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Introduction and notations.

Let g=1 and N=3 be rational integers. We use the same notations
as in Hatada [9]. Recall
o —1,71.

1,=the gx g unit integral matrix; J":l_l o b
g

I'=I,(N)=the principal congruence subgroup of level N of Sp(g, Z)
(cGL(2g, 2)); '

©,=the Siegel upper half plane of degree g;

I'\9, denotes the usual complex analytic quotient space;

GSp*(g, R)={v € GL(2g, R) | *vJ,7J;* is a scalar matrix whose eigenvalue is
positive.};

r(a) =the eigenvalue of ‘aJ,aJ,* for a € GSp*(g, R);

GSp*(g, Z)={v€GSp*(g, R) | v is an integral matrix.};

GSp*(g, @)=GSp* (g, R) N GL(2g, Q);

HR(I", GSp*(g, Z))=the Hecke ring with respect to the group I" and the
monoid GSp*(g, Z), cf. Hatada [8] and [9].

We consider the toroidal compactification of I'\9,. We fix a regular
and projective Sp(g, Z)-admissible family of polyhedral cone decompositions:
3 ={2,}r,: rations1 comp-nems ONCe for all. For example here we take a suitable
refinement of the second Voronoi decomposition (cf. Namikawa [13], [14]).
We write (I'\©,)~ for the projective smooth toroidal compactification of
I'9, with respect to this Y. Write M= (I'\9,)~ for simplicity in this
paper. For I'=I,(N), define

I"={zeSplg, Z) | ¢ (mod N) is a 29 x2g diagonal matrix
with coefficients in Z/NZ.} ,
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which is a subgroup of Sp(g, Z). Let 2 denote a real analytic Hodge
metric on M induced from the projective space into which M is embedded.
Let v e€Sp(g, Z). By our choice of the toroidal compactification of I'\9,,
the complex analytic isomorphism

v: '\9, — '\, given by I'z+—— I'(72)
is extended to the whole of (I"\$,)~ as a unique isomorphism
v (F\'@a)~_—_’ (F\@,)~ ’

(cf. Hatada [8, Proposition 1.2]). Let v~*Q denote the pull back of 2 by
v~ (cf. Hatada [8, Definition 1.4]). This v~*2 is also a Hodge metric on
M. We have easily

LEMMA 1. On M there is a real analytic Hodge metric 2, which is
wmvariant under any ¥ €Sp(g, Z), i.e.,

Y *Q2, =2, for any Y €Sp(g, Z) .

Throughout this paper the harmonic forms on M we consider are
those with respect to this Hodge metric 2,. Then for a harmonic form
® on M and an element v of Sp(g, Z), the pull back v~*¢ of @ by 7~ is
also a harmonic form on M. For integers p and q, H'*”?(M) denotes the
space of the harmonic forms of type (p,q) on M. One sees that the
factor group I"'/I"=the direct product of g copies of the unit group of
(ZINZ). Write (I"'/I")*=the dual group of (I"'/I") (=Hom,(I"/I", C*»)).
For an element X € (I''/I")* write

H»X, M)={pe H*?(M) | v*p=X(Y (mod I'))p for all veI"'.}.
This is a C-subspace of H”?(M). For simplicity write X(v)=X(7 (mod I'"))
for yeI". For a positive integer s with G.C.D.(s, N)=1, write

' A B
Z, v(8)=1a € GSp*(g, Z) | r(a)=s. a=< c D)’ partitioned into blocks

on dimension gXxg, satisfies A—1,=B=C=0 (mod N).} .

By Hatada [8, Proposition 4.2],

v(s

u(®)= 'T'a”  (a finite disjoint union) .

=1

Then we define



ACTION OF HECKE RINGS 1938

T(s)=%. Fa.l’ € HR(I', GSp*(g, Z)) -

Let f, denote the ring homomorphism: HR(I", GSp*(g9, Z)) —End; H,(M, Z)

given by Hatada [8, Theorem 1] for each integer »=0. For an element

Y e HR(I", GSp*(g, Z)), let f,.(Y)X,id. denote the C-linear endomorphism

of H,(M, C) induced from the isomorphism: H,(M, C)=H, M, Z)¥,C, and

let ‘(f,(Y)®,id.) denote the transposed endomorphism of H"(M, C) with re-

spect to the Kronecker index of complete duality: H*(M,C) x H,(M, C)—C.
In this paper first we give:

THEOREM 1. Let p and q be integers. Then we obtain:
W HeoMD= @ H*"(, M); and
Xe(r’/r*
(2): Fach space H™?(X, M) 1is invariant wunder the operators

S+ TM)Rz1d.) for all positive ne Z with G.C.D.(n, N)=1.
Using Theorem 1 we give our main

THEOREM 2. Assume g=2. (Hence I'=I,(N) and M=(I'\9,)~.) Let
n be an integer with n=2 and G.C.D.(N, n)=1. Let A\, be an eigenvalue
of the C-linear endomorphism fo(T(n))QRzid. of Hy (M, C). Then we obtain

IN.|=the number of the left cosets i D\, x(n) (=$('\,, (7))

Jor any archimedean absolute value |-| with |2|=2.

COROLLARY OF THEOREM 2. Notations being as im Theorem 2, we
obtain |\|=QA+1DQA+1®) for any prime number | with LYN.

In §2 we give a proposition asserting that
dim; Hy((I";(N)\D,)~, C) — + when N— 4,

As to the eigenvalues of Hecke operators on the spaces of Siegel
cusp forms, we give:

THEOREM 3. Let g=1 and w=0 be rational integers, and let
S, () =the space of the holomorphic Siegel cusp forms of weight
g+w+1 with respect to I'=I,N). Let n be an integer with n=2 and
G.C.D.(n, N)=1, and let T,,,..(n) be the usual Hecke operator acting on
S,i1e0l). (For the definition of the T,,,,,(n), see Hatada [8, Remark 3.2,
p. 392] and use T, .,(n)(F) =30 F|o. 1l B.I] where &y v(n)= Ui I'BT
(disjoint).) Let n(n) be an eigenvalue of the T, . .(n) on Sy, (I"). Then
we obtain :

M) =n? X (the number of the left cosets in '\, y(n))
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for any archimedean absolute value |-| with |2|=2. (cf. Drinfeld [2] for
the case of g=1, w=0 and »: prime number with =1 (mod N).)

In Freitag [4, Hilfssatz 4.8, p. 269] it was proved that
IA(1)| <12 % (the number of the left cosets in I\, ,(n))

in the case of I'=S8p(g, Z). Therefore our Theorem 3 is an improvement
of that result of Freitag even in the case of I'=Sp(g, Z).

COROLLARY OF THEOREM 3. Notations being as in Theorem 3, we
obtain

AOI (L A+19) for any prime number | with UN .
We give proofs of Theorems 1,2 and 3in §1, §2 and §3 respectively.

§1. On Theorem 1.

First we prove Lemma 1. Let I'\Sp(g, Z)= U}-, I'G; (a disjoint union).
For the Hodge metric 2 on M explained in the introduction put

2,=3G5*9

which is a Hodge metric on M satisfying the required property of
Lemma 1.

We consider harmonic forms on M with respect to this Q.

(1) of Theorem 1 is directly derived from the well known theorem
on the representation of abelian groups.

Proof of (2) of Theorem 1. Let reI"=I",(N)'. We have 77', y(n)r=
Zyn(m). Write &, y(n)= UL, a; (a disjoint union). Then UL, I'a;t=
UL, tla,= Ui, I'ta, since tl't™'=I. Let pe H™?(X, M). Let © be an
integer with 1<i<p. Let j denote the integer with I'a;r=Ira;. We
have the following commutative diagram (1.1). cf. Hatada [8, (2.2.1)].

(F W NND,)™ — (TN \D,)~

ln, lni

(e TNt \9.)—— (e[ (nN Ya\G)~ o (NS~ (LD)

l,,(h l,,(t) l[,,]

M=(\$,)~ — M=(\9,)" M=(I\9,)~
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In (1.1), '=I',(N), t=r"orx,=n'or,, and the vertical lines denote the
canonical morphisms. Note (z7'a;'[,(nN)a,7\D,)~ = (a7 ' [ y(nN)a\9,)~. We
use Definition 1.4 in Hatada [8]. We write (@) =3, n¥oa;*o[x]*(®) now.
By Hatada [8, Lemma 3.1], there exists a unique (p, ¢)-form &~ on M with
{py=n*("). By (1.1),

Xz~ X () =" Forr* (&) =" *({PD)
3 ™ot} o7 ¥ o[7]* (@)

i

1l
-

i

I
M=

Tl ot oar *o[m] () .

-,
Il
-

Note that x~*-[x]*(p)=[n]*(®) for all x € I" and that the following diagram
is commutative.

(T (WNN\D,)™ —— (I N\G,)~

jlnl | ) l[n]

T

M —M

Then we obtain

T *oa * o[ ] ¥ (@) = (ai7)~* o [7]* (@)
=V'ra;)~*o[7]* () for some Y'erI’
=a; ot *o[7]*(p)
=aj*e[r]*or™*(p)
=X(@)ai*[x]* () .

Hence

T*or~*(e™) =X(7) 2 toa; *o[]*(@)

=X(@)XPy
=X(T)m* ()
=m*(X(7)E™) .

Hence
¥ =XA(r)e~  for any rel'. (1.2)

Recall the orthogonal projection in the potential theory: id. = H+ ddG + 6dG.
Here G denotes the Green’s operator on M. By Hatada [8, Theorem 8 (ii)],
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‘(foro(T(n)X2 id.)(P) = HE™ .

We express H as the integral operator by the theory of de Rham [15,
p. 132]. We quote the lines 12-17 at p. 132 of the book. “Let k), k,,---, hgy
be an orthonormal base of the vector space of harmonic forms, so that
(hy, h;)=0j, ‘and put

h(x, y)=2 b (Y) .
Then
| 26, DAT@ =S (b D)

is a harmonic form which is exactly HT. The double form h(x, y) is
thus the metric kernel of H.” Apply this to our case. Then

e H)=| @, DAnEw)
=| pe@ T A @) .

The *-operator is Sp(g, Z) invariant since the Hodge metric 2, is Sp(g, Z)
invariant (cf. Kodaira and Morrow [11, p. 93]). Hence

(D)@~ ="z~ W) -

We also note that z~*h, - *h,, +-+, 7~*h, are also an orthonormal basis
of the vector space of the harmonic forms if so are h, hy, ---, hq.

Therefore
e EH) = @), T AETOW)
=H(t™*¢") . (1.3)
By (1.2), 7~ *(HE™)=HX()¢)=X(r)H(¢™). Namely
7% (fpro( TM) R 1d.)(P) =X(2) (fp+ o T(0)) D)z 1d.)(9)
for all p€ H*?(X, M) and all zeI". (2) of Theorem 1 is proved.

§2. On Theorem 2.

In this section we assume g=2. Write M=(I"\$,)~. For Ze 9,
write :
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7 (21 z2>=<x1 mz>+‘/-:~1('y1 y2>
2, 2, T, @ Y. Ys

with real coefficients x,, #,, %, ¥, ¥» ¥s- The differential form
da, ANdx, \dx, Ndy, Ndy, \dy,
(y1ya_y§)a

on §, is invariant under the action of Sp(g, R) (cf. Maass [12]). The
volumes we treat in §2 are measured with respect to this volume form.

LEMMA 2.1. HY(M, C)={0}.
Proor. By the Hodge decomposition
H'M, C)=H""(M)DH"™ (M) .

H%"(M)=the space of the holomorphic 1-forms on M, which is {0} by
Freitag [3]. Hence H'(M, C)={0}.

By the Poincaré duality, H*(M, C)={0}. Let P*(M) be the third
primitive cohomology of M defined by Ker(L: H*M, C)— H*M, C)), cf.
Griffiths and Harris [6, p. 111 and p. 122]. Hence in our case, P’(M)=
H¥M, C) and P»*(M)=H"™(M) for non-negative integers p and ¢ with
p+q=38. One has:

THEOREM 2.2. Let p and q be mon-negative ?antegers with p+q=3.
Let {, ) denote the Hermitian form: '

H»(M)x H»*(M)— C,
(@, ) F—*‘/:——]‘-(VOI(F\'@Q)—ISFWZ¢/\$ )

This {, ) 18 a positive definite Hermitian form.

PROOF. Since P»?(M)=H"?(M), this is a direct consequence of
Hodge Signature Theorem (cf. Griffiths and Harris [6, p. 123]).

For any I'-invariant automorphic forms 4, and 4, of type (p, ¢) with
p+q=38 on 9, for which the left side of the following equation is defined,
we have:

VEIVO\e) | anf=1 TIVeIT\N ™ 60,

1\

for any finite index subgroup I, of I'.
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Let & be a subgroup of Sp(g, R) which is commensurable with
Sp(g, Z). In the following manner (2.2.1) we may extend the domain of
the Hermitian form (, ) in Theorem 2.2 to all the pairs (,, @), of
& -invariant automorphic forms of type (p, ¢) with Pp+q=3 on 9, for
that the right side of (2.2.1) is defined.

S\

@, =V =1Vl AN|__wna, (2.2.1)
2
Then it should be noticed that

(@, @) =V =1(Vol(( N M\§) |

O, N\@, .
(FZNC)\Dy

Let a €GSp*(g, @). Then a*w, and a*w, are o a-invariant automorphic
forms. a 's”a is commensurable with & Then we obtain

{a*w, a*w,) = {w,, @ (2.2.2)

by changing the variables of the integration.
We write

o)l =V {®, @) (2.2.3)
if the integration of the right side is defined.

PROOF OF THEOREM 2. Let ), be an eigenvalue of the C-linear
endomorphism f,(T(n))®,id. of H,(M, C). By Hatada [8, Theorem 2 (i)]
we may assume that A, is an eigenvalue of ‘(f}(T(n))®;id.) on H™?(M)
for some non-negative integers p» and ¢ with p+¢=8. For simplicity
write A=\,. By Theorem 1 there exist a character X ¢ (I”/I")* and a
harmonic form @0 in H*?(X, M) such that ‘(f;(T(n))®, id.)(@)=rp. We
use the same notations in the Proof of (2) of Theorem 1 in §1. We
use also Theorem 2.2, (2.2.1), (2.2.2) and (2.2.3). We define canonical
maps /I and /7™ by the composition of maps as follows.

m:9,—I9,=—M; I : 9, — I'(W’N)\, = (I"(n*N)\9,)~ .
We obtain: |

AP = (fo(T(n)Q; id.)(p) = He™
=&~ —doGE~ —0dGE~ =¢~—doGe™

since 6dG¢~=0 as a current (cf. Hatada [8, p. 8391]). Recall z=7n""ox, for
each t€[l, ¢#]. Then
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NI () =1 (§) — T ([d06E) = (@) — T (dI6E) = 3] ¥ (2.3)

where we have put:
A =nFear* o[ m]* () for each ie[l, #—1]; and
Y =m0y *o[r]*(p) —n*(doGE™) for i=p.

These {v}-, are d-closed differential forms on (I, (n*N)\Q,)~. We obtain
that

lyll=llell  for all <efl, g]. (2.4

Let 2, be a Hodge metric on (I, (n*N)\9,)~. For continuous differential
forms ¥ of type (p, q) on (I',(n*N)\D,)™, let ¥ =H¥ +ds,G.¥ +6d,G,¥ be the
orthogonal projection in the potential theory on (I',(n’N)\9,)~ with respect
to 2,. Here G, is the Green’s operator on (I",(n*N)\9,)~. Apply Theorem
2.2 to the harmonic forms on (I',(n:N)\Q,)~. We obtain ,=Hy,+do.G:,
for each i€[1, #]. Then using Stokes’ theorem we obtain:

o+ =V TUVOUTNNOD ™ AT
= <I{z"/r i Hz"/’ j>

for all 7€[1, ¢] and all je[l, g]. Now write V=3%, Cy,. We have ob-
tained that the sesquilinear form {, )|,.y: VX V—C is a positive definite
Hermitian form. Then we obtain from (2.3) and (2.4):

Mlpl = @)l =2 v < 3 el =2l -

Hence \|=p.
Now assume that [\|=g¢ here. Then from (2.3) and (2.4) we obtain:
v, =+, for all i€[l, ¢#]; and
AT (P) = o, = ptret o * o [m]* (P)
Hence
M (@) =N * ot (p) = pll " *ori o0y *o[m]* () (2.6)
By (2.5),
NIT* () = p(IT*(P)) o,

where oq, denotes the pull back by a,, We may write al———a(nl” 0

0 10) with
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some ¢ € Sp(g, Z) satisfying as(n—%ﬂ n(l) ) (mod N) by Hatada [8, Corollary
g
4.4 and Lemma 4.5, pp. 394-395]. Hence

1
AI*(@) = $2(a (mod r))-l(n*(sv»o(” o 9 ) .

0 1,

Hence

1 k
IT*(9) = (¢e0-X(c (mod r))—l>"(n*<¢>>o( (“O" (1) ) ) 2.6)

for all the integers k=1. Let us vconsider a system {{,, {,, {;} of local

1V =1

parameters at a point€ M over ( . l/—_—i;) € (Satake Compactifica-
tion of I'\Q,). They are written as

Cj = exP(z_N —l[pi]l/-:i(tjlzl + tjzzz + tjaza)) (7=1,2, 3)

for some rational numbers ¢,; (1<7<8, 1<7<8). Here [pi] denotes the
ratio of the circumference of a circle to its diameter. (cf. Ash et al.
[1], Namikawa [18], [14].) Remember that the Hodge metric £, chosen
by us is real analytic. The right side of (2.6) is expressed in terms of
variables {(7*, &7, &2, Tp*, Tr*, T»*}) as convergent power series for each
arbitrarily given positive integer k. So is I7*(@). This is a contradiction
since the local power series expansion of @ in terms of {{, &, &, &b Co Gl

is unique. Hence we obtain |\ u=4#(I"\, ~»(n)). Theorem 2 is proved.
REMARK 2.7. By Hatada [8, Proposition 4.2],
#(I (NN, v(n)) =#(Sp(9, Z)\P,,,(n)) when G.C.D.(n, N)=1.
Now we show: '

PROPOSITION 2.8. Let (I'y(N)\9.)~ denote Igusa’s mon-singular and
projective compactification of I',(N)\O, (cf. Igusa [10], Namikawa [13],
[14]). Then one obtains:

dim; H,((I' ,(N)\$,)~, C) = + oo when N -— 4 oo,

Proor. This is a direct consequence of results in Geer [5, pp. 331-
332]. We give this proof for the convenience of the reader. Write
M=T,(N)\9,)~ here. Write Euler(M)=the Euler number of M. By Geer

5],
Euler(M) =5 (N)o(—1)5o(—8) +27'N<#(N)
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where {, is the Riemann zeta function;

sNy=N* AL M((1—10‘2)(1—20“)) ;
Z(N)=N* IT 1—p".

p: prime number, p|N

Remember that {,(—1){e(—8) is a negative rational number. We have
N#(N)) s (N)S<N~. Hence we obtain that

Euler(M) —» — = when N — 4o,

By the definition of the Euler number,
Euler(M) =3, (—1)7 dim H(M, C) .
j=0

By Lefnma 2.1 and the Poincaré duality,
Euler(M)=2+2dim H*(M, C)—dim :H*(M, C) .
Hence
dim H*(M, C)=2+2dim H*(M, C) —Euler(M)=2—Euler(M) .
Hence

dim H,(M, C)=dim H*(M, C) — + oo when N — +oo.

§3. Proof of Theorem 3.

Let I'=I,(N), and let I’ be the subgroup of Sp(g, Z) defined in the
introduction. For a Siegel cusp form F(Z)€S,,,,.,(I") and a=(g g)e
GSp*(g, @), partitioned into blocks on dimension gxg, set F/|,, ..[al(Z)=
F(AZ+ B)(CZ+ D)) (det(CZ+D))~**~*. For a character X € (I"'/I")*, write
Spi1+0N, ) ={F(Z) € S;s1+u(l") | FlorulY1=X(MF for any veI'.}. This
is a C-subspace of S,,,.,(I"). Then by the same argument as in the proof
of (1) of Theorem 1, we obtain:

THEOREM 3.1.1. S,..,.(I")=®rc i+ Sor116(N; X).

Write 7, y(n)= UL, e, (disjoint). Let ze€l’. Reecall T T, x(M)T=
O, x(n) and &, y(n)r= Ui, 'ta; (disjoint). Now let F(Z) e &yi11u(N, X).
Recall (T,,,..(n)F)(Z)=nsor+w-so+vre Fl .. la)(Z)), (cf. Hatada [8,
p. 392]). Then
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(T4 140(M)F) g 4140l 7I(2)
= n”(”+l+w)_”(”+”/2<i F|,+l+w[a¢‘t](Z))
i=1

=mrenrnsein(3 B, lral)(2))
, =X(z (mod IN))(Ty11+(M)F)Z) .
Hence we obtain:

THEOREM 3.1.2. FEach space &,.,..,(N, X) 18 invariant under all the
Tyiivo(n) with G.C.D.(n, N)=1.

Write M(n*N), = the projective manifold (I",(n*N) X (nZ)**\9,x C™)~
defined in Hatada [8, pp. 377-378], and d=dim; M(n*N),=g(g+1)/2+gw
for simplicity. By the same argument as in Hatada [7], we obtain:

THEOREM 3.2. The space S,.,..,([";,(n*N)) (resp. S,,,+.(I") 18 naturally
identified with the space H'**(M(n*N),) (resp. H**(M(N),)). (cf. Theorem
and Lemma 3 in Hatada [7].)

Under the notations of Hatada [7, p. 505], put
6=( A dzt,,-)/\(1 {; du, ;)

15isjsyg 12:‘5;)

which is a differential form on $,xC’*. Let An(n) be an eigenvalue of
the T,,,,,(m) on S,,,,,(I"). Then there exist some X € (I"'/I")* and some
non zero F,€&,,, (N, X) such that (T,,,,.n)F,=x(n)F,., By Theorem
3.2 and Hatada [8, Lemma 2.1], F,(Z)0 (resp. neotitw —swtvzp . la)(Z)6)
is regarded uniquely as a differential form @ (resp. w,) on M(N), and
M(n’N), (resp. on M(n’N), for each i€[l, ¢]). Use the commutative
diagram (2.2.1) and the notations in Hatada [8, p. 880] replacing ¢ by
n. Write [z] for the canonical morphism: (I',(nN) X (nZ)**\$,x C*)~—
(I’ x Z*"\, <X C’")~ given in Hatada [8, Lines 6 and 7 from the bottom
of p. 381] replacing ¢ by »n. Then we obtain w,=x}°(a;, 0)~*o[x]*(w) for
each 7€ll, ¢]. From Hatada [8, Theorem 2] we have:

LEMMA 3.3. (i) The differential form 3.\, @, on M(n*N), is regarded
as a differential form on M(N),; and
(ii)
LTIR; id) @)= o, on MN),. 3-9)

Write, for simplicity, T(n)(w)=the left side of (3.3).
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‘ LEMMA 3.4. The map { , ): H**(M(n’N),) x H*"(M(n*N),)— C given
by (7., 7]2)'—>1/_—_]7§ N, AT, 18 a positive definite Hermitian form.

M(n2N),,

For the proof, see e.g. Griffiths and Harris [6, p. 124].
Write ||7,]|=v"{, 7y for », € H*(M(n*N),) in this §3. By (3.3),

ITm@I =[5 .

=3 ol - (3.5)

LEMMA 3.6. Notations being as above,
|lw||=n"""|\w||  for each i€l[l, ] .
PrOOF. Recall Hatada [8, Lemma 2.1]. We compute as follows.
lwil*=1"=1*(as, 07 X Z**)a;, 0) : I' (W’ N) X (nZ)™")

X S ‘ OWANOF
(@g,00 "L Z29%) (a;,0)\y X CIV

=1/ TT4(@0 0T X Z7) @, 0 : TN X 02)™)|  ond

M)y

_ ((ay )" X Z") (g, 0) 2 T'y(n*N) X (nZ)**) llo|l?
(I'x Z¥%" : I'y(n*N) X (nZ)*")

_ (o, 0) (" < Z%*) @y, 0) : I'y(nN) X Z%*)
(I'x Z¥* : I" ,(nN) X Z*")

_ (I a (nN)a; ) (det ai)”
(I : I'y(nN))

=n""||wl|®

loll*

llw||?

where a;=7(a;)a;'. Lemma 3.6 is proved.

By (3.5) and Lemma 3.6,

In(n)] Hcvll=H>»(%)ar)||§12:3.1 lol=pn"||wll .

Hence |\n(n)| = pn”,
- Now furthermore assume that =2 and |[A(n)|=pgn** in this in-
equality. Then by Lemmas 3.4 and 3.6 and (3.3), '

W, =, for all 7€[1, #]; and
A n)w = pw, as a differential form on M(n*N),, .

Here we may assume that a1=o(né" (1) ), o €Sp(g, Z) with as(""l(l)" n({ )
g a
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(mod N) and w,==n°(a, 0)~*o[7]*(w) using the notations in Hatada [8,
(2.2.1)]. Recall Hatada [7, Lemma 2]. We obtain:

MN)F(Z) = pnoiot1+=—atetd2(¥ (g (mod I'))) ' Fy(nZ) .
Put c,=a(n)n 79 2(¥(g (mod I'))) '€ C. Then we have:
F(Z)=c,F(mZ)=ckFy(n*Z) for any integer k=1.
This contradicts the uniqueness of the Fourier expansion of F,(Z) at
V "1eo
Z= Viclee
"V e
in terms of {exp2[pil"—1Tr((T/N)Z))}; where T runs through gxg

semi-integral symmetric matrices. Hence we obtain |[\(n)| = pn*?. Theorem
3 is proved.

We raise:

ProBLEM 3.7. (i) Give a better estimate for |A(l)] where A(l) is any
eigenvalue of T,,,..() on S,,,,,(I") in Theorem 3.

(ii) Is it true or false that for all the prime numbers [ with /N,
every eigenvalue \() of T,,,,,() on S,,,,.,(I") satisfies

D=2

where d=g(g+1)/2+gw? (The case of g=1 in this (ii), which had been
called Ramanujan Conjecture, was positively answered by P. Deligne be-
fore.)
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