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Introduction.

It is well known that there are various definitions of “sufficiency”.
In addition to the usual definition of sufficiency represented by the
existence of a common conditional probability, we have the notions of
pairwise sufficiency, PSS (pairwise sufficiency with supports), te8t suf-
ficiency and Bayes sufficiency. These notions coincide with one another
in the dominated case. Ramamoorthi ([6]), and Roy and Ramamoorthi
([7]), discussed Bayes sufficiency in undominated cases, but most result8
are restricted to the countably generated subfield cases.

In this note we show, by examples, that PSS does not imply Bayes
sufficiency in case of a continuous a priori distribution (cf. [5]), and the
existence of the smallest PSS which is Bayes sufficient. This latter ex-
ample shows the result by Kusama and Fujii ([4]) does not hold if we
replace test sufficiency by Bayes sufficiency.

By a statistical experiment we mean a triplet $(\mathscr{F}\mathscr{J}p)$ , where
$\ovalbox{\tt\small REJECT}=\{P_{\theta};\theta\in\Theta\}$ is a family of probability measures on $(\mathscr{F}_{-}\ddagger K)$ . $\theta$ is
referred to as the parameter space of the experiment. Let $C$ be a
sigma-field of subsets of $\Theta$ which includes the sigma-field generated by
the family of mappings defined by $\theta\in\Theta\rightarrow P_{\theta}(A),$ $ A\in\leftrightarrow\Psi$ For any a
priori distribution $\lambda$ on $(\Theta, C)$ , let $\ovalbox{\tt\small REJECT}*\lambda$ be a probability mea8ure on
$(\mathscr{F}\times\Theta, \llcorner\ovalbox{\tt\small REJECT}\times C)$ defined by

$\ovalbox{\tt\small REJECT}*x(A\times C)=\int_{c}P_{\theta}(A)dx(\theta)$ .
Let $\mathscr{G}$ be a sub-sigma-field of $\llcorner\ovalbox{\tt\small REJECT}$ and $\Lambda$ be a family of a priori distri-
butions on $(\Theta, C)$ .

DEFINITION. va is called Bayes sufficient $w$ . $r$ . $t$ . $\Lambda$ if, for any $\lambda\in\Lambda$ ,
$\ovalbox{\tt\small REJECT}\times\Theta$ and $\mathscr{F}\times C$ are conditionally independent given va $\times\Theta w$ . $r$ . $t$ .
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$\ovalbox{\tt\small REJECT}*\lambda$ . If $\mathscr{B}$ is Bayes sufficient $w$ . $r$ . $t$ . the family of all a priori distri-
butions then we simply say that $\mathscr{B}$ is Bayes sufficient. Here $\mathscr{A}\times\Theta$

denotes the sigma-field of sets of the form $A\times\Theta,$ $A\in\ovalbox{\tt\small REJECT}$ $\mathscr{B}\times\Theta,$ $\mathscr{F}\times C$

are defined similarly.

1. Results.

This section is separated into four parts. Fir8t let’s consider the
relationship between Bayes sufficiency and pairwise sufficiency. The next
proposition is a slight modification of one part of Proposition 1.7 of [5].

This Proposition 1.7 also shows that Bayes sufficiency implies pairwise
sufficiency.

PROPOSITION 1. A sub-sigma-field ue is pairwise sufficient if and
only if ue is Bayes sufficient $w$ . $r$ . $t$ . the totality of discrete $a$ priori
distributions on $(\Theta, C)$ .

PROOF. One part of Proposition 1.7 of [5] shows that pairwise suf-
ficiency is equivalent to Bayes sufficiency $w$ . $r$ . $t$ . the totality of convex
combinations of two point distributions. Hence the only if part is to
be proved. Let $x$ be any discrete a priori distribution on $\{\theta_{1}, \theta_{2}, \cdots\}$

with probabilities $\{a_{1}, a_{2}, \cdots\}$ and let $\ovalbox{\tt\small REJECT}_{\lambda}=\{P_{\theta_{i}};i\geqq 1\}$ . Then va is sufficient
for $(\mathscr{F}\mathscr{A}\ovalbox{\tt\small REJECT}_{\lambda})$ . Hence ue is Bayes sufficient for the parameter space
$(\{\theta_{1}, \theta_{2}, \cdots\}, 2^{\{\theta_{1},\theta_{2}.\cdots\}})$ . Let $\wedge\lambda$ be the restriction of $\lambda$ on $\{\theta_{1}, \theta_{2}, \cdots\}$ . Then
$L\ovalbox{\tt\small REJECT}\times\{\theta_{1}, \theta_{2}, \cdots\}$ and $\mathscr{F}\times 2^{\{\theta_{1},\theta_{2\prime}\cdots\}}$ are conditionally independent given
$\mathscr{G}\times\{\theta_{1}, \theta_{2}, \cdots\}w$ . $r$ . $t$ . $\ovalbox{\tt\small REJECT}*\hat{\lambda}$ . Hence for any bounded $\mathscr{A}$-measurable
function $f$ there exists a $\underline{\sigma}\mathscr{F}$-measurable function $g$ such that

$\int_{B<C}\overline{f}(x, \theta)d\ovalbox{\tt\small REJECT}*\hat{\lambda}=\int_{B\swarrow C}\overline{g}(x, \theta)d\ovalbox{\tt\small REJECT}*\hat{\lambda}$ for all $B\in \mathscr{B}$ and $C\subset\{\theta_{1}, \theta_{2}, \cdots\}$ ,

where $\overline{f}(x, \theta)=f(x),\overline{g}(x, \theta)=g(x)$ . The left-hand side is equal to

$\int_{C}\int_{B}f(x)dP_{\theta_{i}}d\hat{\lambda}=\sum\{a_{i}\int_{B}f(x)dP_{\theta_{i}};\theta_{i}\in C\}$

The right-hand side is equal to

$\int_{C}\int_{B}g(x)dP_{\theta_{i}}d\hat{\lambda}=\sum\{a_{i}\int_{B}g(x)dP_{\theta_{i}};\theta_{\ell}\in C\}$

Take any $CeC$. Then we have

$\int_{B\times C}\overline{f}(x, \theta)d\ovalbox{\tt\small REJECT}*\lambda=\int_{C}\int_{B}f(x)dP_{\theta}dx$
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$=\sum\{a_{i}\int_{B}f(x)dP_{\theta_{i}};\theta_{i}\in C\}=\sum\{a_{i}\int_{B}g(x)dP_{\theta_{i}};\theta_{i}\in c\}$

$=\int_{C}\int_{B}g(x)dP_{\theta}d\lambda=\int_{B\times C}\overline{g}(x, \theta)d\ovalbox{\tt\small REJECT}*x$ .

This shows $\ovalbox{\tt\small REJECT}\times\Theta$ and $\mathscr{F}\times C$ are conditionally independent given $\mathscr{G}\times\Theta$

$w$ . $r$ . $t$ . $\ovalbox{\tt\small REJECT}*\lambda$ . Hence $B$ is Bayes sufficient $w$ . $r$ . $t$ . the totality of discrete
a prioi distributions.

The next example shows that pairwise sufficiency does not imply
Bayes sufficiency $w$ . $r$ . $t$ . a single continuous a priori distribution, and
that PSS does not imply Bayes sufficiency.

EXAMPLE 1. Let $\mathscr{F}=R^{1},$ $\mathscr{A}=Borel$ field, $\Theta=R^{1}-\{0\},$ $\ovalbox{\tt\small REJECT}=\{P_{\theta};\theta\in\Theta\}$

and $P_{\theta}$ be the point probability measure at $\theta$ . Let $C$ be the Borel field
of subsets of $\Theta$ . This $C$ is equal to the sigma-algebra generated by all
mappings defined by $\theta\rightarrow P_{\theta}(A),$ $A\in\ovalbox{\tt\small REJECT}$ Let va be the sub-sigma-field of
$\mathscr{A}$ generated by all single points but $0$ . Then ue is the smallest PSS
([8] Proposition 1). Suppose that $\mathscr{G}$ is Bayes sufficient. Then for any
a priori distribution $\lambda$ on $(\Theta, C)$ and $C\in C$, there exists a $\mathscr{M}z$-measurable
function $g$ such that

$\int_{Ae\theta}\overline{g}(x, \theta)d\ovalbox{\tt\small REJECT}*\lambda=\ovalbox{\tt\small REJECT}*\lambda((A\times\Theta)\cap(\mathscr{F}\times C))$ for all $A\in \mathscr{A}$ .
Then the left-hand side is equal to

$\int_{\Theta}\int_{A}g(x)dP_{\theta}(x)dx(\theta)=\int_{\theta}\int_{A-\{0\}}g(x)dP_{\theta}(x)dx(\theta)$

$=\int_{\Theta}g(\theta)I_{A-\{0\}}(\theta)dx(\theta)=\int_{A-\{0\}}g(\theta)dx(\theta)$ ,

and the right-hand side is equal to

$\ovalbox{\tt\small REJECT}*\lambda(A\times C)=\int_{c}P_{\theta}(A)dx(\theta)=\int_{c}P_{\theta}(A-\{O\})d\lambda(\theta)$

$=\int_{c}I_{A-\{0\}}(\theta)dx(\theta)=\int_{A-\{0\}}I_{c}(\theta)d_{\lambda}(\theta)$ .
Hence we have

$g(\theta)=I_{c}(\theta)$ $a.e$ . $\lambda$ . (1)

Let’s take as $\lambda$ a continuous a priori distribution satisfying

$x([-2, -1])>0$ , $\lambda([1,2])>0$ , $\lambda(\Theta-C)>0$ for $C=[-2, -1]\cup[1,2]$ .
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Then by (1),

$\Theta\cap[g\neq I_{c}]=\{[g\neq 1]\cap C\}\cup\{[g\neq 0]\cap(\Theta-C)\}$ a.e. $\lambda$ .
Case 1. $g(O)=0$ . As $0e[g\neq 1]$ and $g$ is B-measurable, $[g=1]$ is

countable. So $x([g\neq 1]\cap C)=x(C)>0$ . This implies $x(\Theta\cap[g=I_{c}])>0$ and
contradicts (1).

Case 2. $g(O)=1$ . As $0\in[g\neq 0]$ and $g$ is $\mathscr{G}$-measurable, $[g=0]$ is
countable. So $\lambda([g\neq 0]\cap(\Theta-C))=x(\Theta-C)>0$ . This implies $\lambda(\Theta\cap[g\neq I_{c}])>$

$0$ and contradicts (1).
Case 3. $g(O)\neq 0,1$ . As $0\in[g\neq 1]\cap[g\neq 0]$ and $g$ is $\mathscr{B}^{\prime}$-measurable,

$[g=1]\cup[g=0]$ is countable. So $\lambda([g\neq 1]\cap[g=0]\cap C)=\lambda(C)>0$ . This im-
plies $\backslash (\Theta\cap[g\neq I_{\sigma}])>0$ and contradicts (1).

Hence va is not Bayes sufficient. It is easily proved that va is
not test sufficient.

REMARK 1. If we take, in Example 1, $\ovalbox{\tt\small REJECT}^{\prime}=2^{B^{\prime}}$ , then $C$ must be equal
to $2^{\theta}$ . Hence, under the continuum hypothesis, any a priori distribution
on $(\theta, C)$ is discrete, and hence va is Bayes sufficient because it is
pairwi8e sufficient for $(\mathscr{F}2^{\ovalbox{\tt\small REJECT}}, \ovalbox{\tt\small REJECT})$ .

The second part of this section is related to the result of Kusama
and Fujii ([4]). It shows that the smallest PSS is not test sufficient
when the underlying experiment is weakly dominated and not dominated.
The next example shows that in the above result we can’t replace test
sufficiency with Bayes sufficiency.

EXAMPLE 2. Let $\mathscr{F}$ be any set with non-measurable cardinal and
$\ovalbox{\tt\small REJECT}=2^{z}$ . For any $\theta e\Theta=\mathscr{F}P_{\theta}$ denotes the point probability measure
at $\theta$ . Let $\ovalbox{\tt\small REJECT}=\{P_{\theta};\theta\in\Theta\}$ and ue be the sub-sigma-field of $\ovalbox{\tt\small REJECT}$ generated
by all single points of $\mathscr{F}$ To discuss Bayes sufficiency it is noted that
$C=2^{\Theta}$ . In this $ca8e$ , because $\mathscr{F}$ is non-measurable, any probability
measure on $(\Theta, C)$ is discrete. Hence ue is Bayes sufficient by Propo-
sition 1 and becau8e it is pairwise sufficient. To put it more precisely,
$\mathscr{B}$ is the smallest PSS ([3], Example 4.1). ue is not test sufficient
([4]).

REMARK 2. Brown ([2]) showed, in the discrete case, any test suf-
ficient sub-sigma-field includes a sufficient sub-sigma-field. Hence in this
ca8e test sufficiency implies Bayes sufficiency. Our Example 2 shows the
converse does not hold. In general does test sufficiency imply Bayes
sufficiency? This is a weaker ver8ion of the general Brown’s problem
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and is still an open problem. Ramamoorthi ([6], Theorem 2.2.1) showed
that, if all the sigma-fields concerned are countably generated, test suf-
ficiency implies Bayes sufficiency.

The third part of this section is related to Bayes $8ufficiency$ for
completed sigma-fields. This gives an analogue to Proposition 1. For
any sub-sigma-field $\mathscr{B}$ of $\mathscr{A}$ we define its pairwise completion by
$\tilde{\mathscr{B}}(\mathscr{A})=\{A\in \mathscr{A}$ ; For any $P,$ $ Q\in$ ta there exists $B_{P,Q}e$ va satisfying
$P(A\triangle B_{P,Q})=Q(A\triangle B_{P,Q})=0\}$ .

PROPOSITION 2. Let $(\mathscr{F}\mathscr{A}\ovalbox{\tt\small REJECT})$ be weakly dominated. Then $\mathscr{B}$ is
pairwise sufficient if and only if $\tilde{\mathscr{B}}(\mathscr{A})$ is Bayes sufficient.

This follows easily from Corollary 2 of [9] and we omit the proof.
The next example shows in Proposition 2 we can’t replace the pairwise
completion with the weak completion of $\mathscr{B}$ which is defined by $\hat{\mathscr{G}}(\mathscr{A})=$

{ $A\in \mathscr{A}$ ; For any $P\in\ovalbox{\tt\small REJECT}$ there exists a $B_{p}\in \mathscr{B}$ such that $P(A\triangle B_{p})=0$}.

EXAMPLE 3. Let $\mathscr{F}=R^{1},$ $\mathscr{A}=2^{\ovalbox{\tt\small REJECT}},$ $\ovalbox{\tt\small REJECT}$ be the totality of point prob-
ability measures. Let va be the sub-sigma-field of $\mathscr{A}$ generated by all
single points but $0$ and 1. Then it is easy to prove that va is not
pairwise sufficient and $\hat{\mathscr{B}}(\mathscr{A})=\mathscr{A}$, which implies $L\sigma\hat{\mathscr{L}}(\mathscr{A})$ is Bayes 8uf-
ficient. This example is the same to the one in Remark 2 of [9].

Finally we remark that there exist some connections between Bayes
sufficiency and the existence of consistent estimates. Let $(\mathscr{F}\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT})$ ,
$\ovalbox{\tt\small REJECT}=\{P_{\theta};\theta e\Theta\}$ , be a given statistical experiment, va be a sub-sigma-field
of $\ovalbox{\tt\small REJECT}$, and let $\Lambda$ be a family of a priori distributions on $(\theta, C)$ . It
is easily seen from the equivalent formulation of Bayes sufficiency
(Ramamoorthi [6], Proposition 2.1.1, or Roy and Ramamoorthi [7], Propo-
sition 2.1) that va is Bayes sufficient $w$ . $r$ . $t$ . $\Lambda$ if for every $\lambda\in\Lambda$ and
every real valued C-measurable function $h(\theta)$ on $\Theta$ there exists ue-
measurable function $f(x)$ on $\mathscr{F}$ such that

$P_{\theta}\{x;f(x)=h(\theta)\}=1$ , x-a.e.

In other words, the existence of va-measurable $(\lambda-)consistent$ estimates
for every $\lambda\in\Lambda$ and every C-measurable function $h(\theta)$ implies Bayes
sufficiency of $\mathscr{B}w$ . $r$ . $t$ . $\Lambda$ . Hence, in particular, if there exist ue-
measurable consistent estimates in a usual sense for every $h(\theta)$ then
$\mathscr{G}$ is Bayes sufficient. It is not known whether the converse of this
statement holds or not. When $\Lambda=\{\theta\}$ is one point set, some interesting
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relations between the existence of $\mathscr{A}- measurable(\lambda-)consi8tent$ estimates
and weak zero-one sets are discussed in Breiman et al. ([1]). In Roy and
Ramamoorthi ([7]) they discuss some relationship between existence of a
‘nearly’ consistent estimator, which is called a measurable estimator in
their paper, and measurable coherency.
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