defined on the whole $\boldsymbol{R}^{n}$, a Euclidean $n$-space ( $n \geqq 2$ ), into a real hyperbolic $n$-space $\boldsymbol{H}^{n}$.

For harmonic mappings $U: M \rightarrow N$ ( $M, N$ : complete Riemannian manifolds) some Liouville type theorems have been proved. By S. HildebrandtJ. Jost-K.-O. Widman [4] it has been shown that a harmonic mapping $U: M \rightarrow N$ must be a constant mapping if $M$ is simple and image $U(M)$ is contained in a geodesic ball $B_{R}(Q) \subset N$ with $R<\pi /(2 \sqrt{\kappa})$ where $\kappa$ denotes the maximum of the sectional curvatures of $N$. Here, a Riemannian manifold is said to be simple, if it is topologically $\boldsymbol{R}^{m}$ furnished with a metric for which the associated Laplace-Beltrami operator is uniformly elliptic on $\boldsymbol{R}^{m}$. (See also [1] and [6].) Moreover by L. Karp [5] it has been shown that, for a complete, noncompact Riemannian manifold $M$ and a simply-connected Riemannian manifold $N$ with nonpositive sectional curvature, a nonconstant harmonic mapping $U: M \rightarrow N$ satisfies a certain growth-order condition. This implies a non-existence theorem for harmonic mappings under some growth condition. On the contrary, our non-existence theorem in this paper requires no growth condition.

In order to describe our main result precisely we introduce some notations: We use a standard coordinate system $x=\left(x^{1}, \cdots, x^{n}\right)$ on $\boldsymbol{R}^{n}$ and a normal coordinate system $u=\left(u^{1}, \cdots, u^{n}\right)$ centered at some point $P_{0}$ on $\boldsymbol{H}^{n}$. $\langle\cdot, \cdot\rangle$ and $|\cdot|$ stand for the Euclidean scalar product and norm. We shall write $\left(g_{i j}(u)\right.$ ) for the metric tensor on $\boldsymbol{H}^{n}$ with respect to the normal coordinate system $\left(u^{i}\right)_{1 \leq i \leq n},\left(g^{i j}(u)\right)$ for the inverse of $\left(g_{i j}(u)\right)$, and the Christoffel symbols of the first and second kind of the Levi-Civita connection on $\boldsymbol{H}^{n}$ will be denoted by $\Gamma_{i j k}$ and $\Gamma_{j k}^{i}$.

A mapping $U: \boldsymbol{R}^{n} \rightarrow \boldsymbol{H}^{n}$ is said to be a harmonic mapping if it is of

[^0]class $C^{2}$ and the representation $u(x)$ of $U$ in the coordinate systems $\left(x^{1}, \cdots, x^{n}\right)$ and ( $u^{1}, \cdots, u^{n}$ ) satisfies the system of quasilinear elliptic partial differential equations
\[

$$
\begin{equation*}
\Delta u^{i}+\sum_{\alpha=1}^{n} \Gamma_{j k}^{i}(u) \frac{\partial u^{j}}{\partial x^{\alpha}} \frac{\partial u^{k}}{\partial x^{\alpha}}=0 \quad \text { for } \quad 1 \leqq i \leqq n \tag{0.1}
\end{equation*}
$$

\]

where $\Delta$ denotes the standard Laplacian on $\boldsymbol{R}^{n}$, i.e. $\Delta=\sum_{\alpha=1}^{n}\left(\partial / \partial x^{\alpha}\right)^{2}$.
Our main result may be stated as follows.
THEOREM 0.1. There exists no harmonic mapping $U: \boldsymbol{R}^{n} \rightarrow \boldsymbol{H}^{n}$ which is defined on the whole $\boldsymbol{R}^{n}$ and a coordinate representation $u(x)$ with respect to the normal coordinate system centered at $U(0)$ satisfies

$$
\begin{equation*}
\sum_{i=1}^{n} \sum_{\alpha=1}^{n}\left(\frac{\partial}{\partial x^{\alpha}}\left(\frac{u^{i}(x)}{|u(x)|}\right)\right)^{2} \geqq \frac{n-1}{|x|^{2}} \quad \text { for all } \quad x \in \boldsymbol{R}^{n} . \tag{0.2}
\end{equation*}
$$

For example, the mappings which can be written as $u(x)=(x /|x|) \mu(x)$ with $\mu: \boldsymbol{R}^{n} \rightarrow \boldsymbol{R}$ satisfy the condition (0.2). It should be noted that rotationally symmetric mappings $u(x)=(x /|x|) \rho(|x|)$ with $\rho: \boldsymbol{R} \rightarrow \boldsymbol{R}$ satisfy the condition (0.2), and therefore Theorem 0.1 shows that there exists no rotationally symmetric harmonic mapping from $\boldsymbol{R}^{n}$ to $\boldsymbol{H}^{n}$. This contrasts with the result of [7] which asserts the existence of rotationally symmetric harmonic mappings from $\boldsymbol{R}^{n}$ onto a warped product manifold $\boldsymbol{R}_{+} \times_{f} S^{n-1}$ whose warping function $f: \boldsymbol{R}_{+} \rightarrow \boldsymbol{R}_{+}$satisfies the following conditions;

$$
\begin{gather*}
f(t)>0, f^{\prime}(t)>0 \text { on } \boldsymbol{R}_{+},  \tag{0.3}\\
\lim _{t \rightarrow+0} \frac{f(t)}{t}=1, \tag{0.4}
\end{gather*}
$$

and

$$
\begin{equation*}
f \cdot f^{\prime}(t) \text { is at most of linear growth as } t \rightarrow \infty \tag{0.5}
\end{equation*}
$$

Remark that if we take $f(t)=\sinh t, \boldsymbol{R}_{+} \times_{f} S^{n-1}$ coincides with $H^{n}$ and the conditions ( 0.3 ) and ( 0.4 ) are satisfied.

Remark 0.1. For the case that $n=2$, using polar coordinates, we can replace the condition (0.2) with slight stronger but simpler one. Let $(r, \theta)(0 \leqq \theta \leqq 2 \pi)$ and $(R, \theta)$ be the polar coordinate systems on $R^{2}$ and $\boldsymbol{H}^{2}$ respectively and write a mapping $u: \boldsymbol{R}^{2} \rightarrow \boldsymbol{H}^{2}$ as $\left(u^{1}(x), u^{2}(x)\right)=$ $(R(r, \theta) \cos \theta(r, \theta), R(r, \theta) \sin \theta(r, \theta))$. Then it is easy to see that the condition

$$
\begin{equation*}
\frac{\partial \theta}{\partial \theta} \geqq 1 \tag{0.6}
\end{equation*}
$$

implies (0.2). On the other hand the condition (0.6) implies that $\Theta$ moves from 0 to $2 \pi$ when $\theta$ moves from 0 to $2 \pi$. Thus the condition ( 0.2 ) can be considered as a kind of condition for nondegeneracy.
§ 1. Equation for $|u|$.
Since we are using a normal coordinate system ( $u^{1}, \cdots, u^{n}$ ) on $\boldsymbol{H}^{n}$, the coefficients $g_{i j}(u)$ of the metric tensor can be written as

$$
\begin{equation*}
g_{i j}(u)=\frac{u^{i} u^{j}}{|u|^{2}}+\frac{(\sinh |u|)^{2}}{|u|^{2}} \cdot\left(\delta_{i j}-\frac{u^{i} u^{j}}{|u|^{2}}\right) . \tag{1.1}
\end{equation*}
$$

From (1.1), by direct calculations, we get the following lemma.
Lemma 1.1. Let $\left(g_{i j}(u)\right)$ be as above and $\Gamma_{j k}^{i}(u)$ be the coefficients of the second kind of Christoffel symbols of the Levi-Civita connection on $\boldsymbol{H}^{n}$. Then we have

$$
\begin{align*}
g_{i j}(u)\left(\xi^{i} \xi^{j}+u^{k} \Gamma_{k m}^{t}(u) \xi^{m} \xi^{j}\right)=\left|\xi_{t}\right|^{2}+ & \left(\frac{1}{2|u|} \sinh (2|u|)\right)\left|\xi_{n}\right|^{2}  \tag{1.2}\\
& \text { for all } u \text { and } \xi \in \boldsymbol{R}^{n}
\end{align*}
$$

where $\xi_{t}=\left(\langle\xi, u\rangle / \|\left. u\right|^{2}\right) u$ and $\xi_{n}=\xi-\xi_{t}$.
Proof. From (1.1) we have

$$
\begin{aligned}
g_{i j}(u) \Gamma_{k m}^{i}(u)= & \frac{1}{|u|^{4}} \cdot\left(1-\frac{(\sinh |u|)^{2}}{|u|^{2}}\right) \cdot\left(\delta_{k m} u^{j}|u|^{2}-u^{k} u^{j} u^{m}\right) \\
& +\frac{1}{|u|^{3}} \cdot \frac{\sinh |u|}{|u|} \cdot \frac{|u| \cosh |u|-\sinh |u|}{|u|^{2}} \\
& \cdot\left\{\left(\delta_{k j} u^{m}+\delta_{j m} u^{k}-\delta_{k m} u^{j}\right)|u|^{2}-u^{k} u^{j} u^{m}\right\},
\end{aligned}
$$

and therefore

$$
\begin{align*}
& g_{i j}(u) u^{k} \Gamma_{k m}^{i}(u) \xi^{m} \xi^{j}  \tag{1.3}\\
& \quad= \begin{cases}0 & \text { for } \xi / / u \\
\left(-\frac{(\sinh |u|)^{2}}{|u|^{2}}+\frac{1}{2|u|} \sinh 2|u|\right)|\xi|^{2} & \text { for }\langle\xi, u\rangle=0\end{cases}
\end{align*}
$$

Moreover for the case that $\xi / / u$ and $\langle\eta, u\rangle=0$, we get

$$
\begin{equation*}
g_{i j}(u) u^{k} \Gamma_{k m}^{i}(u) \xi^{m} \eta^{j}=0 \tag{1.4}
\end{equation*}
$$

On the other hand we have

$$
\begin{equation*}
g_{i j}(u) \xi^{i} \xi^{j}=\left|\xi_{t}\right|^{2}+\frac{(\sinh |u|)^{2}}{|u|^{2}}\left|\xi_{n}\right|^{2} . \tag{1.5}
\end{equation*}
$$

From (1.3), (1.4) and (1.5) we obtain (1.2).
Now, let $u: \boldsymbol{R}^{n} \rightarrow \boldsymbol{H}^{n}$ be a harmonic mapping. Then $u$ satisfies the following equation of weak form,

$$
\begin{align*}
\int_{\boldsymbol{R}^{n}} \sum_{\alpha=1}^{n} g_{i j}(u)\left(D_{\alpha} u^{t} D_{\alpha} \psi^{j}+\psi^{k} \Gamma_{k=2}^{j} D_{\alpha} u^{m} D_{\alpha} u^{t}\right) d x=0  \tag{1.6}\\
\text { for all } \psi \in C_{0}^{\infty}\left(\boldsymbol{R}^{n}, \boldsymbol{R}^{n}\right) .
\end{align*}
$$

Here and in the sequel we write $D_{\alpha}$ for $\partial / \partial x^{\alpha}$.
Now we can prove the following proposition.
Proposition 1.1. Let $u: \boldsymbol{R}^{n} \rightarrow \boldsymbol{H}^{n}$ be a harmonic mapping. Then $|u|$ satisfies the following elliptic equation

$$
\begin{equation*}
\Delta|u|-\frac{\sinh 2|u|}{2|u|^{2}}\left(|D u|^{2}-|D| u| |^{2}\right)=0 \tag{1.7}
\end{equation*}
$$

on $\Omega=\left\{x \in \boldsymbol{R}^{n}: u(x) \neq 0\right\}$, where $|D u|^{2}=\sum_{i=1}^{n} \sum_{\alpha=1}^{n}\left(D_{\alpha} u^{t}\right)^{2}$ and $|D| u\left|\left.\right|^{2}=\right.$ $\sum_{\alpha=1}^{n}\left(D_{\alpha}|u|\right)^{2}$.

Proof. Taking $\psi=u \eta, \eta \in C_{0}^{\infty}\left(\boldsymbol{R}^{n}, \boldsymbol{R}\right)$, in (1.6), we get

$$
\begin{equation*}
\int \sum_{\alpha=1}^{n} g_{i j}(u)\left\{u^{j} D_{\alpha} u^{i} D_{\alpha} \eta+\left(D_{\alpha} u^{i} D_{\alpha} u^{j}+u^{k} \Gamma_{k m}^{j}(u) D_{\alpha} u^{m} D_{\alpha} u^{i}\right) \eta\right\} d x=0 . \tag{1.8}
\end{equation*}
$$

Since we are using a normal coordinate system on $\boldsymbol{H}^{n}$, by Gauss' lemma (cf. [3], p. 136), we see that

$$
g_{t j}(u) u^{j}=u^{i} .
$$

Thus (1.8) becomes

$$
\begin{array}{r}
\int \sum_{\alpha=1}^{n}\left\{\frac{1}{2} D_{\alpha}|u|^{2} D_{\alpha} \eta+g_{i j}(u)\left(D_{\alpha} u^{i} D_{\alpha} u^{j}+u^{k} \Gamma_{k m}^{j} D_{\alpha} u^{m} D_{\alpha} u^{i}\right) \eta\right\} d x=0  \tag{1.9}\\
\text { for all } \eta \in C_{0}^{\infty}\left(\boldsymbol{R}^{n}, \boldsymbol{R}\right)
\end{array}
$$

Now, using Lemma 1.1, we obtain from (1.9) an equation for $|u|$,

$$
\begin{align*}
& \int \sum_{\alpha=1}^{n}\left\{\frac{1}{2} D_{\alpha}|u|^{2} D_{\alpha} \eta+\left(|\xi|^{2}+\left(\frac{1}{2|u|} \sinh 2|u|\right)|\zeta|^{2}\right) \eta\right\} d x=0  \tag{1.10}\\
& \text { for all } \eta \in C_{0}^{\infty}\left(\boldsymbol{R}^{n}, \boldsymbol{R}\right),
\end{align*}
$$

where we are writing

$$
\xi=\left(\xi_{\alpha}^{i}\right)=\left(\frac{\left\langle u, D_{\alpha} u\right\rangle}{|u|^{2}} u^{i}\right) \quad \text { and } \quad \zeta=\left(\zeta_{\alpha}^{i}\right)=\left(D_{\alpha} u^{i}\right)-\left(\xi_{\alpha}^{i}\right),
$$

and therefore

$$
\begin{aligned}
& |\xi|^{2}=\sum_{i=1}^{n} \sum_{\alpha=1}^{n}\left(\xi_{\alpha}^{i}\right)^{2}=\frac{\left.\left.|D| u\right|^{2}\right|^{2}}{4|u|^{2}}, \\
& |\xi|^{2}=\sum_{i=1}^{n} \sum_{\alpha=1}^{n}\left(\zeta_{\alpha}^{i}\right)^{2}=|D u|^{2}-\frac{\left.\left.|D| u\right|^{2}\right|^{2}}{4|u|^{2}} .
\end{aligned}
$$

Thus from (1.10), we can see that $|u|$ satisfies the following equation on $\Omega$;

$$
\begin{equation*}
\frac{1}{2} \Delta|u|^{2}-\frac{\left.|\cdot||u|^{2}\right|^{2}}{4|u|^{2}}-\frac{1}{2|u|} \sinh 2|u|\left(|D u|^{2}-\frac{\left.\left.|D| u\right|^{2}\right|^{2}}{4|u|^{2}}\right)=0 . \tag{1.11}
\end{equation*}
$$

Now, from (1.11) we obtain (1.7).

## § 2. Proof of Theorem 0.1.

First of all let us consider the case that $u$ is a rotationally symmetric mapping. Let $u_{s}: \boldsymbol{R}^{n} \rightarrow \boldsymbol{H}^{n}$ be a rotationally symmetric mapping which can be written as

$$
u_{s}(x)=\frac{x}{|x|} \rho(|x|),
$$

with the radius function $\rho: \boldsymbol{R}_{+} \rightarrow \boldsymbol{R}_{+}$. For rotationally symmetric mappings the equation (1.7) is reduced to an equation for $\rho$,

$$
\begin{equation*}
\Delta \rho-\frac{n-1}{2|x|^{2}} \sinh (2 \rho)=0 . \tag{2.1}
\end{equation*}
$$

Now, by direct calculations we get the following lemma.
Lemma 2.1. Let $\rho_{R}(t)=2 \tanh ^{-1}(t / R)$. Then $\rho_{R}(|x|)$ satisfies

$$
\begin{equation*}
\Delta \rho_{R}-\frac{n-1}{2|x|^{2}} \sinh \left(2 \rho_{R}\right) \leqq 0 \tag{2.2}
\end{equation*}
$$

for all $R>0$ and for all $n \geqq 2$.
Using above lemma, we can prove Theorem 0.1 by a comparison theorem for elliptic equations.

Proof of Theorem 0.1. Let $U: \boldsymbol{R}^{n} \rightarrow \boldsymbol{H}^{n}$ be a harmonic mapping
whose coordinate representation $u$ with respect to normal coordinate system centered at $U(0)$ satisfies (0.2). Then from (0.2) and (1.7) we can see that $|u|$ satisfies

$$
\begin{equation*}
\Delta|u|-\frac{n-1}{2|x|^{2}} \sinh 2|u| \geqq 0 \tag{2.3}
\end{equation*}
$$

for we can see from (0.2) that

$$
\frac{|D u|^{2}-|D| u| |^{2}}{|u|^{2}}=\left|D\left(\frac{u}{|u|}\right)\right|^{2} \geqq \frac{n-1}{|x|^{2}} .
$$

Since (0.2) implies that $u$ is not a constant mapping, we can choose a compact set $D \subset \subset \boldsymbol{R}^{n}-\{0\}$ on which $|u| \geqq \varepsilon_{0}$ for sufficiently small $\varepsilon_{0}>0$.

Take $R_{0}$ sufficiently large so that

$$
\rho_{R}(|x|)<\varepsilon_{0} \quad \text { on } D \text { for } R>R_{0} .
$$

Remarking that $\rho_{R} \rightarrow \infty$ as $|x| \rightarrow R$ while $u$ remains to be bounded on every bounded set, we can see that for every $R \geqq R_{0}$ there exists a bounded domain $\Omega_{R} \supset D, \nexists 0$ such that $|u|=\rho_{R}$ on $\partial \Omega_{R}$. Now, from (2.2) and (2.3) we can use a comparison theorem (see for example [2] Theorem 10.1) to get $|u| \leqq \rho_{R}$ in $\Omega_{R}$ for all $R>R_{0}$. This implies that $|u|=0$ on $D$, which is a contradiction. Thus Theorem 0.1 is proved.

## References

[1] M. Giaquinta and S. Hildebrandt, A priori estimates for harmonic mappings, J. Reine Angew. Math., 336 (1982), 124-164.
[2] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order (second ed.), Springer, 1983.
[3] D. Gromoll, W. Klingenberg and W. Meyer, Riemannsche Geometrie im Grossen, Lecture Notes in Math., 471 (1968), Springer.
[4] S. Hildebrandt, J. Jost and K.-O. Widman, Harmonic mappings and minimal submanifolds, Invent. Math., 62 (1980), 269-298.
[5] L. KARP, The growth of harmonic functions and mappings, Differential Geometry Proceedings, Special Year, Maryland 1981-1982, Progress in Math., 32 (1983), 153-161, Birkhäuser.
[6] A. Tachikawa, On interior regularity and Liouville's theorem for harmonic mappings, Manuscripta Math., 42 (1983), 11-40.
[7] A. Tachikawa, Rotationally symmetric harmonic maps from a ball into a warped product manifold, Manuscripta Math., 53 (1985), 235-254.

## Present Address:

Department of Mathematics, Faculty of Liberal Arts, Shizuora University Ohya, Shizuoka 422, Japan


[^0]:    Received August 26, 1987

