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Introduction.

Pitman’s theorem ([2]) for a one-dimensional Brownian motion $B(t)$

states that $B(t)-2M(t)$ is a Bessel process of index 3, where $B(O)=0$ is
assumed and $M(t)$ denotes the minimum of $B(s),$ $0\leqq s\leqq t$ . This theorem
can be obtained, after a scaling limit, from a similar theorem for a
coin-tossing random walk on $Z$ which is easy to prove and may still be
called Pitman’s theorem. An extension of Pitman’s theorem to higher
dimensional random walks is the following: given a simple random walk
$S_{n}$ on the d-dimensional lattice $Z^{d}$ starting at $0$ , let $S_{n}^{(i)}$ be the i-th
coordinate of $S_{n}$ and denote by $M_{n}^{(i)}$ the minimum of $S_{k}^{(i)},$ $0\leqq k\leqq n$ . Then
the process

(1) $S_{n}-2M_{n}=(S_{n}^{(1)}-2M_{n}^{(1)}, S_{n}^{(2)}-2M_{n}^{(2)}, \cdots, S_{n}^{(d)}-2M_{n}^{(d)})$

ought to be a Markov chain. Unlike the corresponding statement for a
higher dimensional Brownian motion, the above statement for $d\geqq 2$ is
not an immediate consequence of the one for $d=1$ since the coordinate
processes of $S_{n}$ are not independent (in the case $d\geqq 2$). The purpose of
this paper is to prove that $S_{n}-2M_{n}$ is a Markov chain on the d-dimensional
(sub-)lattice $Z_{+}^{d}$ of points with nonnegative integral coordinates (Theorem

1). Although a straightforward method used in the case $d=1$ (see \S 2)
may also be applied to the case $d\geqq 2$ , the argument will be quite messy.
In this paper we employ another method which is based on the following
simple observation: the coordinate processes of a simple random walk on
$Z^{d}(d\geqq 2)$ with eontinuous time are independent although this is not true
for the case of discrete time.

\S 1. Statement of the result.

Given an integer $d\geqq 2$ , we write $e_{1},$ $e_{2},$ $\cdots,$ $e_{d}$ for the d-dimensional
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unit vectors $(1, 0, \cdots, 0),$ $(0,1,0, \cdots, 0),$ $\cdots,$ $(0, \cdots, 0,1)$ spanning $Z^{d}$ .
Given positive constants $p^{(\sigma)},$ $\sigma=\pm 1,1\leqq i\leqq d$ , such that $\sum_{i=}^{d}1p=1$ , where
$p_{i}=p^{(+1)}+p_{i}^{(-1)}$ , let $S_{n}$ denote the position at time $n(=0,1,2, \cdots)$ of a
particle performing the random walk on $Z^{d}$ , according to the following
rule: the particle starts at $0$ , namely, $S_{0}=0$ , and when the first $n$

positions $S_{k},$ $0\leqq k\leqq n-1$ , are fixed, the particle starts afresh at $S_{n-1}$ ,
jumping next to one of the $2d$ neighbours $S_{n}=S_{n-1}+\sigma e_{i},$ $\sigma=\pm 1,1\leqq i\leqq d$ ,
with probability $p_{i}^{(\sigma)}$ for landing at $S_{n-1}+\sigma e_{i}$ . We are interested in the
Markovian property of the process $\{S_{n}-2M_{n};n\geqq 0\}$ defined by (1).

Before giving the definition of $\tilde{p}(x, y),$ $x,$ $yeZ_{+}^{d}$ , which is expected
to be the transition function of $S_{n}-2M_{n}$ , we introduce a transition
function $p(x, y;\alpha)$ on $Z_{+}wIth$ parameter $\alpha\in(0,1)$ as follows: if $\alpha\neq 1/2$ ,

(2.a) $p(x, y;\alpha)=\left\{\begin{array}{ll}1 & for x=0, y=1 ,\\(1-\alpha)(1-\gamma^{x})(1-\gamma^{x+1})^{-1} & for x\geqq 1, y=x-1 ,\\\alpha(1-\gamma^{x+2})(1-\gamma^{x+1})^{-1} & for x\geqq 1, y=x+1 ,\\0 & otherwise,\end{array}\right.$

where $\gamma=(1-\alpha)\alpha^{-1}$ ; if $\alpha=1/2$ ,

(2.b) $p(x, y;1/2)=\left\{\begin{array}{ll}1 & for x=0, y=1 ,\\2^{-1}x(x+1)^{-1} & for x\geqq 1, y=x-1,\\2^{-1}(x+2)(x+1)^{-1} & for x\geqq 1, y=x+1 ,\\0 & otherwise.\end{array}\right.$

We then define $p(x, y)$ for $x=(x_{1}, x_{2}, \cdots, x_{d})eZ_{+}^{d}$ and $y=(y_{1}, y_{2}, \cdots, y_{d})eZ_{+}^{d}$

by

(3) $\tilde{p}(x, y)=\left\{\begin{array}{l}p_{l}p(x_{i}, y_{i};p_{i}^{(+1)}/p_{i})\\0\end{array}\right.$

or equivalently by

for $y=x+\sigma e_{l}$ with some $i$

$(1\leqq i\leqq d)$ and $\sigma=\pm 1$ ,
otherwise ,

(3) $\tilde{p}(x, y)=h(x)^{-1}p(x, y)h(y)$ ,

where $p(x, y)$ is the (one-step) transition function of $S_{n}$ and

$h(x)=\prod_{i=1}^{d}h_{i}(x_{i})$ ,

$h_{i}(x)=\left\{\begin{array}{ll}|1-\{\frac{p_{i}^{(-1)}}{p^{(+1)}}\}^{x+1}| & if p_{i}^{(+1)}\neq p_{i}^{\{-1)} ,\\x+1 & if p_{i}^{(+1)}=p_{i}^{(-1)}.\end{array}\right.$
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Our result is now stated as follows.

THEOREM 1. $\{S_{n}-2M_{n};n\geqq 0\}$ is a Markov chain on $Z_{+}^{d}$ with (one-
step) transition function $\tilde{p}(x, y)$ .

\S 2. Pitman’s theorem in the case $d=1$ .
For our proof of Theorem 1 we need its one-dimensional version

(Proposition 2); of course, this is essentially due to Pitman [2]; however,
since a detailed proof in the case of asymmetric random walks on $Z$ seems
to be found nowhere, we give it here.

Given positive constants $\alpha$ and $\beta$ such that $\alpha+\beta=1$ , we consider a
random walk

$\left\{\begin{array}{ll}S_{0}=0 & \\S_{n}=X_{1}+\cdots+X_{n}, & (n\geqq 1),\end{array}\right.$

where $X_{k},$ $k\geqq 1$ , are independent identically distributed random variables
with $P\{X_{k}=1\}=\alpha,$ $P\{X_{k}=-1\}=\beta(k\geqq 1)$ . We put $M_{n}=\min\{S_{k};0\leqq k\leqq n\}$ .

PROPOSITION 2. $\{S_{n}-2M_{n};n\geqq 0\}$ is a Markov chain on $Z_{+}with$ tran-
sition function $p(x, y;\alpha)$ given by (2).

PROOF. We give the proof only in the case $\alpha>1/2$ , since the proof
in the case $\alpha\leqq 1/2$ is much easier. Define a random time $\tau=\min\{n\geqq 1$ ;
$S_{n}=-1\}$ with the convention min $\emptyset=\infty$ and let

$w=\left\{\begin{array}{ll}(0, S_{1}, \cdots, S_{\tau-1},1) & if \tau<\infty,\\(S_{n}, n\geqq 0) & if \tau=\infty.\end{array}\right.$

Note that the assumption $\alpha>1/2$ implies $\tau=\infty$ with positive probability.
We regard $w$ as a random variable taking values in $\mathscr{C}^{\nearrow}=\mathscr{C}^{-\prime}\cup \mathscr{G}^{-,\prime}$ ,
where $\ovalbox{\tt\small REJECT}^{\prime\prime}$ is the space of finite sequences $w=(w(n), 0\leqq n\leqq l)$ in $Z_{+}$ such
that (i) $ 1\leqq l<\infty$ , (ii) $w(O)=w(l-1)=0$ , (iii) $w(l)=1$ and (iv) $w(n+1)-w(n)=$
$\pm 1$ for each $n;\ovalbox{\tt\small REJECT}^{7^{\rightarrow\prime}}$ is the space of infinite sequences $w=(w(n), n\geqq 0)$

in $Z_{+}$ such that (i) $w(O)=0$ , (ii) $w(n+1)-w(n)=\pm 1$ for each $n$ , and (iii)
$ w(n)\rightarrow\infty$ as $ n\rightarrow\infty$ .

Take independent copies $w_{1},$ $w_{2},$ $\cdots$ of $w$ , write $w_{k}=(w_{k}(n), 0\leqq n\leqq l_{k})$

or $w_{k}=(w_{k}(n), n\geqq 0)$ according as $w_{k}e\mathscr{G}$ or $w_{k}\in \mathscr{C}^{-\prime\prime}$ and put $L_{0}=0$ ,
$L_{k}=l_{1}+l_{2}+\cdots+l_{k},$ $k\geqq 1$ , with the convention $ l_{k}=\infty$ if $w_{k}e\mathscr{F}^{\prime\prime}$ . Since
$\tau=\infty$ has positive probability, we have $ N=\min\{k\geqq 1;L_{k}=\infty\}<\infty$ almost
surely. Denote by $(W, P)$ the probability space on which $w_{k},$ $k\geqq 1$ , are
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defined. We then define a process $\{W_{n}, n\geqq 0\}$ on the probability space
$(W, P)$ by

(4) $W_{n}=k-1+w_{k}(n-L_{k-1})$ for $L_{k-1}\leqq n<L_{k}$ , $k=1,2,$ $\cdots,$ $N$ .
It is easy to see that the process $\{W_{n}, n\geqq 0\}$ is identical in law to
$\{S_{n}-2M_{n}, n\geqq 0\}$ .

Given $x(n)\in Z_{+}$ , $0\leqq n\leqq m(m\geqq 1)$ , such that $x(O)=0$ , $x(1)=1$ and
$|x(n)-x(n-1)|=1$ for $1\leqq n\leqq m$ , we now compute $P(\Lambda)$ where $\Lambda=$

$\{W_{n}=x(n);0\leqq n\leqq m\}$ . Let $M_{m}^{+}=\min\{W_{n};n\geqq m\}$ and put

$\Lambda_{x}=\Lambda\cap\{M_{n}^{+}=x\}$ , $x\in Z_{+}$ .
$M_{m\iota}^{+}=x(0\leqq x\leqq x(m))$ implies $\max\{k;L_{k}\leqq m\}\leqq x$ and hence $m<Lae+1$ . There-
fore, we have

$P\{\Lambda\}=\sum_{x=0}^{x(m)}P\{\Lambda_{x}\}=\sum_{x=0}^{x(m)}\sum_{k=0}^{x}P\{\Lambda_{x}, L_{k}\leqq m<L_{k+1}\}$ .
From the definition (4) of $W_{n}$ we can see that

$M_{n*}^{+}=x$ and $ L_{k}\leqq m<L_{k+1}\Rightarrow L_{k+1}=\infty$

provided that $k<x$ . Therefore, if $0\leqq k<x$ , then

$P\{\Lambda_{x}, L_{k}\leqq m<L_{k+1}\}=P\{\Lambda_{x}, L_{k}\leqq m, L_{k+1}=\infty\}$

$=\pi(x(O), x(1),$ $\cdots,$ $x(m))(\frac{\beta}{\alpha})^{k}\xi(x(m))$ ,

where $\pi(x(O), x(1),$ $\cdots,$ $x(m))=\prod_{n=1}^{m}p(x(n-1), x(n)),$ $p(x(n-1), x(n))$ being
equal to $\alpha$ or $\beta$ according as $x(n)-x(n-1)$ is 1 or $-1;\xi(x(m))$ is the
probability that the random walk $\{x(m)+S_{n}, n\geqq 0\}$ starting at $x(m)$ hits
$x$ but does not hit $x-1$ . It is easy to compute $\xi(x(m))$ , namely, we have
$\xi(x(m))=\gamma^{x(’\prime*)-x}(1-\gamma)$ , where $\gamma=\beta/\alpha$ (for example, see [1], p. 314). If $k=x$ ,
we have

$P\{\Lambda_{x}, L_{k}\leqq m<L_{k+1}\}=P\{\Lambda_{x}, L_{x}\leqq m, L_{x+1}=\infty\}+P\{\Lambda_{x}, L_{x}\leqq m<L_{x+1}<\infty\}$

$=\pi(x(O), x(1),$ $\cdots,$ $x(m))(\frac{\beta}{\alpha})^{x}\xi(x(m))$

$+\pi(x(0), x(1),$ $\cdots,$ $x(m))(\frac{\beta}{\alpha})^{x}\eta(x(m))$ ,

where $\eta(x(m))$ is the probability that the random walk $\{x(m)+S_{n}, n\geqq 0\}$

hits $x-1$ , namely, $\eta(x(m))=\gamma^{x(m)-x+1}$ . Therefore, we finally obtain
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(5) $P\{\Lambda\}=\sum_{x=0}^{x(m)}P\{\Lambda_{x}\}$

$=\sum_{x=0}^{x(m)}\sum_{k=0}^{x}\pi(x(0), x(1),$
$\cdots,$

$x(m))\gamma^{k+xtm)-x}(1-\gamma)$

$+\sum_{x=0}^{x(m)}\pi(x(O), x(1),$ $\cdots,$
$x(m))\gamma^{x(m)+1}$

$=\pi(x(O), x(1),$ $\cdots,$
$x(m))\sum_{x=0}^{x(m)}\gamma^{x}$

$=\prod_{n=1}^{m}\tilde{p}(x(n-1), x(n))$ ,

where

$\tilde{p}(x, y)=p(x, y)\frac{h(y)}{h(x)}$ , $y-x=\pm 1$

$(h(x)=(1-\gamma^{x+1})(1-\gamma)^{-1}, x\in Z_{+})$ .
Since the above $\tilde{p}(x, y)$ coincides with $p(x, y;\alpha)$ defined by (2) provided
that $y-x=\pm 1$ , Proposition 2 follows from (5).

\S 3. Proof of Theorem 1.

For each $i(1\leqq i\leqq d)$ , let $S^{(i)}(t)$ be a random walk on $Z$ with con-
tinuous time, starting at $0(S^{(i)}(0)=0)$ and having generator $G_{i}$ where

$G_{i}f(x)=p_{i}^{(+1)}f(x+1)+p_{l}^{(-1)}f(x-1)-p_{i}f(x)$ .
We assume that $\{S^{(i)}(t), t\geqq 0\},$ $1\leqq i\leqq d$ , are defined on a common probability
space and that they are independent. Then it is easy to see that

$S(t)=(S^{(1)}(t), S^{(2)}(t),$ $\cdots,$
$S^{(d)}(t))$

is a random walk on $Z^{d}$ with continuous time whose generator is $G$ :

$Gf(x)=\sum_{i=1}^{d}\sum_{\sigma=\pm 1}p_{i}^{(\sigma)}f(x+\sigma e_{i})-f(x)$ .

In other words, the coordinate processes of a simple random walk on $Z^{\delta}$

with continuous time are independent while this is not true in the case
of discrete time. This fact, in spite of being elementary and even obvi-
ous, can not be found easily in literature; according to K. It\^o it was
E. B. Dynkin who had referred to this fact. Denote by $T_{1},$ $T_{2},$ $\cdots$ the
successive jumping times of $S(t)$ and put $T_{0}=0$ for convention. Then
the process $\{S(T_{n}), n\geqq 0\}$ on $Z^{d}$ with discrete time is identical in law
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to the random walk $\{S_{n}, n\geqq 0\}$ introduced in \S 1. Moreover, putting
$M^{(i)}(t)=\min\{S^{(i)}(s);0\leqq s\leqq t\}$ and $M(t)=(M^{(1)}(t), M^{(2)}(t),$ $\cdots,$ $M^{(d)}(t))$ , we see
that

(6) $\{S_{n}-2M_{n}, n\geqq 0\}=\{S(T_{n})-2M(T_{n}), n\geqq 0\}d$ ,

where $=\delta$ means the equality in distribution. On the other hand, since
for each $i$ the successive jumping times of $S^{(i)}(t)-2M^{(i)}(t)$ coincide with
those of $S^{\{)}(t)$ , Proposition 2 implies that each $S^{()}(t)-2M^{(i)}(t)$ is a con-
tinuous time Markov chain on $Z_{+}$ with generator $\tilde{G}_{i}$ :

$\tilde{G}f(x)=p_{i}\{\sum_{yeZ+}p(x, y;p_{i}^{(+1)}/p_{i})f(y)-f(x)\}$ .

Therefore, the independence of $S^{()}(t)-2M^{(t)}(t),$ $1\leqq i\leqq d$ , implies that
$S(t)-2M(t)$ is a continuous time Markov chain on $Z_{+}^{d}$ with generator $\tilde{G}$ :

$\tilde{G}f(x)=\sum_{l=1}^{d}\sum_{\sigma=f1}p_{i}p(x, x_{i}+\sigma;p_{i}^{(+1)}/p_{i})f(x+\sigma e_{i})-f(x)$ ,

$x=(x_{1}, \cdots, x_{d})$ .
0bserving $S(t)-2M(t)$ at its successive jumping times $T_{1},$ $T_{2},$ $\cdots$ we see
that $\{S(T_{n})-2M(T_{n}), n\geqq 0\}$ is a discrete time Markov chain on $Z_{+}^{d}$ with
(one-step) transition function $\tilde{p}(x, y)$ given by (3). This combined with
(6) completes the proof of Theorem 1.
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