On the Triviality Index of Knots

Yoshiyuki OHYAMA and Yasuko OGUSHI

Waseda University
(Communicated by S. Suzuki)

§ 1. Introduction.

In [6] the first author derived a new numerical invariant, denoted by $O(K)$, of knots from their diagrams and showed that if the Conway polynomial of a knot K is not one, then $O(K)$ is finite ([6] Corollary 2.4). In this paper, we call $O(K)$ the triviality index of K. It arises a problem as to whether or not there exists a knot K such that $O(K)=n$ for any natural number n.

In this paper, we show the following theorems.
Theorem A. If a knot K has a $2 n$-trivial diagram $(n>1)$, the coefficient of $z^{2 n}$ of the Conway polynomial of K is even.

Theorem B. For any natural number n with $n>1$, there exist infinitely many knots K 's with $O(K)=n$.

Moreover in the case $O(K)=3$ we show the following.
THEOREM C. Let $f(z)=1+\sum_{i=2}^{l} a_{2 i} z^{2 i}$, where $a_{2 i}(2 \leqq i \leqq l)$ are integers. If a_{4} is odd, there is a knot K such that $O(K)=3$ and the Conway polynomial of K is $f(z)$.

Throughout this paper, we work in PL-category and refer to Burde and Zieschang [1] and Rolfsen [8] for the standard definitions and results of knots and links.

§ 2. Definitions and facts.

The Conway polynomial $\nabla_{L}(z)$ ([2]) and the Jones polynomial $V_{L}(t)$ ([3]) are invariants of the isotopy type of an oriented knot or link in a 3 -sphere S^{3}. The Conway polynomial is defined by the following formulas:

[^0]\[

$$
\begin{aligned}
& \nabla_{U}(z)=1 \text { for the trivial knot } U, \\
& \nabla_{L_{+}}-\nabla_{L_{-}}=z \nabla_{L_{0}} .
\end{aligned}
$$
\]

And the Jones polynomial is defined by the followings:

$$
\begin{aligned}
& V_{D}(t)=1 \text { for the trivial knot } U, \\
& t^{-1} V_{L_{-}}(t)-t V_{L_{+}}(t)=\left(t^{1 / 2}-t^{-1 / 2}\right) V_{L_{0}}(t),
\end{aligned}
$$

where L_{+}, L_{-}and L_{0} are identical except near one point where they are as in Fig. 2-1.

L +

L.

L o
Figure 2-1

We defined the following number in [6].
Notation. Let L be a link, and \tilde{L} a diagram of L with the set of crossing points $D(\widetilde{L})=\left\{c_{1}, c_{2}, \cdots, c_{n}\right\}$. For a subset $D=\left\{c_{k_{1}}, c_{k_{2}}, \cdots, c_{k_{m}}\right\}$ of $D(\widetilde{L})$, we denote by \widetilde{L}_{D} the diagram obtained from \widetilde{L} by changing the crossing at all points of D.

Definition. Let K be a knot and \widetilde{K} a diagram of K with the set of crossing points $D(\widetilde{K})$. Let $A_{1}, A_{2}, \cdots, A_{n}$ be nonempty subsets of $D(\widetilde{K})$ with $A_{i} \cap A_{j}=\varnothing$ for $i \neq j$. For any nonempty subfamily $\mathscr{A}=$ $\left\{A_{j_{1}}, A_{j_{2}}, \cdots, A_{j_{l}}\right\}$ of $\left\{A_{1}, A_{2}, \cdots, A_{n}\right\}$, we denote the set $A_{j_{1}} \cup A_{j_{2}} \cup \cdots \cup A_{j_{l}}$ by \mathscr{A} for convenience. We say that \widetilde{K} is an n-trivial diagram of K with respect to $\left\{A_{1}, A_{2}, \cdots, A_{n}\right\}$ if for any nonempty (not necessarily proper) subfamily \mathscr{A} of $\left\{A_{1}, A_{2}, \cdots, A_{n}\right\}, \widetilde{K}_{\mathscr{A}}$ is a diagram of the trivial knot.

If a knot K has an n-trivial diagram and has no ($n+1$)-trivial diagrams, we denote the number n by $O(K)$, and call it the triviality index of K. If a knot K has an n-trivial diagram for any natural number n, we define $O(K)=\infty$.

In our notation, Lemma 2 of Yamamoto [9] is stated as follows.
Proposition. For any knot $K, O(K) \geqq 2$.
In [6], we showed the following theorem and corollary.
Theorem 2. If a knot K has an n-trivial diagram, then the Conway
polynomial $\nabla_{K}(z)$ of K is of the following form;
(1) if n is odd, then

$$
\nabla_{K}(z)=1+a_{n+1} z^{n+1}+a_{n+3} z^{n+3}+\cdots
$$

and
(2) if n is even, then

$$
\nabla_{K}(z)=1+a_{n} z^{n}+a_{n+2} z^{n+2}+\cdots
$$

Corollary. If the Conway polynomial of K is not one, then $O(K)$ is finite.

Theorem 2 gives an upper bound of $O(K)$ for a knot K, but it makes no difference between the knot K with $O(K)=2 m-1$ and the knot K^{\prime} with $O\left(K^{\prime}\right)=2 m$. It arises a problem as to whether or not there exists a knot K with $O(K)=n$ for any natural number n with $n>1$.

At first we show Theorem A to distinguish between the knot K with $O(K)=2 m-1$ and the knot K^{\prime} with $O\left(K^{\prime}\right)=2 m$.

§ 3. Proof of Theorem A.

Step 1. We define the following model. Let K be a knot, \tilde{K} a diagram of K, and \hat{K} the projection of K associated to \widetilde{K}, i.e. \hat{K} has no information of over and under crossings. And let $C=\left\{c_{1}, c_{2}, \cdots, c_{2 n}\right\}$ be a subset of the set of crossing points $D(\widetilde{K})$. Since \hat{K} is a knot projection, there is an immersion f of S^{1} in R^{2} such that $f\left(S^{1}\right)=\widehat{K}$. By c_{i}, we denote also a point of \hat{K} associated to c_{i} of \widetilde{K}. Let $f^{-1}\left(c_{i}\right)=\left\{d_{i}, d_{i}^{\prime}\right\}$ and $S^{1}=\sigma=\partial D^{2}$. We have the model σ as shown in Fig. 3-1.

Figure 3-1
Let $\delta_{i}, \delta_{i}^{\prime}$ be regular neighborhoods of d_{i}, d_{i}^{\prime} in σ and mutually disjoint $(1 \leqq i \leqq 2 n)$. Let B_{i} be a band and $\partial B_{i}=\alpha_{i} \cup \alpha_{i}^{\prime} \cup \beta_{i} \cup \beta_{i}^{\prime}$ as shown in Fig. 3-2.

Figure 3-2
We make B_{i} full twisted and attach β_{i} and β_{i}^{\prime} to δ_{i} and δ_{i}^{\prime} in D^{2}, then we have an orientable surface $S=\left(\cup_{i=1}^{2 n} B_{i}\right) \cup D^{2}$ as shown in Fig. 3-3.

Figure 3-3
And let $\partial S=L$. Then L is a link or a knot. We call L a band model of \widetilde{K} with respect to C. Let \tilde{L} be a diagram of L and a_{i} one of two crossing points of the boundary of the full-twisted band B_{i} in \widetilde{L}. For any subset $C^{\prime}=\left\{x_{1}, x_{2}, \cdots, x_{q}\right\}$ of C, we denote the link diagram and also link type obtained from \widetilde{K} smoothing at the points of C^{\prime} by $\widetilde{K}\left(C^{\prime}\right)$ or $\widetilde{K}\left(x_{1}, x_{2}, \cdots, x_{q}\right)$ and denote the number of components of the link L by μL. Then we have Proposition 3.1.

Proposition 3.1. Let $M=\{1,2, \cdots, 2 n\}$ and N be a subset of M. For a knot K and the band model L of \widetilde{K} with respect to $C=\left\{c_{1}, c_{2}, \cdots, c_{2 n}\right\}$, we have

$$
\mu \widetilde{L}\left(\left\{a_{i} \mid i \in M-N\right\}\right)=\mu \widetilde{K}\left(\left\{c_{i} \mid i \in N\right\}\right) .
$$

Step 2. For a set X, we denote the number of elements of X by $\# X$. Let \widetilde{K} be a knot diagram with the set of crossing points $D(\widetilde{K})$, and $C=\left\{c_{1}, c_{2}, \cdots, c_{2 n}\right\}$ a subset of $D(\tilde{K})$. We show the following lemma.

Lemma 3.2. Let $M=\{1,2, \cdots, 2 n\}, \nu=\left\{\left\{M_{1}, M_{2}, \cdots, M_{n}\right\} \mid M_{i} \subset M\right.$, $\left.\# M_{i}=2(i=1,2, \cdots, n), \cup_{i=1}^{n} M_{i}=M\right\}$. And let κ_{C} be a subset of ν such that for any $i(1 \leqq i \leqq n) \mu K\left(\left\{\left\{c_{j}, c_{j^{\prime}}\right\} \mid M_{i}=\left\{j, j^{\prime}\right\}\right\}\right)=1$, then we have that $\mu \widetilde{K}(C)=1$ if and only if $\# \kappa_{C}$ is odd.

Proof. We prove Lemma 3.2 by the induction on n. In the case $n=1, C=\left\{c_{1}, c_{2}\right\}, M=\{1,2\}$ and $\nu=\{\{M\}\}$. If $\widetilde{K}(C)$ is a knot, we have $\# \kappa_{c}=1$ since $\kappa_{C}=\{\{M\}\}$. If $\tilde{K}(C)$ is a link, $\# \kappa_{C}=0$ since $\kappa_{C}=\varnothing$. Then we have Lemma 3.2.

Let $n>1$ and C^{\prime} be a subset of C where $\# C^{\prime}=2 m(n>m)$. It is supposed that $\mu \widetilde{K}\left(C^{\prime}\right)=1$ if and only if $\# \kappa_{C^{\prime}}$ is odd. We consider the band model L of K with respect to C as defined in Step 1. Let B_{i} be an outermost band in $B_{1}, B_{2}, \cdots, B_{2 n}$, namely when we separate σ into two parts σ_{1}, σ_{2} where $\sigma_{1} \cup \sigma_{2}=\sigma, \sigma_{1} \cap \sigma_{2}=\left\{d_{n}, d_{i}^{\prime}\right\}$, and one of $\sigma_{i}(i=1,2)$ does not contain both d_{j} and d_{j}^{\prime} for any $j(j \neq i, j=1,2, \cdots, 2 n)$. Let σ_{1} be a part of σ satisfying the above condition as shown in Fig. 3-4.

Figure 3-4
Let $N=\left\{j \in M \mid\right.$ there is d_{j} or d_{j}^{\prime} on the $\left.\sigma_{1}\right\}$. Since $\mu \tilde{K}\left(c_{i}, c_{k}\right)=3$ for $k \in M-N-\{i\}$ by Proposition 3.1, any element of κ_{C} has $\{i, j\}(j \in N)$ as an element. Let $C(j)=\left\{c_{q}\right\}(q \in M-\{i, j\})$, then we have

$$
\begin{equation*}
\# \kappa_{C}=\sum_{j \in N} \# \kappa_{C(j)} . \tag{3.1}
\end{equation*}
$$

By the hypothesis of induction, we have $\mu \widetilde{K}(C(j))=1$ if and only if $\# \kappa_{C(j)}$ is odd. Then we show the relation between $\# \kappa_{C}$ and $\mu \widetilde{K}(C)$ by considering $\mu \widetilde{K}(C(j))$ and $\# N$. By Proposition 3.1, we have $\mu \widetilde{K}(C(j))=\mu \widetilde{L}\left(a_{i}, a_{j}\right)$. We consider two cases on the number of components of $\widetilde{L}\left(a_{i}\right)$. We note that,
since $\mu \widetilde{L}\left(a_{i}\right)=\mu \widetilde{K}\left(\left\{c_{k} \mid k \in M-\{i\}\right\}\right), \mu \widetilde{L}\left(a_{i}\right)$ is even.
Case 1. $\mu \tilde{L}\left(a_{i}\right) \geqq 4$. Since $\mu \widetilde{L}\left(a_{i}, a_{j}\right) \geqq 3$ for any $j \in N$, we have $\mu \widetilde{K}(C(j)) \geqq 3$. By the hypothesis of induction, $\# \kappa_{C(j)}$ is even. By (3.1), we have $\# \kappa_{C}$ is even. And since $\mu \tilde{L} \geqq 3$, we have $\mu \tilde{K}(C) \geqq 3$. Therefore we have that $\tilde{K}(C)$ is a link and $\# \kappa_{C}$ is even.

Case 2. $\mu \tilde{L}\left(a_{i}\right)=2$. Let $N^{\prime}=\left\{j \in N \mid \alpha_{j}\right.$ and α_{j}^{\prime} are contained in different components on $\left.\tilde{L}\left(a_{i}\right)\right\}$. We have by (3.1)

$$
\begin{align*}
\# \kappa_{C} & =\sum_{j \in N} \# \kappa_{C(j)} \tag{3.2}\\
& =\sum_{j \in N} \# \kappa_{C(j)}+\sum_{j \in N-N} \# \kappa_{C(j)} .
\end{align*}
$$

Since $\mu \widetilde{L}\left(a_{i}, a_{j}\right)=1$ for any $j \in N^{\prime}$, we have $\mu \widetilde{K}(C(j))=1$ and by the hypothesis of induction $\# \kappa_{C(j)}$ is odd. Since $\mu \widetilde{L}\left(a_{i}, a_{j}\right) \geqq 3$ for any $j \in N-N^{\prime}$, we have $\mu \widetilde{K}(C(j)) \geqq 3$ and $\# \kappa_{C(j)}$ is even. Therefore we have by (3.2)

$$
\begin{align*}
\# \kappa_{c} & \equiv \sum_{j \in N^{\prime}} 1+\sum_{j \in N-N^{\prime}} 0 \tag{3.3}\\
& \equiv \# N^{\prime} \quad(\bmod 2)
\end{align*}
$$

In the case $\widetilde{K}(C)$ is a knot, considering there is two points d_{i}, d_{i}^{\prime} on the $\widetilde{L}\left(a_{i}\right), d_{i}$ and d_{i}^{\prime} are contained in different components of $\widetilde{L}\left(a_{i}\right)$. Moreover for $j \in N^{\prime}, \alpha_{j}$ and $\alpha_{j}^{\prime}\left(\alpha_{j}, \alpha_{j}^{\prime} \in \partial B_{j}\right)$ are contained in different components of $\widetilde{L}\left(a_{i}\right)$. Therefore $\# N^{\prime}$ is odd when $\mu \widetilde{K}(C)=1$. In the same way when $\tilde{K}(C)$ is a link and $\mu \widetilde{L}=3, d_{i}$ and d_{i}^{\prime} are contained in the same component in $\widetilde{L}\left(a_{i}\right)$. Therefore we have $\# N^{\prime}$ is even when $\widetilde{K}(C)$ is a link. By (3.3), we have when $\widetilde{K}(C)$ is a knot $\# \kappa_{c}$ is odd, and when $\widetilde{K}(C)$ is a link $\# \kappa_{C}$ is even.

By Case 1 and Case 2, we have that when $\widetilde{K}(C)$ is a knot $\# \kappa_{C}$ is odd, and when $\tilde{K}(C)$ is a link $\# \kappa_{C}$ is even. This completes the proof of Lemma 3.2.

Step 3. In this Step, we complete the proof of Theorem A by making use of Lemma 3.2 and the following Lemma 3.3.

Let \widetilde{K} be an n-trivial diagram of K with respect to $\left\{A_{1}, A_{2}, \cdots, A_{n}\right\}$.

$+1$

-1

Figure 3-5

Let $A_{i}=\left\{c_{i 1}, c_{i 2}, \cdots, c_{i \alpha(i)}\right\}$, and $\varepsilon_{i j}$ the sign of $c_{i j}$ defined as shown in Fig. $3.5(i=1,2, \cdots, n)$.

By $K\left(\begin{array}{llll}1 & 2 & \cdots & k \\ i_{1} & i_{2} & \cdots & i_{k}\end{array}\right)$, we denote the link which is obtained from K by changing the crossing at $c_{11}, c_{12}, \cdots, c_{1 i_{1}-1}, c_{21}, c_{22}, \cdots, c_{2 i_{2}-1}, \cdots, c_{k 1}, c_{k 2}, \cdots$, $c_{k i_{k}-1}$ and smoothing at $c_{1 i_{1}}, c_{2 i_{2}}, \cdots, c_{k i_{k}}$. In [6], we showed the following lemma.

Lemma 3.3. If a knot K has an n-trivial diagram with respect to $\left\{A_{1}, A_{2}, \cdots, A_{n}\right\}$, then the Conway polynomial $\nabla_{K}(z)$ of K is of the following form.

Let \widetilde{K} be a $2 n$-trivial diagram with respect to $\left\{A_{1}, A_{2}, \cdots, A_{2 n}\right\}$ of K, and $A_{i}=\left\{c_{i 1}, c_{i 2}, \cdots, c_{i \alpha(i)}\right\}(i=1,2, \cdots, 2 n)$. We note that \widetilde{K} is a 2trivial diagram with respect to $\left\{A_{j}, A_{k}\right\}$ for any $j, k(j<k, j, k=1,2, \cdots, 2 n)$. Let $a_{2 m}$ be the coefficient of $z^{2 m}$ of Conway polynomial of $K(m=1,2, \cdots)$, then we have by Lemma 3.3

$$
\begin{aligned}
a_{2} & \equiv \#\left\{K\left(\begin{array}{ll}
j & k \\
i_{j} & i_{k}
\end{array}\right) \left\lvert\, \mu K\left(\begin{array}{cc}
j & k \\
i_{j} & i_{k}
\end{array}\right)=1\right.,1 \leqq i_{j} \leqq \alpha(j), 1 \leqq i_{k} \leqq \alpha(k)\right\} \\
& \equiv \#\left\{\widetilde{K}\left(c_{i_{j}}, c_{i_{k}}\right) \mid \mu \widetilde{K}\left(c_{i_{j}}, c_{i_{k}}\right)=1,1 \leqq i_{j} \leqq \alpha(j), 1 \leqq i_{k} \leqq \alpha(k)\right\} \quad(\bmod 2)
\end{aligned}
$$

Therefore we have

$$
a_{2} \equiv \#\left\{\left(d_{j}, d_{k}\right) \in A_{j} \times A_{k} \mid \mu \widetilde{K}\left(d_{j}, d_{k}\right)=1\right\} \quad(\bmod 2)
$$

Since \tilde{K} is a $2 n$-trivial diagram $(n>1)$, we have $a_{2}=0$, then we have for any $j, k(j<k, j, k=1,2, \cdots, 2 n)$

$$
\begin{equation*}
\#\left\{\left(d_{j}, d_{k}\right) \in A_{j} \times A_{k} \mid \mu \widetilde{K}\left(d_{j}, d_{k}\right)=1\right\} \equiv 0 \quad(\bmod 2) . \tag{3.5}
\end{equation*}
$$

Similarly, we have by Lemma 3.3

$$
\begin{aligned}
& a_{2 n} \equiv \#\left\{K\left(\begin{array}{cccc}
1 & 2 & \cdots & 2 n \\
i_{1} & i_{2} & \cdots & i_{2 n}
\end{array}\right) \left\lvert\, \mu K\left(\begin{array}{cccc}
1 & 2 & \cdots & 2 n \\
i_{1} & i_{2} & \cdots & i_{2 n}
\end{array}\right)=1\right.,\right. \\
& \left.1 \leqq i_{j} \leqq \alpha(j), j=1,2, \cdots, 2 n\right\} \\
& \equiv \#\left\{\widetilde{K}\left(c_{i_{1}}, c_{i_{2}}, \cdots, c_{i_{2 n}}\right) \mid \mu \widetilde{K}\left(c_{i_{1}}, c_{i_{2}}, \cdots, c_{i_{2 n}}\right)=1,\right. \\
& \left.1 \leqq i_{j} \leqq \alpha(j), j=1,2, \cdots, 2 n\right\} \quad(\bmod 2) .
\end{aligned}
$$

Then we have

$$
\begin{align*}
a_{2 n} \equiv \#\left\{\left(d_{1}, d_{2}, \cdots, d_{2 n}\right)\right. & \in A_{1} \times A_{2} \times \cdots \times A_{2 n} \mid \tag{3.6}\\
& \left.\mu \widetilde{K}\left(d_{1}, d_{2}, \cdots, d_{2 n}\right)=1\right\} \quad(\bmod 2) .
\end{align*}
$$

By Lemma 3.2, we have $\mu \widetilde{K}\left(d_{1}, d_{2}, \cdots, d_{2 n}\right)=1$ if and only if $\# \kappa_{\left(d_{1}, d_{2}, \cdots, d_{2 n}\right)}$ is odd for $\left\{d_{1}, d_{2}, \cdots, d_{2 n}\right\}$. Therefore we have

$$
\begin{aligned}
a_{2 n} & \equiv \#\left\{\left(d_{1}, d_{2}, \cdots, d_{2 n}\right) \in A_{1} \times A_{2} \times \cdots \times A_{2 n} \mid \mu \tilde{K}\left(d_{1}, d_{2}, \cdots, d_{2 n}\right)=1\right\} \\
& \equiv \sum_{\left(d_{1}, d_{2}, \cdots, d_{2 n}\right) \in A_{1} \times A_{2} \times \cdots \times A_{2 n}} \# \kappa_{\left\{d_{1}, d_{2}, \cdots, d_{2 n}\right\}}(\bmod 2) .
\end{aligned}
$$

Let $M_{i}=\left\{m(i), m^{\prime}(i)\right\}(1 \leqq i \leqq n)$, then we have

$$
\begin{align*}
& a_{2 n} \equiv{ }_{\left(d_{1}, d_{2}, \cdots, d_{2 n}\right)} \sum_{\in A_{1} \times A_{2} \times \cdots \times A_{2 n}} \#\left\{\left(M_{1}, M_{2}, \cdots, M_{n}\right) \mid\right. \tag{3.7}\\
& \left.\mu K\left(d_{m(i)}, d_{m^{\prime}(i)}\right)=1,1 \leqq i \leqq n\right\}
\end{align*}
$$

$$
\begin{aligned}
& \left.\cdots \times A_{m^{\prime}(n)} \mid \mu \widetilde{K}\left(d_{m(i)}, d_{m^{\prime}(i)}\right)=1,1 \leqq i \leqq n\right\} \quad(\bmod 2) .
\end{aligned}
$$

We fix one of $\left\{M_{1}, M_{2}, \cdots, M_{n}\right\} \in \nu$, then

$$
\begin{align*}
& \#\left\{\left(d_{m(1)}, d_{m^{\prime}(1)}, d_{m(2)}, \cdots, d_{m(n)}, d_{m^{\prime}(n)}\right) \in A_{m(1)} \times A_{m^{\prime}(1)} \times\right. \tag{3.8}\\
& \left.\cdots \times A_{m^{\prime}(n)} \mid \mu \widetilde{K}\left(d_{m(i)}, d_{m^{\prime}(i)}\right)=1,1 \leqq i \leqq n\right\} \\
& =\prod_{i=1}^{n} \#\left\{\left(d_{m(i)}, d_{m^{\prime}(i)}\right) \in A_{m(i)} \times A_{m^{\prime}(i)} \mid \mu \widetilde{K}\left(d_{m(i)}, d_{m^{\prime}(i)}\right)=1\right\} .
\end{align*}
$$

By (3.5), we have

$$
\begin{align*}
& \prod_{i=1}^{n} \#\left\{\left(d_{m(i)}, d_{m^{\prime}(i)}\right) \in A_{m(i)} \times A_{m^{\prime}(i)} \mid \mu \tilde{K}\left(d_{m(i)}, d_{m^{\prime}(i)}\right)=1\right\} \tag{3.9}\\
& \quad \equiv 0 \quad(\bmod 2) .
\end{align*}
$$

By (3.7), (3.8) and (3.9), we have

$$
a_{2 n} \equiv 0 \quad(\bmod 2)
$$

This completes the proof of Theorem A.

§ 4. Proof of Theorem B.

The knot K_{n} in Fig. 4-1 has an n-trivial diagram ([6]). It is not hard to see that it is an alternating knot. The Conway polynomial of the knot K_{n} in Fig. 4-1 is of the following form:

If $n=2 m(m \geqq 1), \nabla_{K_{n}}(z)=1-2 z^{2 m}+\cdots$.
If $n=2 m-1(m \geqq 2), \nabla_{K_{n}}(z)=1-(2 m-1) z^{2 m}+\cdots$.
By Theorem 2, if a knot K has a $2 m$-trivial diagram and $a_{2 m} \neq 0$,

Figure 4-1
$O(K)=2 m$. And by Theorem A, if K has a ($2 m-1$)-trivial diagram and $a_{2 m}$ is odd, $O(K)=2 m-1$. Therefore we have

$$
O\left(K_{n}\right)=n \quad(n \geqq 2) .
$$

Let K_{n}^{l} be the knot as in Fig. 4-2, where the rectangle labelled l stands for a 2-string integral tangle with l full twists as shown in Fig. 4-3. Since the Conway polynomial of K_{n}^{l} is the same as that of K_{n}, and K_{n}^{l} has an n-trivial diagram, we have

$$
O\left(K_{n}^{l}\right)=n \quad(n \geqq 2)
$$

The relation between the Jones polynomial of $K_{n}^{l}, V_{K_{n}^{l}}(t)$, and that of $K_{n}, V_{K_{n}}(t)$, is calculated as follows in [4]:

$$
V_{K_{n}^{l}}^{l}(t)=\left(t^{2}-1\right)\left(V_{K_{n}}(t)-1\right) \sum_{i=0}^{l-1} t^{2 i}+V_{K_{n}}(t)
$$

The knot K_{n} is an alternating knot and the minimal crossing number of K_{n} is $3 n$ by Murasugi [5]. And the reduced degree of $V_{K}(t)$ is equal to the minimal crossing number of K for an alternating knot K ([5]). Then we have

$$
V_{K_{n}}(t) \neq 1 .
$$

Therefore we have for l and $l^{\prime}\left(l<l^{\prime}\right)$

$$
V_{K_{n}^{l}}(t) \neq V_{K_{n}^{l_{n}^{\prime}}}(t) .
$$

This completes the proof of Theorem B.

Figure 4-2

Figure 4-3

§ 5. Proof of Theorem C.

We consider the knot $K_{p_{1}, p_{2}, \cdots, p_{l}}$ as shown in Fig. 5-1 ([7]). By rectangle labelled $p_{i}(i=1,2, \cdots, l)$, we denote the integral 2 -string tangle as shown in Fig. 4-3. The Conway polynomial $\nabla_{\boldsymbol{p}_{p_{1}, p_{2}}, \cdots, p_{l}}$ of $K_{p_{1}, p_{2}, \cdots, p_{l}}$ is the following:

$$
\begin{aligned}
\nabla_{\boldsymbol{x}_{p_{1}, p_{2}, \cdots, p_{l}}} & =1+\sum_{i=1}^{l}(-1)^{i-1} p_{l+1-i} z^{2 i} \\
& =1+p_{l} z^{2}-p_{l-1} z^{4}+\cdots+(-1)^{l-1} p_{1} z^{2 l} .
\end{aligned}
$$

Let $p_{l}=0$ and p_{l-1} be an odd integer, then we have

Figure 5-1

Figure 5-2

$$
\nabla_{\kappa_{p_{1}, p_{2}, \cdots, 0}}=1-p_{l-l} z^{4}+p_{l-2} z^{6}+\cdots+(-1)^{l-1} p_{1} z^{2 l} .
$$

Let $-p_{l-1}=a_{4}$ and $(-1)^{i-1} p_{l+1-i}=a_{2 i}(i=3,4, \cdots, l)$. Therefore we have

$$
\nabla_{K_{p_{1}, p_{2}, \cdots, 0}}=f(z) .
$$

And $K_{p_{1}, p_{2}, \cdots, 0}$ has a 3 -trivial diagram with respect to $\left\{A_{1}, A_{2}, A_{3}\right\}$ as shown in Fig. 5-2. This completes the proof of Theorem C.

Remark. For prime knots whose minimal crossing numbers are less than or equal to 9 , the triviality indices of them are 2 except for the following knots; $O\left(8_{2}\right)=2$, or 3. $O\left(8_{14}\right)=3$, or 4. $O\left(8_{21}\right)=3$. $O\left(9_{8}\right)=2,3$, or 4. $O\left(9_{25}\right)=2$, or 3. $O\left(9_{26}\right)=O\left(9_{27}\right)=O\left(9_{41}\right)=O\left(9_{44}\right)=3$.

References

[1] G. Burde and H. Zieschang, Knots, de Gruyter Studies in Mathematics, 5 (1985), Walter de Gruyter.
[2] J. H. Conway, An enumeration of knots and links, and some of their related properties, Computation Problems in Abstract Algebra, Proc. Conf. Oxford, (J. Leech, ed.) Pergamon Press (1967), 329-358.
[3] V.F. R. Jones, A polynomial invariant for knots via von Neumann algebra, Bull. Amer. Math. Soc., 12 (1985), 103-111.
[4] T. Kanenobu, Examples on polynomial invariants of knots and links, Math. Ann., 275 (1986), 555-572.
[5] K. Murasugi, Jones polynomials and classical conjectures in knot theory, Topology, 26 (1987), 187-194.
[6] Y. OhYama, A new numerical invariant of knots induced from their regular diagrams, preprint.
[7] C. V. Quach, Invariants des nœuds classiques fibrés, Thése, Université de Geneve (1981).
[8] D. Rolfsen, Knots and Links, Publish or Perish (1976).
[9] M. Yamamoto, Knots in spatial embeddings of the complete graph on four vertices, preprint.

Present Address:
Department of Mathematics, School of Science and Engineering Waseda University
Ohkubo, Shinjuku-ku, Tokyo 169, Japan

[^0]: Received August 23, 1989

