Токуо Ј. Матн. Vol. 13, No. 1, 1990

The Pseudo Orbit Tracing Property of First Return Maps

Masatoshi OKA

Science University of Tokyo (Communicated by M. Mori)

Dedicated to Professor Kenichi Shiraiwa on his 60th birthday

§1. Introduction.

Every real flow without fixed points on a compact metric space induces a first return map on the union of sets in a certain family of local cross-sections, which was first introduced by H. Whitney [9] and after that improved by R. Bowen and P. Walters [2]. Our purpose is to investigate relationships between a real flow and its first return map with respect to the pseudo orbit tracing property.

H.B. Keynes and M. Sears [6] characterized already expansivity of a real flow by making use of a family of local cross-sections and a bijective first return map.

We denote by (X, \mathbf{R}) a real flow (abbrev. flow) without fixed points on a compact metric space X. Let d denote a metric for X and the action of $t \in \mathbf{R}$ on $x \in X$ is written xt. We write

 $SI = \{xt ; t \in I \text{ and } x \in S\}$

for an interval I and $S \subset X$, and

 $\varepsilon_0 = \inf\{t > 0 ; xt = x \text{ for some } x \in X\}$.

Then ε_0 is a positive number since the flow (X, R) has no fixed points and X is compact.

For positive numbers δ and a, a pair of doubly infinite sequences $(\{x_i\}_{i=-\infty}^{\infty}, \{t_i\}_{i=-\infty}^{\infty})$ is a (δ, a) -chain for (X, R) if $t_i \ge a$ and $d(x_i t_i, x_{i+1}) < \delta$ for all $i \in \mathbb{Z}$, and a pair of infinite sequences $(\{x_i\}_{i=0}^{\infty}, \{t_i\}_{i=0}^{\infty})$ is a half (δ, a) -chain for (X, R) if $t_i \ge a$ and $d(x_i t_i, x_{i+1}) < \delta$ for $i \ge 0$. A (δ, a) -

Received October 1, 1989 Revised February 2, 1990

chain for (X, \mathbf{R}) is called the (δ, a) -pseudo orbit. τ_n denotes a partial sum of an infinite sequence $\{t_i\}$, i.e.

$${ au}_n \!=\! egin{cases} & \sum\limits_{0}^{n-1} t_i & ext{if} \quad n \! \ge \! 0 \ & -\sum\limits_{n}^{-1} t_i & ext{if} \quad n \! < \! 0 \ , \end{cases}$$

where $\tau_0 = \sum_{i=1}^{n} t_i = 0$. For a (δ, a) -chain $(\{x_i\}, \{t_i\})$ we write

$$x_0 * t = x_n(t - \tau_n) \quad \text{if} \quad \tau_n \leq t < \tau_{n+1}.$$

A (δ, a) -chain $(\{x_i\}_{i=-\infty}^{\infty}, \{t_i\}_{i=-\infty}^{\infty})$ is said to be ε -traced $(\varepsilon > 0)$ by a point $x \in X$ if there is a strictly increasing homeomorphism $h: \mathbb{R} \to \mathbb{R}$ such that $h(0)=0, h(\mathbb{R})=\mathbb{R}$ and $d(xh(t), x_0*t) < \varepsilon$ for all $t \in \mathbb{R}$. That a half (δ, a) -chain $(\{x_i\}_{i=0}^{\infty}, \{t_i\}_{i=0}^{\infty})$ is ε -traced by a point $x \in X$ is defined similarly by restricting the time t to $t \ge 0$.

(X, R) has POTP with respect to time a if for any $\varepsilon > 0$ there is $\delta > 0$ such that every infinite (δ, a) -chain for (X, R) is ε -traced by some point of X. (X, R) is said to have POTP if (X, R) has POTP with respect to time 1.

A subset $S \subset X$ is called a *local cross-section* of time $\zeta > 0$ for a flow (X, R) if S is closed and $S \cap x[-\zeta, \zeta] = \{x\}$ for all $x \in S$, where $\zeta < \varepsilon_0$.

If S is a local cross-section of time ζ , the action maps $S \times [-\zeta, \zeta]$ homeomorphically onto $S[-\zeta, \zeta]$. By the interior S^{*} of S we mean the set $S \cap int(S[-\zeta, \zeta])$. Note that $S^*(-\varepsilon, \varepsilon)$ is open in X for any $\varepsilon > 0$.

Throughout this paper our arguments are based on the following proposition.

PROPOSITION 1 ([6], Lemma 2.4). There is $0 < \zeta < \varepsilon_0$ satisfying that for each $\alpha > 0$ we can find a finite family $\mathscr{S} = \{S_1, S_2, \dots, S_k\}$ of pairwise disjoint local cross-sections of time ζ and diameter at most α and a family of local cross-sections $\mathscr{T} = \{T_1, T_2, \dots, T_k\}$ with $T_i \subset S_i^*$ $(i=1,2,\dots,k)$ such that

$$X = T^{+}[0, \alpha] = T^{+}[-\alpha, 0] = S^{+}[0, \alpha] = S^{+}[-\alpha, 0]$$

where $T^+ = \bigcup_{i=1}^k T_i$ and $S^+ = \bigcup_{i=1}^k S_i$.

Hereafter let ζ and $0 < \alpha < \zeta/3$ be as in the Proposition 1 and put

 $\beta = \sup\{\delta > 0 \ ; \ x(0, \delta) \cap S^+ = \emptyset \text{ for } x \in S^+\}.$

Obviously $0 < \beta \leq \alpha$. Let $\rho > 0$ be a number such that $5\rho < \zeta$ and $2\rho < \beta$.

For $x \in T^+$ $(x \in S^+)$ let $t \in \mathbf{R}$ be the smallest positive time such that $xt \in T^+$. Obviously $\beta \leq t \leq \alpha$ and a map $\varphi(x) = xt$ $(\tilde{\varphi}(x) = xt)$ is well defined. It is easily checked that $\varphi: T^+ \to T^+$ is bijective and $\tilde{\varphi}: S^+ \to T^+$ is surjective.

For $S_i \in \mathscr{S}$ set $D_{\rho}^i = S_i[-\rho, \rho]$ and define a projective map $P_{\rho}^i: D_{\rho}^i \to S_i$ by $P_{\rho}^i(x) = xt$, where $|t| \leq \rho$. Then P_{ρ}^i is continuous and surjective. We write

$$D_{\rho}^{i} = D_{\rho}$$
 and $P_{\rho}^{i} = P_{\rho}$

if there is no confusion.

The following remark is easily checked.

REMARK 2. There is an $0 < a < \beta/2$ such that for $x, y \in S_i$ if $d(x, y) \leq a$ and $xt \in T_j$ $(|t| \leq 3\alpha)$ for some T_j , then $yt \in D_{t'}^j$.

Using this fact, we can set up a shadowing orbit of y relative to a $\varphi(\tilde{\varphi})$ -orbit of $x \in T^+$ as follows. If y is sufficiently close to x, the orbit of y will cross S_i at a time near the time when the orbit of x crosses T_j . For $x \in T_i$ and $y \in S_i$ with $d(x, y) \leq a$, we can define a point y_1 so that $y_1 = P_{\rho}(yt)$, where t is the smallest positive time such that $\varphi(x) = xt$ ($\tilde{\varphi}(x) = xt$). Inductively if $d(\varphi^i(x), y_i) \leq a$ ($d(\tilde{\varphi}^i(x), y_i) \leq a$), then we can define a point y_{i+1} so that $y_{i+1} = P_{\rho}(y_i t)$, where t is the smallest positive time such that $\varphi^{i+1}(x) = \varphi^i(x)t$ ($\tilde{\varphi}^{i+1}(x) = \tilde{\varphi}^i(x)t$). Thus we obtain a time delayed orbit of y along a piece of the orbit of x. We can also construct the shadowing orbit of y as above for the orbit of x of negative powers of φ .

For simplicity we write T, S instead of T_i, S_i respectively. For $x \in T$ and $\eta > 0$ the η -stable set of x is defined by

$$W_{i}^{s}(x) = \{y \in S : d(\varphi^{i}(x), y_{i}) < \eta \text{ for all } i \geq 0\}$$

and the η -unstable set of x is defined by

$$W_{x}^{u}(x) = \{y \in S : d(\varphi^{i}(x), y_{i}) < \eta \text{ for all } i \leq 0\}.$$

The first return map φ is said to have a canonical coordinate if for any $\eta > 0$ there exists $\delta > 0$ such that if $d(x, y) < \delta$ $(x, y \in T^+)$, then $W^*_{\eta}(x) \cap W^u_{\eta}(y) \neq \emptyset$. Given $\delta > 0$, a doubly infinite sequence $\{x_i\}_{i=-\infty}^{\infty} \subset T^+$ is called δ -pseudo orbit of φ if $d(\varphi(x_i), x_{i+1}) < \delta$ for all $i \in \mathbb{Z}$. Similarly an infinite sequence $\{x_i\}_{i=0}^{\infty} \subset S^+$ is called δ -pseudo orbit of $\tilde{\varphi}$ if $d(\tilde{\varphi}(x_i), x_{i+1}) < \delta$ for all $i \ge 0$. If a sequence $\{x_i\} \subset T^+$ (S^+) is a δ -pseudo orbit of $\varphi(\tilde{\varphi})$, we write

$$\varphi(x_i) = x_i t_i$$
 and $\widetilde{\varphi}(x_i) = x_i t_i$

respectively. A δ -pseudo orbit $\{x_i\}$ of φ is said to be ε -traced by a point $y \in S^+$ if y satisfies the following:

- $(1) \quad d(y, x_0) < \varepsilon,$
- (2) $y_i = P_{\rho}(y_{i-1}t_{i-1})$ and $y_{-i} = P_{\rho}(y_{-i+1}(-t_{-i}))$ are inductively defined for $i \ge 1$ and they satisfy $d(y_i, x_i) < \varepsilon$ for all $i \in \mathbb{Z}$, where $y_0 = y$.

A δ -pseudo orbit $\{x_i\}_{i=0}^{\infty}$ of $\widetilde{\varphi}$ is called to be ε -traced by a point $y \in S^+$ if y satisfies the following:

- $(1) \quad d(y, x_1) < \varepsilon,$
- (2) $y_i = P_{\rho}(y_{i-1}t_{i-1})$ is defined inductively and satisfies $d(y_i, x_i) < \varepsilon$ for $i \ge 2$, where $y_1 = y$.

 $\varphi(\tilde{\varphi})$ is said to have *POTP* if for any $\varepsilon > 0$ there exists $\delta > 0$ such that every δ -pseudo orbit of $\varphi(\tilde{\varphi})$ is ε -traced by some point of S^+ .

The following are our results.

THEOREM A. If (X, \mathbf{R}) has POTP, then the bijective first return map φ obeys POTP.

COROLLARY B. If (X, \mathbf{R}) has POTP, then the bijective first return map φ has a canonical coordinate.

THEOREM C. (X, R) has POTP if and only if so does $\tilde{\varphi}: S^+ \to T^+$.

§2. Proofs of Theorem A and Corollary B.

Let $0 < \zeta < \varepsilon_0$ and $0 < \alpha < \zeta/3$ be as in §1. Choose $0 < \alpha < \beta/2$ as in Remark 2 and $\rho > 0$ as in §1 ($5\rho < \zeta$ and $2\rho < \beta$). Let \mathscr{S} and \mathscr{T} be families of local cross-sections as in Proposition 1. Before starting the proof of Theorem A, we prepare Claims 1 and 2 that suffice for our needs.

CLAIM 1. For $\eta > 0$ and $0 < \mu < \zeta$ there are positive numbers ε_1 , ε_2 , ε_3 and ε_4 such that

- (A1) $\varepsilon_1 < \eta$ and $2\varepsilon_2 < \varepsilon_1$,
- (A2) if $d(u, v) < \varepsilon_1$ for $u, v \in S$ ($\in S$), then $d(u, vt) > \varepsilon_1$ for $\mu \leq |t| \leq \zeta$,
- (A3) if $d(u, v) < 2\varepsilon_2$ for $u \in T$ and $v \in S$, then $d(\varphi(u), v_1) < \varepsilon_1$ $(d(\tilde{\varphi}(u), v_1) < \varepsilon_1)$, $d(\varphi^{-1}(u), v_{-1}) < \varepsilon_1$, where $T \in \mathscr{T}$ and $S \in \mathscr{S}$ $(T \subset S^*)$,
- (A4) if $d(u, v) \ge \varepsilon_2$ for $u, v \in S (\in \mathcal{S})$, then $d(u, vt) > \varepsilon_3$ for $|t| \le \mu$,
- (A5) if $d(x, y) < \varepsilon_4$ for $x, y \in X$, then $d(xt, yt) < \varepsilon_1$ for $|t| \leq \alpha$.

CLAIM 2. For any ε , $\tau > 0$ there are positive numbers $0 < \theta < \tau$, ε_{5} , ε_{6} , ε_{7} and ε_{8} such that for any $x, y \in X$

- (B1) $d(x, xt) < \varepsilon/4$ for any $|t| \leq \theta$,
- (B2) if $d(x, y) < \varepsilon_{s}$, then $d(xt, ys) < \varepsilon/4$ for $t, s \in \mathbb{R}$ with $|t| \leq \alpha$ and $|t-s| < \theta$,
- (B3) if $d(x, y) < \varepsilon_{\epsilon}$ and $xt \in T_{j}$ $(|t| \le \alpha)$ for some T_{j} , then $yt \in D^{j}$ and $P_{\rho}(yt) = y(t+s)$ with $|s| < \theta/4$,
- (B4) if $d(x, y) < \varepsilon_{\tau}$, then $d(xt', y(t+t')) > \varepsilon_{\tau}$ for $\theta/2 \leq |t| \leq \zeta$ and $|t'| \leq \alpha$,
- (B5) if $d(x, y) < \varepsilon_s$, then $d(xt, yt) < \varepsilon_7/2$ for $|t| \leq \alpha$.

PROOF OF THEOREM A. Take η and μ such that $0 < \eta < a$ and $0 < \mu < \zeta - \alpha - \rho$. Fix $0 < \varepsilon < \min\{\varepsilon_2, \varepsilon_3, \varepsilon_4\}$ and $0 < \tau < \min\{\mu, \beta\}$.

Since (X, \mathbf{R}) has POTP and $\beta > 0$, (X, \mathbf{R}) has POTP with respect to time β by Proposition 1.4 [7]. Let $0 < \varepsilon' < \min\{\varepsilon/4, \varepsilon_{e}, \varepsilon_{7}/2\}$. Then there exists $0 < \delta < \varepsilon'$ such that any (δ, β) -chain of (X, \mathbf{R}) is ε' -traced by some point of X. It is enough to see that δ is our asking number for $\eta > 0$.

Let $\{x_i\}_{i=-\infty}^{\infty} \subset T^+$ be any δ -pseudo orbit of the first return map φ . Let $\{t_i\}_{i=-\infty}^{\infty}$ be a sequence such that $\varphi(x_i) = x_i t_i$ for each $i \in \mathbb{Z}$. For a (δ, β) -chain $(\{x_i\}_{i=-\infty}^{\infty}, \{t_i\}_{i=-\infty}^{\infty})$ there exists $z \in X$ which ε' -traces the (δ, β) -chain. Therefore there exists a strictly increasing homeomorphism h of R such that h(0)=0, h(R)=R and

$$d(zh(t), x_0 * t) < \varepsilon'$$
 for all $t \in \mathbf{R}$.

Since $x_0 \in T$ $(T \in \mathscr{T})$ and $d(z, x_0) = d(zh(0), x_0) < \varepsilon' < \varepsilon_0$, we have $P_{\rho}(z) = zl \in S$ and $|l| < \theta/4$ by (B3). Put $z_0 = zl$ and take $\xi_0 \in \mathbb{R}$ with $h(\xi_0) = l$. Then we claim that ξ_0 does not satisfy $|h(\xi_0) - \xi_0| \ge \theta/2$.

If $|h(\xi_0) - \xi_0| \ge \theta/2$, then there is $t' \in \mathbb{R}$ such that $|h(t') - t'| = \theta/2$ and $|t'| \le |\xi_0|$, and

$$|t'| \leq \theta/2 + |h(\xi_0)| < \theta/2 + \theta/4 < \theta < \tau < eta \leq lpha$$
 .

For the case $t' \ge 0$, since $d(z, x_0) < \varepsilon' < \varepsilon_7$, by (B4) we have

$$d(zh(t'), x_0 * t') = d(z(t' \pm \theta/2), x_0t') > \varepsilon_{\tau}$$

which contradicts $d(zh(t'), x_0*t') < \varepsilon' < \varepsilon_7$. From the fact that $d(z, x_0) < \varepsilon'$ and $d(x_0, \varphi(x_{-1})) < \delta$, it follows that

$$d(z, x_{-1}(-\tau_{-1})) = d(z, \varphi(x_{-1}))$$

$$\leq d(z, x_0) + d(x_0, \varphi(x_{-1}))$$

$$< \varepsilon' + \delta < 2\varepsilon' < \varepsilon_{\tau}.$$

Hence that t' < 0 can not happen. This follows from the fact that $d(zh(t'), x_0 * t') = d(z(t' \pm \theta/2), x_{-1}(t' - \tau_{-1})) > \varepsilon_{\tau}$.

Since $|h(\xi_0) - \xi_0| < \theta/2$, we have

$$egin{aligned} &\xi_0\!<\!h(\xi_0)\!+\! heta/2\!=\!l\!+\! heta/2\!<\! heta/4\!+\! heta/2\!<\! heta\ ,\ &\xi_0\!>\!h(\xi_0)\!-\! heta/2\!>\!- heta\ , \end{aligned}$$

and so $-\theta < \xi_0 < \theta$.

Now we are in the position to prove that the point $z_0 = zl \in S \varepsilon/2$ traces the (δ, β) -chain $(\{x_i\}_{i=-\infty}^{\infty}, \{t_i\}_{i=-\infty}^{\infty})$. Put $g(t) = h(t+\xi_0) - h(\xi_0)$ for any $t \in \mathbf{R}$. Then g is a strictly increasing homeomorphism of \mathbf{R} such that $g(0)=0, g(\mathbf{R})=\mathbf{R}$. Thus

$$egin{aligned} d(z_0g(t), \ x_0*(t+\xi_0)) = d(z(l+g(t)), \ x_0*(t+\xi_0)) \ &= d(zh(t+\xi_0), \ x_0*(t+\xi_0)) \ &< arepsilon' < ar$$

For $\tau_i \leq t < \tau_{i+1}$ $(i \in \mathbb{Z})$, it is enough to prove the following to obtain the conclusion.

$$d(z_{\scriptscriptstyle 0}g(t), x_{\scriptscriptstyle i}(t- au_{\scriptscriptstyle i}))\!<\!arepsilon\!/2$$
 .

Indeed, if $\tau_i \leq t + \xi_0 < \tau_{i+1}$, we have by (B1) and (1)

$$egin{aligned} &d(z_0g(t),\ x_i(t- au_i))\ &\leq d(z_0g(t),\ x_0*(t+\xi_0))+d(x_0*(t+\xi_0),\ x_i(t- au_i))\ &$$

and if $\tau_{i+1} \leq t + \xi_0 < \tau_{i+2}$, then

$$d(z_0g(t), x_i(t-\tau_i)) \\ \leq d(z_0g(t), x_0*(t+\xi_0)) + d(x_0*(t+\xi_0), x_i(t-\tau_i)) \\ < \varepsilon/4 + d(x_{i+1}(t+\xi_0-\tau_{i+1}), x_i(\tau_{i+1}-\tau_i)(t-\tau_{i+1})) .$$

Since $d(x_{i+1}, x_i(\tau_{i+1} - \tau_i)) = d(x_{i+1}, \varphi(x_i)) < \delta < \varepsilon'$, we have by (B2)

$$d(x_{i+1}(t+\xi_0- au_{i+1}), x_i(au_{i+1}- au_i)(t- au_{i+1}))\!<\!arepsilon\!/4$$
 ,

and hence

$$d(z_{\scriptscriptstyle 0}g(t), x_{\scriptscriptstyle i}(t-\tau_{\scriptscriptstyle i})) < \varepsilon/2$$
 .

For the case that $\tau_{i-1} \leq t + \xi_0 < \tau_i$ the analogous argument ensures that

$$d(z_0g(t), x_i(t-\tau_i)) < \varepsilon/2$$
 for $\tau_i \leq t < \tau_{i+1}$ $(i \in \mathbb{Z})$.

To obtain Theorem A it is enough to see that z_0 η -traces the δ -pseudo orbit $\{x_i\}_{i=-\infty}^{\infty}$. To do this assume that the δ -pseudo orbit $\{x_i\}_{i=-\infty}^{\infty}$ is not η -traced by z_0 in the positive direction. Since $d(z_0, x_0) < \varepsilon/2 < \eta$, there is j such that $d(z_i, x_i) < \eta$ for $0 \le i < j$ and

 $d(z_j, x_j) \geq \eta$,

where $z_i = P_{\rho}(z_{i-1}t_{i-1})$. Put $z_{i+1} = z_i u_i$ for u_i with $|t_i - u_i| \leq \rho$. Since $2\rho < \beta$, each u_i is determined uniquely. For simplicity write

$$l_{j} = \sum_{n=0}^{j-1} u_{n}$$
 and $\tau_{j} = \sum_{n=0}^{j-1} t_{n}$.

 $|g(\tau_i)-l_i| \leq \mu$,

Then we have either

(a)

or

(b) $|g(\tau_j) - l_j| > \mu$.

For the both cases (a) and (b) we can derive contradictions as follows. For the case (a), from (A4) and the fact that $d(z_j, x_j) \ge \eta > \varepsilon_2$, we have

$$arepsilon/2 > d(z_0 g(au_j), x_0 * au_j) \ = d(z_i (g(au_i) - l_i), x_i) > arepsilon_3 > arepsilon \ ,$$

which is a contradiction. For the case (b), we can find $0 < k \leq j$ such that $|g(\tau_k) - l_k| > \mu$ and $|g(\tau_i) - l_i| \leq \mu$ $(0 \leq i < k)$. If there is $0 \leq i < k$ such that $d(z_i, x_i) \geq \varepsilon_2$, then $d(zg(\tau_i), x_i) > \varepsilon_3 > \varepsilon$ by (A4) (since $z_i = zl_i$ and $|g(\tau_i) - l_i| \leq \mu$). However $d(z_0g(\tau_i), x_i) = d(z_0g(\tau_i), x_0*\tau_i) < \varepsilon/2$, which is impossible. Therefore we have

$$d(z_i, x_i) < \varepsilon_2 \qquad (0 \leq i < k) . \tag{2}$$

Combing (2) and (A3), we have

$$d(z_k, \varphi(x_{k-1})) < \varepsilon_1 . \tag{3}$$

It is easily checked that (3) is inconsistent with $|g(\tau_k) - l_k| > \mu$. For, if $l_k - \mu > g(\tau_k) \ge l_{k-1} - \mu$, then

$$\mu < l_k - g(\tau_k) \leq l_k - l_{k-1} + \mu = u_{k-1} + \mu \leq \alpha + \rho + \mu < \zeta.$$

By (3) and (A2) we have $d(z_0g(\tau_k), \varphi(x_{k-1})) > \varepsilon_1$. Thus

$$\begin{split} \varepsilon/2 > d(z_0 g(\tau_k), x_0 * \tau_k) \\ = d(z_0 g(\tau_k), x_k) \\ \ge d(z_0 g(\tau_k), \varphi(x_{k-1})) - d(\varphi(x_{k-1}), x_k) \\ > \varepsilon_1 - \delta > \varepsilon - \varepsilon/2 = \varepsilon/2 \end{split}$$

which is impossible. If $g(\tau_k) < l_{k-1} - \mu$, then $g(\tau_k) < l_{k-1} - \mu \leq g(\tau_{k-1})$ (since $|g(\tau_{k-1}) - l_{k-1}| \leq \mu$) which contradicts the facts that g is strictly increasing and $\tau_{k-1} < \tau_k$. If $g(\tau_k) - l_k > \mu$, then there exists $\tau_{k-1} < t' < \tau_k$ with $g(t') = l_k + \mu$ since $g(\tau_{k-1}) \leq l_{k-1} + \mu < l_k + \mu < g(\tau_k)$. And so

$$\mu < \mu + \tau_k - t' < \mu + (\tau_k - \tau_{k-1}) \leq \mu + \alpha < \zeta.$$

From (3) and (A2) it follows that $d(z_k(\mu + \tau_k - t'), \varphi(x_{k-1})) > \varepsilon_1$. Since $\varphi(x_{k-1}) = x_{k-1}t_{k-1} = x_{k-1}(\tau_k - \tau_{k-1})$, we have $\varphi(x_{k-1})(t' - \tau_k) = x_{k-1}(t' - \tau_{k-1})$. Thus by (A5)

$$\begin{aligned} \varepsilon/2 > d(z_0 g(t'), \ x_{k-1}(t' - \tau_{k-1})) \\ = d(z_0(l_k + \mu), \ x_{k-1}(t' - \tau_{k-1})) \\ = d(z_k(\mu + \tau_k - t')(t' - \tau_k), \ \varphi(x_{k-1})(t' - \tau_k)) \\ \ge \varepsilon_k > \varepsilon , \end{aligned}$$

thus contradicting. Therefore the point z_0 η -traces the δ -pseudo orbit $\{x_i\}_{i=-\infty}^{\infty}$ in the positive direction.

It remains only to prove that the point z_0 η -traces the δ -pseudo orbit $\{x_i\}_{i=-\infty}^{\infty}$ in the negative direction. To do this if this is false, then there exists j < 0 such that $d(z_i, x_i) < \eta$ for $j < i \le 0$ and $d(z_j, x_j) \ge \eta$, where $z_i = P_{\rho}(z_{i+1}(-t_i))$ for $j \le i < 0$. Let $u_i \in R$ satisfy $z_i = z_{i+1}(-u_i)$ and $|t_i - u_i| \le \rho$. Put $l_j = -\sum_{j=1}^{j=1} u_n$ and $\tau_j = -\sum_{j=1}^{j=1} t_n$. If $|g(\tau_j) - l_j| \le \mu$, then

$$d(z_0l_j, x_j) = d(z_j, x_j) \ge \eta > \varepsilon_1 > \varepsilon_2$$

and by (A4)

$$d(z_{\scriptscriptstyle 0}g({ au}_{{ extsf{j}}}),\,x_{{ extsf{j}}})\!>\!arepsilon_{\scriptscriptstyle 3}\!>\!arepsilon$$
 ,

which contradicts $d(z_0g(\tau_j), x_0*\tau_j) < \varepsilon/2$. Hence $|g(\tau_j) - l_j| > \mu$. Since there is $j \leq k < 0$ such that $|g(\tau_k) - l_k| > \mu$ and $|g(\tau_i) - l_i| \leq \mu$ (k < i < 0), we have as in (2)

$$d(z_i, x_i) \! < \! arepsilon_2 \qquad ext{for} \quad k \! < \! i \! \leq \! 0$$
 ,

from which

$$d(\varphi(x_k), z_{k+1}) \leq d(\varphi(x_k), x_{k+1}) + d(x_{k+1}, z_{k+1}) \\< \delta + \varepsilon_2 < 2\varepsilon_2 .$$

From (A3) together with $(z_{k+1})_{-1} = z_k$, we have $d(z_k, x_k) < \varepsilon_1$, which is inconsistent with $|g(\tau_k) - l_k| \ge \mu$. Therefore the point z_0 η -traces the δ -pseudo orbit $\{x_i\}_{i=-\infty}^{\infty}$ in the negative direction.

PROOF OF COROLLARY B. Let (X, \mathbf{R}) have POTP. Then φ has POTP by Theorem A. For $\eta > 0$ there is $0 < \delta < \eta/2$ such that any δ -pseudo orbit of φ is $\eta/2$ -traced by some point of S^+ .

If $d(x, y) < \delta$ for $x, y \in T^+$, then a doubly infinite sequence $\{\cdots, \varphi^{-i}(y), \cdots, \varphi^{-i}(y), x, \varphi(x), \cdots, \varphi^{i}(x), \cdots\}$ is a δ -pseudo orbit of φ , and hence it is $\eta/2$ -traced by some point $z \in S^+$. Therefore $z \in W_{\eta}^{s}(x)$ and $d(\varphi^{-i}(y), z_{-i}) < \eta/2$ for $i \ge 1$. On the other hand, since $d(x, y) < \delta$ and $d(x, z) < \eta/2$, we have

$$d(y, z) \leq d(y, x) + d(x, z) < \delta + \eta/2 < \eta/2 + \eta/2 = \eta$$
,

from which $z \in W_{\eta}^{u}(y)$. Therefore $W_{\eta}^{s}(x) \cap W_{\eta}^{u}(y) \neq \emptyset$, which implies that φ has a canonical coordinate.

§3. Proof of Theorem C.

Let $0 < \zeta < \varepsilon_0$ and $0 < \alpha < \zeta/3$ be as in §1. Choose $0 < \alpha < \beta/2$ as in Remark 2 and $\rho > 0$ as in §1 (5 $\rho < \zeta$ and $2\rho < \beta$).

First we prove the "only if" part. Take η and μ such that $0 < \eta < a$ and $0 < \mu < \zeta - \alpha - \rho$. For η and μ as before we can choose positive numbers ε_1 , ε_2 , ε_3 and ε_4 as in Claim 1 of §2. For $0 < \varepsilon < \min\{\varepsilon_2, \varepsilon_3, \varepsilon_4\}$ and $0 < \tau < \min\{\mu, \beta\}$ as in Claim 2 of §2 we can choose positive numbers θ , ε_5 , ε_6 , ε_7 and ε_8 .

Since (X, \mathbf{R}) has POTP and $\beta > 0$, (X, \mathbf{R}) has POTP with respect to time β from Proposition 1.4 [7]. For $0 < \varepsilon' < \min\{\varepsilon/4, \varepsilon_6, \varepsilon_7/2, \varepsilon_8\}$ there exists $0 < \delta < \varepsilon'$ such that any (δ, β) -chain of (X, \mathbf{R}) is ε' -traced by some point of X. It is enough to show that δ is a number with property POTP for η .

Now let $\{x_i\}_{i=0}^{\infty}$ be a δ -pseudo orbit of $\tilde{\varphi}$. Then a pair $(\{x_i\}_{i=0}^{\infty}, \{t_i\}_{i=0}^{\infty})$ is a half (δ, β) -chain of (X, \mathbf{R}) , where $\tilde{\varphi}(x_i) = x_i t_i$. Then there is a point $z \in X$ which ε' -traces the (δ, β) -chain. Thus there exists a strictly increasing homeomorphism h of \mathbf{R} such that h(0) = 0, $h(\mathbf{R}) = \mathbf{R}$ and

$$d(zh(t), x_0 * t) < \varepsilon'$$
 for all $t \in \mathbf{R}$.

Since $d(z, x_0) = d(zh(0), x_0) < \varepsilon' < \varepsilon_0$, there exists l > 0 such that $zl \in S_j$ and $|l-t_0| < \theta/4$ by (B3) $(\tilde{\varphi}(x_0) = x_0 t_0 \in T_j)$. Put $z_1 = zl$ and take $\xi_0 > 0$ with $h(\xi_0) = l$. Then we have that $|h(\xi_0) - \xi_0| < \theta/2$ and so

$$-\theta < \xi_0 - t_0 < \theta . \tag{4}$$

Indeed, if $|h(\xi_0) - \xi_0| \ge \theta/2$, then there is $0 < t' \le \xi_0$ such that $|h(t') - t'| = \theta/2$. Since $h(\xi_0) = l < t_0 + \theta/4 < t_0 + \rho/4$, we have $0 < t' < t_0 + \beta$. For $t_0 \le t' < t_0 + t_1$, since

$$0 < t' - t_0 \leq \theta/2 + h(\xi_0) - t_0 < \theta/2 + \theta/4 < \theta < eta$$
 ,

we have

$$d(zh(t'), x_0 * t') = d(z(t' \pm \theta/2), x_1(t' - t_0))$$

= $d(zt_0(t' - t_0 \pm \theta/2), x_1(t' - t_0))$,

 $d(x_{\scriptscriptstyle 1}, x_{\scriptscriptstyle 0}t_{\scriptscriptstyle 0})\!<\!\delta\!<\!arepsilon'\!<\!arepsilon_{\scriptscriptstyle 7}\!/2$.

Since $d(zt_0, x_0t_0) < \varepsilon_7/2$ by (B5), we have by (B4)

$$arepsilon'\!>\!d(m{z}m{h}(t')\!,\,m{x}_{\scriptscriptstyle 0}\!*\!t')\!>\!arepsilon_{\scriptscriptstyle 7}$$
 ,

thus contradicting. Since $d(z, x_0) < \varepsilon' < \varepsilon_7$, if $0 < t' < t_0$, we have by (B4)

$$arepsilon'\!>\!d(m{z}h(t'),\,m{x_{\scriptscriptstyle 0}}\!*t')\!=\!d(m{z}(t'\!\pm\! heta/2),\,m{x_{\scriptscriptstyle 0}}t')\!>\!arepsilon_{\scriptscriptstyle 7}$$
 ,

which is a contradiction. Therefore $|h(\xi_0) - \xi_0| < \theta/2$.

Put $g(t) = h(t + \xi_0) - h(\xi_0)$ for any $t \in \mathbf{R}$. Then g is a strictly increasing homeomorphism of \mathbf{R} with g(0) = 0, $g(\mathbf{R}) = \mathbf{R}$, and so

$$d(z_1g(t), x_0*(t+\xi_0)) = d(z(l+g(t)), x_0*(t+\xi_0))$$

= $d(zh(t+\xi_0), x_0*(t+\xi_0))$
< $\varepsilon' < \varepsilon/4$. (5)

Let $y_i = x_{i+1}$ and $s_i = t_{i+1}$ for $i \ge 0$. Put $\tilde{\tau}_i = \sum_{n=1}^{i} t_n$ $(i \ge 1)$, $\tilde{\tau}_0 = 0$. Using (4) and (5), we can easily check that

$$d(z_1g(t), y_i(t-\widetilde{\tau}_i)) < \varepsilon/2 \quad \text{for} \quad \widetilde{\tau}_i \leq t < \widetilde{\tau}_{i+1}$$

for each $i \ge 0$. Thus $z_1 \varepsilon/2$ -traces the half (δ, β) -chain $(\{y_i\}_{i=0}^{\infty}, \{s\}_{i=0}^{\infty})$, which ensures that $z_1 \eta$ -traces the δ -pseudo orbit $\{x_i\}_{i=0}^{\infty}$ of $\tilde{\varphi}$.

It remains to prove "if" part. Let \mathscr{S} be as in Proposition 1 of §1. For a local cross section $S_i \in \mathscr{S}$ set $D_{\xi} = S_i[-\xi, \xi]$ $(0 < \xi < \zeta)$ and define a projective map $P_{\xi}^i: D_{\xi}^i \to S_i$ by $P_{\xi}^i(x) = xt$, where $xt \in S_i$ and $|t| \leq \xi$.

For $\eta > 0$ we can find $0 < \xi_1 < \rho$ such that

(C1) $d(x, xt) < \eta/2$ for $x \in X$ and $|t| \leq \xi_1$.

- Let a > 0 be as in Remark 2 and take N > 0 such that $0 < \eta/N < a$ and
 - (C2) if $d(x, y) < \eta/N$ $(x, y \in X)$ and $xt \in T_j$ $(|t| \le 6\alpha)$ for some T_j then $yt \in D^j_{\xi}$, where $\xi = \xi_1 \beta/(12\alpha)$,

(C3) if $d(x, y) < \eta/N$ $(x, y \in X)$, then $d(xt, yt) < \eta/2$ for some $|t| \le 6\alpha$. Since $\tilde{\varphi}$ has POTP, let $0 < \delta < \eta/N$ be a number with the property of POTP of $\tilde{\varphi}$ for η/N . Choose $0 < \xi_2 < \xi_1/2$ and $0 < \varepsilon < \delta/2$ such that

- (C4) $d(x, xt) < \delta/2$ for $x \in X$ and $|t| \leq \xi_2$,
- (C5) if $d(x, y) < \varepsilon$ $(x \in T \text{ and } y \in X)$, then $y \in D_{\varepsilon_2}$.

Let $0 < \delta' < \min\{a, \delta\}$ be a number such that

(C6) if $d(x, y) < \delta'$ $(x, y \in X)$, then $d(xt, yt) < \varepsilon$ for $|t| \leq \alpha$.

Let a pair $(\{x_i\}_{i=0}^{\infty}, \{t_i\}_{i=0}^{\infty})$ be a half $(\delta', 2\alpha)$ -chain of (X, R). To prove that the half $(\delta', 2\alpha)$ -chain is η -traced by some point of X, assume that $2\alpha \leq t_i \leq 4\alpha$ for any $i \geq 0$ (cf. Proposition 1.3 [7]) and put $p_n = \max\{t; 0 \leq t \leq t_n$ and $x_n t \in T^+$ }. Then $y'_n = x_n p_n \in T$ $(T \in \mathscr{T})$ and obviously $p_n \geq \alpha$ since $t_i \geq 2\alpha$. Let $\zeta_n = t_n - p_n$ (note that $0 \leq \zeta_n \leq \alpha$). Since $d(x_n t_n, x_{n+1}) < \delta'$ for $n \geq 0$, by (C6)

$$d(y_n', x_{n+1}(-\zeta_n)) = d(x_n t_n(-\zeta_n), x_{n+1}(-\zeta_n)) < \varepsilon$$

and by (C5), $x_{n+1}(-\zeta_n) \in D_{\xi_2}$. Thus we can find $q_{n+1} \in \mathbb{R}$ such that $x_{n+1}(-q_{n+1}) = P_{\rho}(x_{n+1}(-\zeta_n)) \in S$ and $|\zeta_n - q_{n+1}| \leq \xi_2$. For simplicity write $y_{n+1} = x_{n+1}(-q_{n+1})$ for $n \geq 0$. By (C4) we have

We construct an infinite sequence $\{y_n\}_{n=0}^{\infty} \subset S^+$ such that $y_0 = x_0(-q_0) \in S^+$ $(0 \le q_0 \le \alpha)$.

Note that $|q_n - \zeta_{n-1}| \leq \xi_2$ $(n \geq 1)$. From facts that $0 \leq \xi_n \leq \alpha$ $(n \geq 0)$ and $\xi_2 < \alpha/4$ we have

$$-\alpha/4 < q_n < 5\alpha/4$$

Let $w_n^1, \dots, w_n^{m_n}$ be points of $y_n[0, q_n + p_n] \cap T^+$ such that $\tilde{\varphi}(w_n^i) = w_n^{i+1}$ $(i=0, 1, \dots, m_n-1)$, where $w_n^0 = y_n \in S^+$ and $w_n^{m_n} = y'_n \in T^+$. Then by (6) we have $d(\tilde{\varphi}(w_n^i), w_n^{i+1}) < \delta$ for $0 \le i < m_n - 1$ and $d(\tilde{\varphi}(w_n^{m_n-1}), w_{n+1}^0) < \delta$. Hence $\{w_n^i; 0 \le i < m_n, n \ge 0\}$ is a δ -pseudo orbit of $\tilde{\varphi}$.

Since $\tilde{\varphi}$ has POTP, there is a point $z \in S^+$ which (η/N) -traces the δ -pseudo orbit, and hence

$$d(w_n^i, z_{m_0+\dots+m_{n-1}+i}) < \eta/N$$

for $0 \leq i < m_n \ (n \geq 0)$, where $m_{-1} = 0$ and $z_1 = z$. Let $u_n^i \in \mathbb{R} \ (0 \leq i < m_n, n \geq 0)$

be the smallest positive time such that $\tilde{\varphi}(w_n^i) = w_n^{i+1} = w_n^i u_n^i$. Obviously $\beta \leq u_n^i \leq \alpha$.

Let $v_n^i \in \mathbf{R}$ satisfies $z_{m_0+\dots+m_{n-1}+i} \cdot v_n^i = z_{m_0+\dots+m_{n-1}+i+1}$ and $|u_n^i - v_n^i| \leq \rho$. Put $v_0 = \sum_{i=1}^{m_0-1} v_0^i$ and $v_n = \sum_{i=0}^{m_n-1} v_n^i$ $(n \geq 1)$. Then we have

$$\boldsymbol{z}_{\boldsymbol{m}_0+\cdots+\boldsymbol{m}_{n-1}+\boldsymbol{m}_n} = \boldsymbol{z}_{\boldsymbol{m}_0+\cdots+\boldsymbol{m}_{n-1}} \cdot \boldsymbol{v}_n$$

for $n \ge 0$. Since $2\alpha \le t_n \le 4\alpha$, we have $\alpha \le p_n \le t_n \le 4\alpha$ and from (7), $\beta \cdot m_n < q_n + p_n < 6\alpha$. Hence $m_n \le 6\alpha/\beta$. The difference between the time v_n and the time $q_n + p_n$ is estimated as follows:

$$|v_n - (q_n + p_n)| \leq \sum_{i=0}^{m_n - 1} |u_n^i - v_n^i| \leq 6\alpha \xi / \beta \qquad (n \geq 0) , \qquad (8)$$

$$|v_0 + u_0^0 - (q_0 + p_0)| \leq \sum_{i=1}^{m_0 - 1} |u_0^i - v_0^i| \leq 6\alpha \xi/\beta .$$
(9)

To obtain Theorem C, it is only to prove that the point $z(q_0 - u_0^0)$ η -traces the half $(\delta', 2\alpha)$ -chain $(\{x_i\}_{i=0}^{\infty}, \{t_i\}_{i=0}^{\infty})$. To do this we construct a piecewise linear strictly increasing homeomorphism h of R with h(0) = 0and h(R) = R. Define a linear function $h_0: [0, t_0] \to R$ such that

$$h_0(t) = \{(v_0 + u_0^0 - q_0 + q_1)/t_0\} \cdot t$$
.

Then we have by (9)

$$v_{0}+u_{0}^{0}-q_{0}+q_{1} \ge p_{0}-6\alpha\xi/\beta+q_{1}$$

$$\ge \alpha-\xi_{1}/2-\alpha/4 > \alpha/2,$$

$$|h_{0}(t)-t| = |(v_{0}+u_{0}^{0}-q_{0}+q_{1})/t_{0}-1| \cdot t$$

$$\le |v_{0}+u_{0}^{0}-q_{0}+q_{1}-p_{0}-\zeta_{0}|$$

$$\le |v_{0}+u_{0}^{0}-(q_{0}+p_{0})|+|q_{1}-\zeta_{0}|$$

$$\le 6\alpha\xi/\beta+\xi_{2}$$

$$\le \xi_{1}/2+\xi_{1}/2=\xi_{1}.$$
(10)

On the other hand,

$$d(z'h_0(t), x_0t) = d(z(q_0 - u_0^0 + h_0(t), y_0(q_0 + t)))$$

$$\leq d(z(q_0 - u_0^0 + h_0(t)), z(q_0 - u_0^0 + t))$$

$$+ d(z(q_0 - u_0^0 + t), y_0(q_0 + t)).$$

By (10) and (C1) we have

$$d(z(q_0-u_0^0+h_0(t)), z(q_0-u_0^0+t)) < \eta/2$$
 $(t \in [0, t_0))$.

Since

$$d(y_{\scriptscriptstyle 0} u_{\scriptscriptstyle 0}^{\scriptscriptstyle 0}, z) \!=\! d(w_{\scriptscriptstyle 0}^{\scriptscriptstyle 1}, z_{\scriptscriptstyle 1}) \!<\! \eta/N$$

and

$$egin{aligned} &|q_{_0}\!-\!u_{_0}^{_0}\!+\!t|\!\leq\!|q_{_0}|\!+\!|u_{_0}^{_0}|\!+\!|t|\!\leq\!q_{_0}\!+\!u_{_0}^{_0}\!+\!t_{_0}\ &\leq\!lpha\!+\!lpha\!+\!4lpha\!=\!6lpha$$
 ,

we have by (C3)

$$d(z(q_{\scriptscriptstyle 0}-u_{\scriptscriptstyle 0}^{\scriptscriptstyle 0}+t), y_{\scriptscriptstyle 0}(q_{\scriptscriptstyle 0}+t)) < \eta/2$$
 .

Therefore

 $d(z'h_{\scriptscriptstyle 0}(t), x_{\scriptscriptstyle 0}t) < \eta$ $(t \in [0, t_{\scriptscriptstyle 0}))$.

Define a function h_n on $[\tau_n, \tau_{n+1}]$ $(n \ge 1)$ by

$$h_n(t) = \{(v_n - q_n + q_{n+1})/t_n\}(t - \tau_n) + \sum_{k=0}^{n-1} (v_k - q_k + q_{k+1}) + u_0^0,$$

where τ_n is as in §2. Since $v_n - q_n + q_{n+1} > 0$ by (8), h_n is increasing. Obviously $h_n(\tau_{n+1}) = h_{n+1}(\tau_{n+1})$ for $n \ge 0$. We claim that

 $d(z'h_n(t), x_n(t-\tau_n)) < \eta$ for $\tau_n \leq t < \tau_{n+1}$.

Indeed, we have

$$d(z'h_n(t), x_n(t-\tau_n)) \leq d(z'h_n(t), z' \Big[\sum_{k=0}^{n-1} (v_k - q_k) + u_0^0 + (t - \tau_n + \sum_{k=0}^{n-1} q_{k+1}) \Big] \Big) + d(z' \Big[\sum_{k=0}^{n-1} (v_k - q_k) + u_0^0 + (t - \tau_n + \sum_{k=0}^{n-1} q_{k+1}) \Big], x_n(t-\tau_n) \Big)$$

and

$$\begin{aligned} \left| h_{n}(t) - \sum_{k=0}^{n-1} (v_{k} - q_{k}) - \left(t - \tau_{n} + \sum_{k=0}^{n-1} q_{k+1} \right) \right| \\ &= \left| \{ (v_{n} - q_{n} + q_{n+1})/t_{n} \} (t - \tau_{n}) - (t - \tau_{n}) \right| \\ &\leq \left| v_{n} - q_{n} + q_{n+1} - t_{n} \right| \\ &\leq \left| v_{n} - q_{n} - p_{n} + p_{n} + q_{n+1} - t_{n} \right| \\ &\leq \left| v_{n} - q_{n} - p_{n} \right| + \left| q_{n+1} - \xi_{n} \right| \\ &\leq 6\alpha \xi / \beta + \xi_{2} \leq \xi_{1} . \end{aligned}$$
(11)

Hence by (11) and (C1) we have

 $\mathbf{247}$

$$d\left(z'h_{n}(t), z'\left[\sum_{k=0}^{n-1} (v_{k}-q_{k})+u_{0}^{0}+\left(t-\tau_{n}+\sum_{k=0}^{n-1} q_{k+1}\right)\right]\right) < \eta/2.$$
(12)

On the other hand,

$$\begin{aligned} x_n(t-\tau_n) &= x_n(-q_n)(t-\tau_n+q_n) = y_n(t-\tau_n+q_n) ,\\ z_{m_0+\dots+m_{n-1}} &= z_{m_0+\dots+m_{n-2}}v_{n-1} \\ &= z\Big(\sum_{k=0}^{n-1} v_k\Big) \\ &= z'\Big(\sum_{k=0}^{n-1} (v_k-q_k) + u_0^0 + \sum_{k=0}^{n-2} q_{k+1}\Big) .\end{aligned}$$

Since

$$d(y_n, z_{m_0+\cdots+m_{n-1}}) = d(w_n^0, z_{m_0+\cdots+m_{n-1}}) < \eta/N$$

we have by (C3)

$$d\left(z'\left[\sum_{k=0}^{n-1} (v_{k}-q_{k})+u_{0}^{0}+\left(t-\tau_{n}+\sum_{k=0}^{n-1} q_{k+1}\right)\right], x_{n}(t-\tau_{n})\right) < \eta/2.$$
(13)

Combining (12) and (13) we have

$$d(zh_n(t), x_n(t-\tau_n)) < \eta$$
 for $\tau_n \leq t < \tau_{n+1}$.

Let us put

$$h(t) = \begin{cases} h_n(t) & \text{if } \tau_n \leq t < \tau_{n+1} \\ t & \text{if } t \leq 0 \end{cases}.$$

Then h is our requirement. We proved that for any fixed $\eta > 0$ there exists $\delta' > 0$ such that any half $(\delta, 2\alpha)$ -chain $(\{x_i\}_{i=0}^{\infty}, \{t_i\}_{i=0}^{\infty})$ of the flow (X, R) is η -traced by a point $z' \in X$.

Since (X, \mathbf{R}) has no fixed points, that (X, \mathbf{R}) has POTP is equivalent to that for any $\varepsilon > 0$ there exist $\delta > 0$ and a > 0 such that any half (δ, a) chain of (X, \mathbf{R}) is ε -traced by some point of X. Therefore if the sectional surjective map $\tilde{\varphi}$ has POTP, then the flow (X, \mathbf{R}) must have POTP. The proof is completed.

References

- [1] R. BOWEN, Periodic orbits for hyperbolic flows, Amer. J. Math., 94 (1972), 1-30.
- [2] R. BOWEN and P. WALTERS, Expansive one-parameter flows, J. Diff. Eq., 12 (1972), 180-193.
- [3] J. E. FRANKE and J. F. SELGRADE, Abstract ω-limit sets, chain recurrent sets and basic sets for flows, Proc. Amer. Math. Soc., 60 (1976), 309-316.

 $\mathbf{248}$

PSEUDO ORBIT TRACING PROPERTY

- [4] J. E. FRANKE and J. F. SELGRADE, Hyperbolicity and chain reccurrence, J. Diff. Eq., 26 (1977), 27-36.
- [5] J.E. FRANKE and J.F. SELGRADE, Hyperbolicity and cycles, Trans. Amer. Math. Soc., **245** (1978), 251-262.
- [6] H. B. KEYNES and M. SEARS, Real-expansive flows and topological dimension, Ergod. Th. and Dynam. Sys., 1 (1981), 179-195.
- [7] R. F. THOMAS, Stability properties of one-parameter flows, Proc. London Math. Soc., 45 (1982), 479-505.
- [8] P. WALTERS, On the pseudo orbit tracing property and its relationship to stability, Lecture Notes in Math., **668** (1978), 231-244, Springer.
- [9] H. WHITNEY, Regular families of curves, Ann. of Math., 34 (1933), 244-270.

Present Address: Department of Mathematics, Faculty of Science and Technology Science University of Tokyo Noda, Chiba 278, Japan