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Geodesics in Minimal Immersions of $S^{3}$ into $S^{24}$

Yosio MUTO

(Communicated by K. Ogiue)

In the present paper we consider geodesics which are obtained as images of great circles
of $S^{3}(1)$ induced by an isometric minimal immersion $f:S^{3}(1)\rightarrow S^{24}(r),$ $r^{2}=1/8$ , namely, geodesics
of $f(S^{3}(1))$ . $S^{24}(r)$ being regarded as a hypersphere of $R^{2b}$ , we can consider such geodesics
as curves in $R^{25}$ with curvatures $k_{1},$ $k_{2},$ $k_{8}$ . It is found that these are constant8 which depend
on the choice of the geodesic except the case where $f$ is a 8tandard minimal immersion [81.

Equations satisfied by $k_{1},$ $k_{2},$ $k_{3}$ and the necessary and sufficient condition for an isometric
minimal immersion to have a geodesic which is a circle are obtained.

Though we concentrate our topic upon the case $S^{3}(1)\rightarrow S^{24}(1)$ , in the beginning part of
the paper some properties of minimal immersions of spheres into 8pheres in general are
recollected with some additional results.

\S 1. Introduction.

I8ometric minimal immersions of spheres into spheres were studied
by M. do Carmo and N. Wallach [1]. They established a theorem which
is fundamental to the study of such immersions. In [1] we can see that
such immersions can be regarded as $f:S^{m}(1)\rightarrow S^{n-1}(r)$ where $n$ and $r$

depend on $m$ and a natural number $s$ which is the order of the spherical
harmonics on $S^{M}(1)$ inducing $f$, thus

$n=n(m, s)=\frac{(2s+m-1)(s+m-2)!}{s!(m-1)!}$ ,

$r^{2}=(r(m, s))^{2}=\frac{m}{s(s+m-1)}$ .

In the present paper the set of such isometric minimal immersions
is denoted by $IMI(m, s)$ . From an immersion $feIMI(m, s)$ we get a set
of immersions by the action of the group of isometries of $S^{n-1}(r)$ . This
set is called the equivalence class of $f$ and is denoted by $eq(f)$ . The
vector space $W(m, s)$ of Do Carmo and Wallach is the space spanned by
such equivalence classes. To any such $eq(f)$ there corresponds just one
point of $W(m, s)$ but thi8 point lies in a compact convex body $L(m, s)$ in
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$W(m, s)$ . If we take a point in the interior of $L(m, s)$ , we get an
equivalence class $eq(f)$ where $f$ is a full immer8ion into $S^{n-1}(r)$ , but, if
we take a point of $\partial L(m, s)$ , we get an equivalence class $eq(f)$ where $f$

sends $S^{m}(1)$ into a sphere of dimension less than $n-1$ . We consider only
cases $m\geqq 3,$ $s\geqq 4$ since every $f\in IMI(m, s)$ is a standard minimal immersion
if $m<3$ or $s<4$ .

We can regard $W(m, s)$ as a linear space of some tensors [2], [4].
Any point $C$ of $W(m, s)$ is a harmonic bi-symmetric tensor of bi-degree
$(s, s)$ , namely $C$ is a tensor of degree $2s$ satisfying the following conditions
(i), (ii), (iii). In addition $C$ satisfies the condition (iv).

(i) $C(v_{1}, \cdots, v.;v_{+1}, \cdots, v_{2\iota})$ is symmetric both in $v_{1},$ $\cdots,$ $v_{\iota}$ and in
$v_{\epsilon+1},$ $\cdots,$ $v_{2*}$ ,

(ii) $C(v, \cdots, v;w, \cdots, w)=C(w, \cdots, w;v, \cdots, v)$ ,
(iii) $\sum_{i=1}^{n+1}C(e_{i}, e_{i}, v, \cdots, v;w, \cdots, w)=0$ ,
(iv) $C(w, w, v, \cdots, v;v, \cdots, v)=0$ .

Here $v_{1},$ $\cdots,$ $v_{2\epsilon},$ $v,$ $w$ are arbitrary vectors of $R^{f\hslash+1}$ in which $S^{n}(1)$ is
embedded as the unit sphere and $\{e_{1}, \cdots, e_{m+1}\}$ is an orthonormal basis
of $R^{m+1}$ .

REMARK. We use the following indices and adopt the summation
convention if possible.

$A,$ $B,$ $C,$ $\cdots=1,$ $\cdots,$ $n$ ; $h,$ $i,$ $j,$ $\cdots=1,$ $\cdots,$ $m+1$ .
If $f\in IMI(m, s)$ , the point $C$ of $W(m, s)$ corresponding to $eq(f)$ is

given by

(1.1) $C=\sum_{A}F^{A}\otimes F^{A}-\sum_{A}H^{A}\otimes H^{A}$

where any one of $F^{A}$ and $H^{A}(A=1, \cdots, n)$ is a symmetric harmonic
tensor of degree $s$ in $R^{n+1}$ . The role of such tensors is as follows. Let
$\{e_{1}\sim, \cdots, e_{n}\sim\}$ be an orthonormal basis of $R^{n}$ where $S^{n-1}(r)$ is embedded as
a hypersphere of radius $r$ , and let $u$ be the position vector of the point
of $S^{m}(1)$ in $R^{m+1}$ . Then $F^{A}(u, \cdots, u)e_{A}\sim=i\circ f(u)$ where $i$ is the embedding
of $S^{n-1}(r)$ into $R^{n}$ . On the other hand, if $h\in IMI(m, s)$ is a standard
minimal immersion, then $H^{1}\lrcorner(u, \cdots, u)e_{A}\sim=i\circ h(u)$ . Thus $C\in W(m, s)$ can
be written in the form (1.1) if and only if $C\in L(m, s)[1],$ $[2]$ . Such a
tensor $C$ is called the associate of $f$ (or $eq(f)$) or is said to be associated
with $f$ (or $eq(f)$).

\S \S 2, 3 are written as preliminaries. We define $C_{q,r}$ and $u_{q.r}$ and state
the property of the unit bi-symmetric tensor $U$ in \S 2 where some results
are given which are not stated in [2]. In \S 3 we define vector fields
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$V_{p}:R\rightarrow R^{n}$ and functions $V_{q,r}:R\rightarrow R$ on a geodesic which is obtained as
$f(u)$ where $u:R\rightarrow R^{m+1}$ denotes a great circle of $S^{m}(1)$ . The relation of
$V_{q,r}$ to $C_{q,r}$ and $u_{q,r}$ obtained there is the pivot in our calculation. \S 4
is devoted to cases $f\in IMI(3,4)$ . There we have only constant curvatures
$k_{1},$ $k_{2},$ $k_{3}$ which depend on the geodesic considered. If $k_{2}\neq 0$ , then $k_{8}\neq 0$ and

$(k_{1})^{2}+(k_{2})^{2}+(k_{3})^{2}=20$ , $(k_{1})^{2}(k_{3})^{2}=64$ .
If $k_{2}=0$ , then the geodesic is a circle on a 2-plane of the ambient $R^{2b}$ .
However, such geodesics exist only in some isometric minimal immersions
and the point $C$ associated with such an immersion belongs to $\partial L(3,4)$ .
In \S 5 we study the value of $C_{4,0}(v, w)$ which $C\in L(3,4)$ can take when
$\{v, w\}$ is a set of orthonormal vectors. It is found that the range is
$[-1/15,1/10]$ .

\S 2. Property of the unit bi-symmetric tensor $U$.
The set of harmonic bi-symmetric tensor of bi-degree $(s, s)$ , namely,

the set of tensols satisfying the conditions (i), (ii), (iii) of \S 1, is denoted
by $B(m, s)$ . Let $B\in B(m, s)$ . If we define a function $b:R^{m+1}\times R^{m+1}\rightarrow R$ by

$b(v, w)=B(v, \cdots, v;w, \cdots, w)$ ,

then $b$ determines just one $B\in B(m, s)$ , namely, if $B_{1}$ and $B_{2}$ belong to
$B(m, s)$ and satisfy

$B_{1}(v, \cdots, v;w, \cdots, w)=B_{2}(v, \cdots, v;w, \cdots, w)$ ,

then $B_{1}=B_{2}$ .
The tensor $U\in B(m, s)$ that sativfies

(2.1) $U(v, \cdots, v;w, \cdots, w)$

$=\sum_{p=0}^{\sigma}u_{p}\langle v, w\rangle^{\epsilon-2p}\langle v, v\rangle^{p}\langle w, w\rangle^{p}$ , $u_{0}=1$

identically for vectors $v,$ $w$ of $R^{m+1}$ is called the unit tensor or the unit
element of $B(m, s)$ . Here $\sigma=[s/2]$ is the largest natural number satisfying
$2\sigma\leqq s$ .

$U$ may be defined by

(2.2) $U(v_{1}, \cdots, v_{\epsilon};w_{1}, \cdots, w_{\epsilon})$

$=\mathscr{L}_{v}\mathscr{G}_{w}\sum_{p=0}^{\sigma}u_{p}\langle v_{1}, v_{2}\rangle\cdots\langle v_{2p-1}, v_{2p}\rangle$

$\langle w_{1}, w_{2}\rangle\cdots\langle w_{2p-1}, w_{2p}\rangle$

$\langle v_{2p+1}, w_{2p+1}\rangle\cdots\langle v_{\epsilon}, w_{s}\rangle$
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where $\mathscr{L}_{v}$ (resp. $\mathscr{L}_{v}$) means symmetrization with respect to $v_{1},$ $\cdots,$ $v$.
(resp. $w_{1},$ $\cdots,$ $w.$) $[2]$ .

As $U$ is harmonic, we have, for $p=1,$ $\cdots,$
$\sigma$ ,

(2.3) $(s-2p+2)(s-2p+1)u_{p-1}+2p(2s+m-2p-1)u_{p}=0$ .
This and $u_{0}=1$ determine $u_{1},$ $\cdots,$ $u_{a}$ . As we have defined $a$ and $c^{\prime}$ by

(2.4) $a=\sum_{p=0}^{\sigma}u_{p}$ , $ac=r^{2}$

in [2], the relation between $U$ and the tensors $H^{A}$ of a standard minimal
immersion is

(2.5) $c^{\prime}U=\sum_{A}H^{A}\otimes H^{A}$ .
If $m=3$ and $s=4$ , we have

(2.6) $a=\frac{5}{16}$ , $c^{\prime}=\frac{2}{5}$ .

Let $v$ and $w$ be vectors of $R^{n+1}$ . As in [5] we define $B_{p,q}(v, w)$ by

(2.7) $B_{p,q}(v, w)=B(v, \cdots, v, w, \cdots, w;v, \cdots, v, w, \cdots, w)$

where in the right hand side $w$ appears $p$ times before the semicolon
and $q$ times after the semicolon. As an application (2.7) defines $U_{p,q}(v, w)$

and $C_{p,q}(v, w)$ . $C_{p,q}(v, w)$ vanishe8 if $p+q\leqq 3$ or $p+q\geqq 2s-3[2],$ $[4]$ .
LEMMA 2.1. Let $B$ be any element of $B(m, s)$ and let $B_{p,q}(v, w)$ be

defined by (2.7). Then replacing $v$ by $v+xw$ and $w$ by $w+yv$ where $x$ ,
$y\in R$ we get

(2.8) $B_{p.q}(v+xw, w+yv)$

$=B_{p.q}(v, w)$

$+((s-p)B_{p+1.q}(v, w)+(s-q)B_{p,q+1}(v, w))x$

$+(pB_{p-1,q}(v, w)+qB_{p,q-1}(v, w))y$

$+[*]$

where $[*]$ is a polynomial in $x$ and $y$ containing only terms of degree
higher than one.

From (2.1) or (2.2) we can see that, if the set $\{v, w\}$ is orthonormal,
then $U_{p,q}(v, w)$ does not depend on the choice of the orthonormal set, so
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that we can write $U_{p,q}(v, w)=u_{p,q}$ . Clearly $u_{p,q}$ vanishes if $p+q$ is odd
and we have

(2.9) $u_{p,q}=u_{q,p}=u_{\epsilon-p,.-q}=u_{-q,.-p}$ .
Taking an orthonormal set $\{a, b\}$ of vectors in $R^{n+1}$ , we can express

a great circle of $S^{n}(1)$ in the form $u:R\rightarrow R^{n*+1}$ where

(2.10) $u(t)=a$ cos $t+b$ sin $t$ .
Thus we have

$u^{\prime}(t)=-a$ sin $t+b$ cos $t$ , $u^{\prime\prime}(t)=-u(t)$ , $\Vert u(t)\Vert=\Vert u^{\prime}(t)\Vert=1$ .
If we take any element $B$ of $B(m, s)$ , we have $B_{p,q}(u(t), u’(t))$ by (2.7)
and, as an application of (2.8), we get the following lemma.

LEMMA 2.2. Let $B\in B(m, s)$ and $u(t)$ be given by (2.10). Then we
have

(2.11) $dB_{p,q}(u(t), u^{\prime}(t))$

$-\overline{dt}$

$=(s-p)B_{p+1,q}(u, u’)+(s-q)B_{p,q+1}(u, u’)$

$-pB_{p-1,q}(u, u)-qB_{p,q-1}(u, u^{\prime})$ ,

where $u(t)$ and $u^{\prime}(t)$ are abbreviated to $u$ and $u^{\prime}$ .
This result can be applied to $U$ and $C\in W(m, s)$ . $\{u(t), u^{\prime}(t)\}$ being

orthonormal, we have $U_{p,q}(u(t), u^{\prime}(t))=u_{p,q}$ . Hence we get, in view of
(2.11),

(2.12) $(s-p)u_{p+1,q}+(s-q)u_{p,q+1}=pu_{p-1,q}+qu_{p,q-1}$ .
When we want to find the value of $u_{p,q}$ , we can use (2.12) in addition
to (2.2).

If $m=3$ and $s=4$ , we get

$u_{0,0}=\frac{5}{16}$ , $u_{2,0}=-\frac{5}{48}$ , $u_{1,1}=\frac{5}{32}$ ,

$u_{4,0}=\frac{1}{16}$ , $u_{1,3}=-\frac{3}{32}$ , $u_{2,2}=\frac{19}{144}$ ,

$u_{4,2}=u_{2,0}$ , $u_{\epsilon,s}=u_{1.1}$ , $u_{4},$ $=u_{0,0}$ .
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\S 3. Vector fields $V_{p}$ and functions $V_{q,r}$ on a geodesic.

When an orthonormal set $\{a, b\}$ of vectors of $R^{n+1}$ is given, we get
a great circle of $S^{n}(1)$ such that

(3.1) $u(t)=a$ cos $t+b$ sin $t$ .
The image $f(u(t))$ by $f\in IMI(m, s)$ describes a geodesic of $f(S^{m}(1))$ .
Conversely any geodesic of $f(S^{n}(1))$ can be expressed by $f(u(t))$ where
$u(t)$ is given by (3.1) with $\{a, b\}$ depending on the choice of the geodesic.
Thus a geodesic of $f(S^{m}(1))$ parametrized by its arc length can be ex-
pressed by

$X^{A}(t)=F^{-1}(u(t), \cdots, u(t))$

in $R^{n}$ where $F^{A}$ are harmonic ten8ors explained in \S 1.
Let us define functions $F_{p}^{i}(t)$ by

(3.2) $F_{p}^{4}(t)=F^{A}(u(t), \cdots, u(t), u^{\prime}(t), \cdots, u^{\prime}(t))$

where in the right hand side $u(t)$ appears $s-p$ times and $u^{\prime}(t)$ appears
$p$ times. Then we get

(3.3) $\frac{dF_{p}^{4}(t)}{dt}=(s-p)F_{p+1}^{I}(t)-pF_{p-1}^{I}(t)$

by virtue of $u’=-u$ . Besides, we have

(3.4) $F_{p}(t+\pi/2)=(-1)^{p}F_{-p}^{I}(t)$ .
Let us now define $V_{p}$ by

(3.5) $ V_{p}(t)=F_{p}^{I}(t)e_{A}\sim$ .
Then from (3.8) and (3.4) we get

(3.6) $\frac{dV_{p}}{dt}=(s-p)V_{p+1}-pV_{p-1}$ ,

(3.7) $V_{p}(t+\pi/2)=(-1)^{p}V_{\iota-p}(t)$ .
Differentiating $X(t)=V_{0}(t)$ repeatedly with respect to $t$ , we get, by

virtue of (3.6),

(3.8) $X(t)=V_{0}(t)$ ,

$\frac{dX(t)}{dt}=sV_{1}(t)$ ,
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$\frac{d^{2}X(t)}{dt^{2}}=-sV_{0}(t)+s(s-1)V_{2}(t)$ ,

$\frac{d^{3}X(t)}{dt^{3}}=(-3s^{2}+2s)V_{1}(t)+s(s-1)(s-2)V_{3}(t)$ ,

which may be written

(3.9) $\frac{d^{2p}X(t)}{dt^{2p}}=\sum_{q=0}^{p}a_{p,q}V_{2q}(t)$ ,

$\frac{d^{2p+1}X(t)}{dt^{2p+1}}=\sum_{q=0}^{p}b_{p,q}V_{2q+1}(t)$ .
$V_{q,r}(t)$ is defined by

(3.10) $V_{q,r}(t)=\langle V_{q}(t), V_{r}(t)\rangle=\sum_{A}F_{p}^{1}(t)F_{r}^{A}(t)$ .
We have

(3.11) $V_{q,r}(t+\pi/2)=(-1)^{q+r}V_{s-q,\epsilon-r}(t)$ .
From (1.1), (2.5) and $U_{q,r}(u(t), u^{\prime}(t))=u_{q,r}$ we get

(3.12) $V_{q,r}(t)=C_{q,r}(u(t), u’(t))+c’ u_{q,r}$ .
If $q+\gamma\leqq 3$ or $q+r\geqq 2s-3$ , then we have

$V_{q,r}(t)=c’ u_{q,r}$

because of $C_{q,r}(v, w)=0[4]$ .

\S 4. Geodesics in isometric minimal immersions $S^{3}(1)\rightarrow S^{24}(r)$ .
The Frenet formula of a geodesic in this case, considered as a curve

in $R^{2b}$ , is written as follows,

$\frac{dX}{dt}=i_{1}$ ,

$\frac{di_{1}}{dt}=k_{1}i_{2}$ ,

$\underline{di_{2=-k_{1}i_{1}+k_{2}i_{3}}}$ ,
$dt$

$\frac{d^{J}i_{3}}{dt}=-k_{2}i_{2}+k_{3}i_{4}$ ,
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$\frac{di_{4}}{dt}=-k_{s}i_{s}$

where $\{i_{1},\dot{u}, i_{s}, i_{4}\}$ is an orthonormal set of vector8 in $R^{2b}$ depending on $t$ .
This formula stops as above since we have

$dX_{=4V_{1}}$
$\overline{dt}$

$\frac{d^{2}X}{dt^{2}}=-4V_{0}+12V_{2}$ ,

$\frac{d^{3}X}{dt^{8}}=-40V_{1}+24V_{s}$ ,

$\frac{d^{4}X}{dt^{4}}=40V_{0}-192V_{2}+24V$ ,

$\frac{d^{f}X}{dt^{b}}=544V_{1}-480V_{8}$ .

Eliminating $V_{1}$ and $V_{8}$ we get

(4.1) $\frac{d^{b}X}{dt^{b}}+20\frac{d^{3}X}{dt^{s}}+64\frac{dX}{dt}=0$ .

First we have

$i_{1}=4V_{1}$ ,
$k_{1}i_{2}=-4V_{0}+12V_{2}$ ,

hence

$(k_{1})^{2}=16V_{0,0}-96V_{2,0}+144V_{2,2}$ .
Now, in view of (3.12) we have

$V_{0.0}=cu_{0,0}$ , $V_{2,0}=c^{\prime}u_{2.0}$ , $V_{2,2}=cu_{2,2}+C_{2,2}(u, u^{\prime})$

where $C_{p,q}(u(t), u’(t))$ is abbreviated to $C_{p,q}(u, u^{\prime})$ . As $s=4,$ $C_{q,t}$ vanishes
if $q+r\neq 4$ and this results in $dC_{q,r}(u, u^{\prime})/dt=0$ since we have (2.11).

Thus $k_{1}$ is a constant.
As we get $C_{4,0}=-4C_{3,1}=6C_{2,2}$ from $C_{3,0}=C_{2,1}=0$ , we can put

$V_{2,2}=c^{\prime}u_{2.2}+\frac{1}{6}C,o(u, u)$ .

As we have $c^{\prime}=2/5$ , we get
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$V_{0.0}=\frac{1}{8}$ , $V_{2.0}=-\frac{1}{24}$ ,

$V_{2,2}=\frac{19}{360}+\frac{1}{6}C_{4,0}(u, u’)$ ,

hence

(4.2) $(k_{1})^{2}=\frac{68}{5}+24C_{4.0}(u, u^{\prime})$ .

As any geodesic is a curve on $S^{u}(r),$ $r^{2}=1/8,$ $k_{1}$ must satisfy $(k_{1})^{2}\geqq 8$ .
As $k_{1}$ is a constant, we get from $d(k_{1}i_{2})/dt=-40V_{1}+24V_{3}$

(4.3) $-(k_{1})^{2}i_{1}+k_{1}k_{2}i_{3}=-40V_{1}+24V_{3}$ ,

hence

$(k_{1})^{2}((k_{1})^{2}+(k_{2})^{2})=1600V_{1,1}-1920V_{8,1}+576V_{s,\epsilon}$ .
As we have

$V_{1,1}=cu_{1,1}=\frac{1}{16}$ , $V_{8,3}=c^{\prime}u_{\epsilon.s}=c’ u_{I,1}=\frac{1}{16}$ ,

$V_{3,1}=c^{\prime}u_{\$,1}+C_{3,1}(u, u^{\prime})=-\frac{3}{80}+(-\frac{1}{4})C_{4,0}(u, u)$ ,

we get

(4.4) $(k_{1})^{2}((k_{1})^{2}+(k_{2})^{2})=208+480C_{4,0}(u, u^{\prime})$

which proves that $k_{2}$ is also a constant. From this and (4.2) we get

(4.5) $(k_{1})^{2}(k_{2})^{2}=8\cdot(\frac{36}{25})(1-10C_{4.0}(u, u^{\prime}))(2+5C_{4,0}(u, u))$ .

Differentiating (4.3) with respect to $t$ , we get, as $k_{1}$ and $k_{2}$ are
constants,

$-((k_{1})^{2}+(k_{2})^{2})k_{\iota^{l}}i_{l}+k_{1}k_{2}k_{3}i_{4}$

$=40V_{0}-192V_{2}+24V_{4}$ .
Thus we have

$(k_{1})^{2}((k_{1})^{2}+(k_{2})^{2})^{2}+(k_{1}k_{2}k_{3})^{2}$

$=1600V_{0,0}-15360V_{2,0}+36864V_{2.2}+1920V_{4,0}$

-9216 $V_{4,2}+576V_{4,4}$ .
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Then, substituting

$V_{4.0}=c^{\prime}u_{4.0}+C_{4,0}(u, u’)=$ $+C_{4,0}(u, u’)$ ,1
40

$V_{4,2}=c^{\prime}u_{4,2}=-\frac{1}{24}$ , $V_{4.4}=c^{\prime}u_{4,4}=\frac{1}{8}$

into this formula, we get

$(k_{1})^{2}((k_{1})^{2}+(k_{2})^{2})^{2}+(k_{1}k_{2}k_{3})^{2}$

$=\frac{16448}{5}+8064C_{4.0}(u, u’)$

and further
$(k_{1})^{4}(k_{2}k_{3})^{2}$

$=(\frac{16448}{5}+8064C_{4,0}(u, u^{\prime}))(-+24C_{4,0}(u6\underline{8}5u’))$

$-(208+480C_{4,0}(u, u’))^{2}$

$=8^{\epsilon}\cdot\left(\begin{array}{l}36\\25\end{array}\right)(1-10C_{4.0}(u, u^{\prime}))(2+5C_{4,0}(u, u’))$

by virtue of (4.2) and (4.4). From this result and (4.5) it becomes clear
that the curvatures satisfy $(k_{1})^{4}(k_{2}k_{3})^{2}=8^{z}(k_{1}k_{2})^{2}$ , hence

(4.6) $(k_{1})^{2}(k_{3})^{2}=64$

if $k_{2}\neq 0$ .
From (4.4) and (4.6) we get

$(k_{1})^{2}((k_{1})^{2}+(k_{2})^{2}+(k_{3})^{2})=272+480C_{4,0}(u, u’)$ .
This and (4.2) result in

(4.7) $(k_{1})^{2}+(k_{2})^{2}+(k_{3})^{2}=20$ .
Thus we have obtained the following theorem.

THEOREM 4.1. Let $\Gamma=f(\gamma)$ be a geodesic of $f(S^{3}(1))$ where $f$ is an
isometric minimal immersion $\in IMI(3,4)$ , and $k_{1},$ $k_{2},$ $k_{3}$ be the curvatures
of $\Gamma$ when it is considered as a curve in the ambient $R^{2b}$ . Then the
curvatures are constants and $k_{1}\geqq 8^{1/2}$ . If $k_{2}\neq 0$ , the curvatures satisfy
(4.6) and (4.7).

REMARK. This theorem $8hows$ that $k_{3}=0$ can occur only if $k_{2}=0$ .
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If $k_{2}=0$ , we get from (4.5)

(4.8) $(C_{4,0}(u, u^{\prime})+-25)(C_{4,0}(u, u^{\prime})-\frac{1}{10})=0$ .

If $C_{4,0}(u, u^{\prime})=-2/5$ occurs, we get $(k_{1})^{2}=4$ , contrary to $k_{1}\geqq 8^{1/2}$ . Hence
we have

$C_{4,0}(u, u^{\prime})=\frac{1}{10}$ .

From $k_{1}=constant$ and $k_{2}=0$ we see that the curve is a circle in a
2-plane of $R^{2b}$ . Thus we get the following theorem.

THEOREM 4.2. The necessary and sufficient condition for an isometric
minimal immersion $f\in IMI(3,4)$ to have a geodesic which is a circle in
a 2-plane of the ambient $R^{25}$ is that the associated tensor $C$ is such that
there exists an orthonormal pair of vectors $\{v, w\}$ in $R^{4}$ satisfying
$C_{4,0}(v, w)=1/10$ . The curvature is given by $k_{1}=4$ . If $f\in IMI(3,4)$ is
such that the associated tensor $C$ satisfies $C_{4,0}(v, w)=1/10$ for some or-
thonormal $\{v, w\}$ , then the great circle $u(t)=v$ cos $t+w$ sin $t$ of $S^{3}(t)$ is
sent by $f$ into a 2-plane of $R^{25}$ and the image is a circle of radius 1/4.

Besides, $C$ belongs to $\partial L(3,4)$ .

PROOF. Let us show that $C\in\partial L(3,4)$ . (4.5) states that, if $C$ belongs

to $L(3,4)$ , then

$(1-10C_{4,0}(v, w))(2+5C_{4,0}(v, w))\geqq 0$

for every orthonormal $\{v, w\}$ . Now, let an element $CeL(3,4)$ be such
that, for some orthonormal $\{v, w\},$ $C_{4,0}(v, w)=1/10$ . Then taking any
$x>1$ , we get $xC_{4,0}(v, w)>1/10$ , hence

$(1-10xC_{4.0}(v, w))(2+5xC_{4,0}(v, w))<0$ .
Thus $xC$ does not belong to $L(3,4)$ and this proves $C\in\partial L(3,4)$ .

Geodesics which are circles exist [7]. Thus there also exists $C$ such
as stated in Theorem 4.2.

\S S. Value of $C_{4,0}(v, w)$ which $C\in L(3,4)$ can take when $\{v, w\}$ is a
set of orthonormal vectors.

As $X$ is a solution of the differential equation (4.1), there exists a
set of vectors $a_{0},$ $a_{1},$

$b_{1},$ $a_{2},$
$b_{2}$ in $R^{26}$ such that
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$X(t)=a_{0}+a_{1}$ cos $2t+b_{1}\sin 2t+a_{2}$ co8 $4t+b_{2}$ sin $4t$ ,

$\frac{dX}{dt}=-2a_{1}$ sin $2t+2b_{1}$ cos $2t-4a_{2}$ sin $4t+4b_{2}$ cos $4t$ ,

(5.1) $\frac{d^{2}X}{dt^{2}}=-4a_{1}$ CO8 $2t-4b_{1}\sin 2t-16a_{2}$ CO8 $4t-16b_{2}8in4t$ ,

$\frac{d^{\theta}X}{dt^{8}}=8a_{1}$ sin $2t-8b_{1}$ cos $2t+64a_{2}$ sin $4t-64b_{2}$ cos $4t$ ,

$d^{4}X$

$\overline{dt}=16a_{1}$ co8 $2t+16b_{1}$ sin $2t+256a_{2}$ cos $4t+256b_{2}$ sin $4t$ .
On the other hand, $XsatI8fies$

\langle X, $ X\rangle$ $=\frac{1}{8}$ , $\langle X,$ $\frac{dX}{dt}\rangle=0$ , $\langle\frac{dX}{dt},$ $\frac{dX}{dt}\rangle=1$ ,

$\langle X,$ $\frac{d^{2}X}{dt^{2}}\rangle=-1$ , $\langle X,$ $\frac{d^{8}X}{dt^{8}}\rangle=0$ , $\langle\frac{dX}{dt},$ $\frac{d^{2}X}{dt^{2}}\rangle=0$ ,

$\langle\frac{d^{2}X}{dt^{2}},$ $\frac{d^{2}X}{dt^{2}}\rangle=(k_{1})^{2}$ , $\langle\frac{d^{2}X}{dt^{2}},$ $\frac{d^{3}X}{dt^{3}}\rangle=0$ .
Thus we can see that $a_{0},$ $a_{1},$ $b_{1},$

$a_{2},$ $b_{2}$ are mutually orthogonal 8atisfying

$\langle a_{0}, a_{0}\rangle=\frac{1}{64}(-12+(k_{1})^{2})$ ,

$\langle a_{1}, a_{1}\rangle=\langle b_{1}, b_{1}\rangle=\frac{1}{48}(16-(k_{1})^{2})$ ,

$\langle a_{2}, a_{l}\rangle=\langle b_{2}, b_{2}\rangle=\frac{1}{192}(-4+(k_{1})^{2})$ .
This result shows that $k_{1}$ is restricted by

(5.2) $12\leqq(k_{1})^{2}\leqq 16$ .
Now let us consider all great circles of $S^{\epsilon}(1)$ . Then, in place of

$C_{4,0}(u, u)$ , we can take $C_{4,0}(v, w)$ where $\{v, w\}$ is an arbitrary set of or-
thonormal vectors. From (4.2) and (5.2) we get the following theorem.

THEOREM 5.1. Let $C$ be a point of $W(3,4)$ in $L(3,4)$ and $\{v, w\}$ be
a set of orthonormal vectors of $R^{4}$ . Then $C_{4,0}(v, w)$ satisfies

$-\frac{1}{15}\leqq C_{4,0}(v, w)\leqq\frac{1}{10}$ .
Let us cite an example from \S 9 of [6]. We take a homogeneous
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harmonic polynomial $a$ of degree four in the variables $\xi_{1},$ $\xi_{2},$ $\xi_{3}$

$a=a^{\kappa\lambda\mu\nu}\xi_{\kappa}\xi_{\lambda}\xi_{\mu}\xi_{\nu}$

$=5(\xi^{4}+\eta^{4}+\zeta^{4})-3(\xi^{2}+\eta^{2}+\zeta^{2})^{2}$

where $\xi=\xi_{1},$ $\eta=\xi_{2},$ $\zeta=\xi_{3}$ . Taking as in [3] a set $\{J_{1}, J_{2}, J_{3}\}$ of linear
transformations acting on $R^{4}$ such that

$J_{2}J_{3}=-J_{3}J_{2}=J_{1}$ , $J_{3}J_{1}=-J_{1}J_{3}=J_{2}$ ,
$J_{1}J_{2}=-J_{2}J_{1}=J_{3}$ , $J_{1}J_{1}=J_{2}J_{2}=J_{3}J_{3}=-1$ ,

we can define an element $C=C^{(a)}$ of $W(3,4)$ by

$C_{J}^{(a)}(v, v, v, v;w, w, w, w)$

$=a^{\kappa\lambda\mu\nu}\xi_{l}(v, w)\xi_{\lambda}(v, w)\xi_{\mu}(v, w)\xi_{\nu}(v, w)$

where $\xi_{\kappa}(v, w)=\langle J_{\kappa}w, v\rangle$ .
Let $\{v, w\}$ be an arbitrary set of orthonormal vectors. If we put

$\alpha=-\langle J_{1}w, v\rangle,$ $\beta=-\langle J_{2}w, v\rangle,$ $\gamma=-\langle J_{3}w, v\rangle$ , then we have $\alpha^{2}+\beta^{2}+\gamma^{2}=1$

and $w=(\alpha J_{1}+\beta J_{2}+\gamma J_{3})v$ . Conversely, if $\alpha,$ $\beta,$ $\gamma$ satisfy $\alpha^{2}+\beta^{2}+\gamma^{2}=1$ and
$v$ is a unit vector, then $v$ and $w=(\alpha J_{1}+\beta J_{2}+\gamma J_{3})v$ make an orthonormal
pair. Then $C=C_{J}^{(a)}$ satisfies

$C_{4,0}(v, w)=5(\alpha^{4}+\beta^{4}+\gamma^{4})-3$ .
On the other hand, according to [6], $(1/20)C_{J}^{(a)}$ is a boundary point of
$L(3,4)$ . This satisfies

$(\frac{1}{20}C_{J}^{(a}))_{4,0}(v, w)=\frac{1}{4}(\alpha^{4}+\beta^{4}+\gamma^{4})-\frac{3}{20}$ .

If we put $\alpha=1,$ $\beta=\gamma=0$ , then we get 1/10. If we put $\alpha=\beta=\gamma=3^{-1/2}$ ,
then we get $-1/15$ .

Let the set of orthonormal pair of vectors of $R^{4}$ be denoted by OP.
Then we can state the following corollary.

COROLLARY 5.2. We have

{ $C_{4,0}(v,$ $w)|C\in L(3,4),$ $\{v,$ $ w\}\in$ OP} $=[-1/15,1/10]$ .
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