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\S $0$ . Introduction.

Let $S^{m-1}$ be the unit hypersphere of the Euclidean m-space $E^{m}$

centered at the origin, embedded in the standard way. Then any
submanifold of $S^{m-1}$ we call spherical. If $M^{n}$ is a compact spherical
submanifold minimal in $S^{m-1}$ then it is well known that the Euclidean
coordinate functions restricted to $M$ are eigenfunctions of the Laplacian
$\Delta$ on $M^{n}$ with the same eigenvalue $n$ (see [25]). Spectral behavior of a
spherical submanifold can be also nicely related to the second standard
immersion $f$ of $S^{m-1}$ . For example, A. Ros [20] studied compact minimal
spherical submanifolds via the second standard immersion. He obtained
characterization of those that are described by means of two different
eigenvalues of $\Delta$ , i.e. those which are of 2-type via $\ell$ (for precise definition
of k-type submanifolds see the next section). He showed that such
submanifolds are Einstein and mass-symmetric via $f$ . Then M. Barros
and B. Y. \’{C}hen [2] obtained generalization of Ros’ characterization for
spherical submanifolds which are mass-symmetric and of 2-type via $f$ .
They also classified hypersurfaces of $S^{m-1}$ which are mass-symmetric and
of 2-type via the second standard immersion.

Let $x:M^{n}\rightarrow S^{m-1}\subset E^{m}$ be an isometric immersion and regard $x=$

$(x_{1}, \cdots, x_{m})^{t}$ as a column matrix. We define the map $ x=c\circ x=xx^{t}\sim$ from
$M$ into the set of $m\times m$ symmetric matrices and call it the quadric rep-
resentation of $M$ because the coordinates of $ x\sim$ depend on the coordinates
of $x$ in a quadratic manner. Studying submanifolds with finite type
quadric representation amounts to studying spectral behavior of the
product of coordinate functions $x_{i}\cdot x_{j}$ .

In this paper we extend the above result of Barros and \’{C}hen giving
the classification of spherical hypersurfaces with 2-type quadric repre-
sentation without assuming mass-symmetry a priori (Th. 3.1). We also
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undertake the study of spherical hypersurface8 with 3-type quadric rep-
resentation. We give a characterization and 8ome $cla8sification$ results
for minimal hypersurfaces of $S^{n-1}$ which are mass-8ymmetric and of 3-
type via $f$ (Theorems 4.1 and 4.2). As a byproduct, we obtain a new
characterization of the minimal Cartan hypersurface $SO(3)/Z_{2}\times Z_{2}$ in $S^{4}$

in terms of its 8pectral behavior.

\S 1. Preliminaries.

Notation. Let us fix the notation (standard fact8 from submanifold
theory can be found in [7]). Let $x:M^{n}\rightarrow E^{n}$ be an isometric immersion
of a compact connected n-dimensional Riemannian manifold into a
Euclidean m-space. Suppose that $e_{1},$ $e_{u}\cdots,$ $e_{n},$ $e_{n+1},$ $\cdots,$ $e_{n}$ are local
orthonormal vector fields along $M$ 8uch that the first $n$ vectors are
tangent to $M$ and the remaining $m-n$ vectors normal to $M$. Let $\langle, \rangle$

and V be the Euclidean metric and connection on $E^{f*}$ , and denote by
$\nabla,$ $h,$ $D,$ $A_{\xi}$ respectively, the induced (Levi Civita) connection, 8econd
fundamental form of $M$, connection in the normal bundle $T^{\perp}M$ and the
Weingarten endomorphi8m relative to the normal direction $\xi$ . They are
defined by the following equations:

$V_{X}Y=\nabla_{X}Y+h(X, Y)$ , $\overline{\nabla}_{X}\xi=-A_{\epsilon}X+D_{X}\xi$

for $X$, Ye $TM$ and $\xi eT^{\perp}M$, where $fir8t$ terms on the right hand sides
of these equations are tangent to $M$ and the second terms are normal
to $M$. Instead of A., we write $A_{r}$ for short. The connection forms $\omega_{i}^{j}$

and the mean curvature vector $H$ of $M$ in $E^{r}$ are defined by $\nabla_{k}e=$

$\sum_{j}\omega^{\dot{f}}(e_{k})e_{j}$ , $H=(1/n)\sum_{r}$ (tr $A_{r}$) $e_{r}$ . In thi8 setting indices $\dot{j}j,$ $k,$ $\cdots$ will
always range from 1 to $n$ , and indices $r,$ $s,$ $\cdots$ from $n+1$ to $m$ . If we
choose $e_{n+1}//H$ then $H=ae.+1$ for some function $\alpha$ called the mean curva-
ture of $x$ . As usual, $\Delta$ denotes the Laplacian of $M$ acting on smooth
functions in $C^{\infty}(M)$ , i.e. $\Delta f=\sum_{=1}^{n}[(\nabla_{i}e)f-e_{i}(e_{i}f)]$ . For a differentiable
function $f,$ $\nabla f$ denotes its gradient and for an endomorphism field $S$ on
$M$ we define $tr(\nabla S)=\sum_{k}(\nabla_{k}S)e_{k}$ . All manifolds will be assumed smooth,
compact (without boundary) and connected, and all immersion8 smooth.

Finite type submanifolds. Let $Spec(M)=\{0=M<\lambda_{1}<\cdots<\lambda_{k}<\cdots\uparrow\infty\}$

be the spectrum of $\Delta$ . If we extend $\Delta$ to act on $E^{m}$-valued functions on
$M$ in a natural fashion $(componentwi8e)$ , then for an isometric immersion
$x:M\rightarrow E^{n}$ we have the following spectral decomposition (in $L^{2}$-sense)

(1.1) $x=x_{0}+\sum_{t=1}^{\infty}x_{t}$ , $\Delta x_{t}=x_{t}x_{t}$ , $x_{t}$ ; $M\rightarrow E^{*},$
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where $x_{0}$ is constant vector (equal to the center of mass of $M$ in $E^{m}$).
Submanifold $M$ is said to be of finite type if the spectral decomposition
of $x$ consists of only finitely many nonzero terms. Moreover, $M$ is said
to be of k-type if there are exactly $k$ nonconstant functions $x_{t_{1}},$ $x_{t_{2}},$ $\cdots,$ $x_{t_{k}}$

in the above decomposition. In that case the collection of indices
$[t_{1}, t_{2}, \cdots, t_{k}]$ is called the order of the immersion. If the immersion $x$ is
of k-type then from (1.1) by taking successive Laplacians and eliminating
$x_{t}’ s$ one obtains

(1.2) $P(\Delta)(x-x_{0})=0$ , where $P(T)=\prod_{i=1}^{k}(T-\lambda)$ .
If $M$ is immersed into a hypersphere $S_{c}^{m-1}(\gamma)$ , the immersion is said to
be mass-symmetric if the center of mass of $M$ coincides with the center
$c$ of the hypersphere. The notion of a finite type submanifold was first
introduced by B. Y. Chen and the first results were collected in [8].

Second standard immersion of $S^{m-1}$ . On the EuClidean SpaCe $E^{n}$

we have the canonical inner product $\langle, \rangle$ given by $\langle u, v\rangle=u^{t}\cdot v$ , where
$u,$ $v\in E^{m}$ are regarded as column matrices and $u^{t}$ is the transpose of $u$ .
Then the unit hypersphere centered at the origin is defined as $S^{m-1}=$

$\{xeE^{m}|\langle x, x\rangle=1\}$ .
Let $SM(m)=\{PeGL(m;R)|P‘=P\}$ be the space of real symmetric

$m\times m$ matrices. Since a generic symmetric matrix $P\in SM(m)$ has
$m(m+1)/2$ independent entries, $SM(m)$ can be regarded as Euclidean
space of dimension $N=m(m+1)/2$ . Moreover, the canonical Euclidean
metric on $E^{N}$ is given by

(1.3) $\tilde{g}(P, Q)=\frac{1}{2}tr(PQ)$ , $P,$ $QeSM(m)$ .

We denote by V the Euclidean connection on $SM(m)$ . Define the map $*$

from $E^{m}\times E^{m}$ into $SM(m)$ by $X*Y=XY^{t}+YX^{t}$ for column vectors $X,$ $Y$

in $E^{m}$ . Then $*$ is bilinear, $X*Y=Y*X,$ $g\sim(X*Y, Z*W)=\langle X, W\rangle\langle Y, Z\rangle+$

$\langle Y, W\rangle\langle X, Z\rangle$ and $\tilde{\nabla}_{X}(Y*Z)=(\overline{\nabla}_{X}Y)*Z+Y*(\overline{\nabla}_{X}Z)$ for vector fields $X,$ $Y$

and $Z$. If $M$ is a submanifold of $E^{n}$ and $X$ and $Y$ are vector fields
along $M$ then the following product formula for the Laplacian holds:

(1.4) $\Delta(X*Y)=(\Delta X)*Y+X*(\Delta Y)-2\sum_{i}(\overline{\nabla}_{i}X)*(\overline{\nabla}_{\ell_{i}}Y)$ .
Consider now the mapping $\ell:S^{n-1}\rightarrow SM(m)$ defined by $c(u)=uu^{t}$

where $ueS^{fn-1}\subset E^{m}$ is a column vector in $E^{m}$ of unit length. Then $\ell$

is an isometric immersion, in fact the second standard immersion of
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$S^{m-1}$ . The image $f(S^{m-1})$ is a real proiectIve 8pace which is immersed
minimally in a hypersphere $S_{/m}^{N-1}(r)$ of $SM(m)$ centered at $I/m$ with radius
$r=((m-1)/2m)^{1/2}$ . $f(S^{m-1})$ is called a Veronese submanifold (see [22], [20],
[8]).

The tangent and the normal space of $\ell(S^{m-1})$ are given respectively by

(1.5) $T_{\iota(u)}S^{n\cdot-1}=\{P\in SM(m)|Pc(u)+c(u)P=P\}$ ,

(1.6) $T_{c(u)}^{\perp}S^{n-1}=\{P\in SM(m)|P\ell(u)=\ell(u)P\}$ .
From (1.6) we see that both $I$ and $f(u)$ are normal to $S^{m-1}$ via $\ell$ , and

also, for any tangent vector $X$ to the sphere, $XX^{t}$ is normal to $S^{m-1}$ .
We prove the following lemma that will be used later.

LEMMA 1.1. For standard hypersphere $u:S^{n-1}\rightarrow E^{m}$ , let $f$ be the
second standard immersion $\ell:S^{n\cdot-1}\rightarrow SM(m)$ by $\ell(u)=uu^{t}$ . If $e_{1},$ $\cdots,$ $e_{n-1}$

is a local orthonormal frame of tangent vectors to $S^{m-1}$ then $I=$

$uu^{t}+\sum_{i=1}^{n-1}e_{i}e_{i}^{t}$ , where $I$ $\dot{r}s$ the $m\times m$ identity matrix.

PROOF. Consider the following $\not\in(m^{2}-m+2)$ matrices: $uu^{t}$ , $e_{k}e_{k}$

$(1\leqq k\leqq m-1),$ $e_{i}e_{\dot{f}}^{t}+e_{j}e_{i}^{t}(1\leqq i<j\leqq m-1)$ . By (1.6) they all belong to the
normal space $T_{u}^{\perp}S^{n\prime-1}$ , and these vectors are linearly independent (they
are mutually orthogonal). On the other hand,

dim $T_{u}^{\perp}S^{m-}$
$=\dim SM(m)-\dim T_{u}S^{n-1}=^{\underline{m(m}_{2}\underline{+1})}---m+1=\frac{m^{2}-m+2}{2}$ .

We conclude therefore, that $T_{u}^{\perp}S^{m-1}=Span\{uu^{t}, e_{k}e_{k}^{t}, e_{i}*e_{j}\}$ . In particular,
$I=a(uu^{t})+\sum_{k}b_{k}(e_{k}e_{k}^{t})+\sum_{i<j}c_{ij}e_{i}*e_{j}$ . Using (1.3), it is easy to see that
$c_{ij}=0$ and $a=b_{k}=1$ for every $k$ , proving the lemma.

Spherical isoparametric hypersurfaces. A SpheriCal hyperSurface iS
called isoparametric if its principal curvature8 (and their respective mul-
tiplicitie8) are constant [6]. Every isoparametric hypersurface belongs
to entire family of parallel hypersurfaces, each of which has constant
principal curvatures. In each isoparametric family of spherical hyper-
surfaces there is a unique one which is minimal in the sphere (see [3],
[16], [17]). E. Cartan classified isoparametric hypersurfaces of $S^{n+1}$ with
two distinct principal curvatures as standard products of two spheres
[3], and he found that those with three distinct principal curvatures
are precisely the tubes of constant radius over the standard embeddings
of $FP^{2}$ for $F=R,$ $C,$ $Q$ (quaternions), $O$ (Cayley numbers) in $S^{4},$ $S^{7},$ $S^{13},$ $S^{2b}$

respectively [4]. Isoparametric spherical hypersurfaces with three princi-
pal curvatures are all homogeneous. They are identified as $SO(3)/Z_{2}\times Z_{2}$ ,
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$SU(3)/T^{2},$ $Sp(3)/Sp(1)^{3},$ $F_{4}/Sp^{J}\dot{b}n(8)$ of dimensions 3, 6, 12, 24 respectively
(see [12], [24]). The minimal hypersurface of the type $SO(3)/Z_{2}\times Z_{2}$ in
$S^{4}$ is called the Cartan hypersurface.

In [5] Cartan gave examples of two families of isoparametric hyper-
surfaces in $S^{b}$ and $S^{9}$ with four distinct principal curvatures of the same
multiplicity (respectively 1 and 2). The isoparametric family $M_{t}^{4}$ in $S^{b}$

has particularly nice representation by the map

$S^{1}\times S_{3,2}\rightarrow S^{b}\subset E^{6}$

given by

(1.7) $(\theta, (x, y))\rightarrow e^{i\theta}$($\cos tx+i$ sin $ty$)

where $S_{3,2}$ denotes Stiefel manifold of orthonormal pairs of vectors in $E^{3}$

and $S^{1}$ is the unit circle. More precisely each isoparametric hypersurface
$M_{t}^{4}\subset S^{b}$ with four principal curvatures is the image of the map (1.7)
which doubly covers $M_{t}^{4}$ . The minimal one is obtained when $t=\pi/8$ (see
[17]). Nomizu used this map to construct infinite family of isoparametric
hypersurfaces $M_{t}^{2n}$ in $S^{2n+1}$ with four principal curvatures of multiplicities
1, $n-1,1$ and $n-1$ . Takagi has shown in [23] that any isoparametric
hypersurface with four curvatures such that the multiplicity of one
curvature is 1 is congruent to the example $M_{t}^{2n}$ of Nomizu for some $t$ .

All examples of isoparametric spherical hyper8urfaces known by Cartan
are homogeneous. In particular, isoparametric hypersurfaces with four
principal curvatures of the same multiplicity 1 or 2 mentioned above are
$SO(2)\times SO(3)/Z_{2}$ , respectively $Sp(2)/T^{2}$ . The following theorem of H. F.
M\"unzner [14] is the major result in the theory.

THEOREM 1.1. (a) The number $\nu$ of distinct principal curvatures
of an isoparametrw hypersurfaces satisfies $\nu=1,2,3,4$ or 6.

(b) If $k_{1}>k_{2}>\cdots>k_{\nu}$ are distinct principal curvatures of an iso-
parametric spherical hypersurface with respective multiplicities $m_{1}$ ,
$m_{2},$ $\cdots,$ $m_{\nu}$ , then

$k_{i}=\cot\theta_{l}$ , $ 0<\theta_{1}<\cdots<\theta_{\nu}<\pi$

where

$\theta_{i}=\theta_{1}+\frac{i-1}{\nu}\pi$ , $ 1\leqq i\leqq\nu$ , with $\theta_{1}<\frac{\pi}{\nu}$ ,

and the multiplicities satisfy $m_{i}=m_{i+2}$ (subscripts mod v).

As a consequence, there are at most two different multiplicities $m_{1}$ ,
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$m_{2}$ for principal curvatures and if $\nu$ is 3 then all multiplicities are equal.
Using the result8 of [1], [23], [24], [19] it is not difficult to completely
cla8sify isoparametric hypersurfaces with four curvatures of the same
multiplicity $m$ . Namely, from [1] we know $me\{1,2\}$ . If $m=1$ , then
the result8 of Takagi [23] and Takagi and Takahashi [24] classify such
hypersurface as $SO(2)\times SO(3)/Z_{2}$ . If $m=2$ , by the result of Ozeki and
Takeuchi [19] the hypersurface is homogeneous and therefore according
to the list in [24] must be $Sp(2)/T^{2}$ . Therefore these hypersurfaces are
exactly those two found by Cartan in [5].

Next, we give the li8t (taken from [12]) of all isoparametric hyper-
surfaces in sphere with three or four distinct principal curvature8 of the
same multiplicity. As remarked by H8iang and $Law8on$ , homogeneous
isoparametric hypersurfaces in 8phere arise from isotropy representations
of the corresponding symmetric spaces of rank 2. For our hypersurfaces,
their isometry $group8G$ , actions $\psi$ , principal isotropy group8 $H$, common
multiplicity of principal curvatures $m$ and dimension $n$ are given as
follows (first four examples in the table have three curvatures, remaining
two have four).

\S 2. Computation of $\Delta^{2}x\sim$ and $\Delta^{\epsilon\sim}x$.
Let $x:M^{n}\rightarrow E^{n}$ be an isometric immersion. In this section we derive

formulas for the iterated Laplacians $\Delta^{2}x\sim$ and $\Delta^{\epsilon}\tilde{x}$ of the quadric repre-
sentation $ x=xx^{t}\sim$ . Since $\Delta x=-nH$ and $\overline{\nabla}$. $x=e_{i}$ , we compute $\Delta x\sim=*\Delta(x*x)$

using product formula (1.4). We get

(2.1) $\Delta x\sim=-nH*x-\sum e_{i}*e$ .
To find $\Delta^{l}\tilde{x}$ we first find $-\sum\Delta(e_{i}*e_{i})$ and then $\Delta(H*x)$ . We can a8sume
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that at a given point $p$ we have $(\nabla_{\epsilon_{k}}e_{i})(p)=0$ (normal coordinate system).
Then the Laplacian becomes $\Delta f=-\sum_{k}e_{k}e_{k}f$ at point $p$ , so we have first

2 $\tilde{\nabla}_{*}k(e_{i}*e_{i})=2\sum_{i}h(e_{k}, e_{l})*e_{i}$

and then at $p$

(2.2) $-\sum_{i}\Delta(e_{i}*e_{i})=\sum_{k,i}\tilde{\nabla}_{k}\tilde{\nabla}_{k}(e_{i}*e_{i})$

$=-2\sum_{k,i}[A_{h(\cdot,e_{i})}ke_{k}]*e_{i}+2\sum_{k,i}[D_{e_{k}}h(e_{k}, e_{i})]*e+2\sum_{k,i}h(e_{k}, e_{i})*h(e_{k}, e_{i})$ .
Now we compute each sum separately. Since $h(e_{k}, e_{i})=\sum_{r}\langle h(e_{k}, e), e_{f}\rangle e_{r}$ ,
we obtain

$\sum_{k,i}h(e_{k}, e_{i})*h(e_{k}, e_{i})=\sum_{fi,k,\iota},\langle A_{r}e_{i}, e_{k}\rangle\langle A_{*}e_{i}, e_{k}\rangle e_{r}*e.=\sum_{r}tr(A_{r}A.)e_{f}*e$. ,

$\sum_{k,i}[A_{h(\cdot,e_{i})}ke_{k}]*e_{i}=\sum_{i,k.t}\langle A_{r}e_{k}, e_{i}\rangle(A_{f}e_{k})*e_{i}=\sum_{k,r}(A_{r}e_{k})*(A_{r}e_{k})$ ,

and, by Codazzi equation,

$\sum_{k,i}[D_{\iota_{k}}h(e_{k}, e_{i})]*e_{i}=n\sum_{i}$ (D. $H$) $*e_{i}$ .
Substituting the8e formulas into (2.2) and putting it together we see
that at point $p$ the following equation holds:

(2.3)
$-\sum_{i}\Delta(e_{i}*e_{i})=2n\sum_{i}(D_{i}H)*e+2\sum_{r}tr(A_{r}A.)e_{r}*e.-2\sum_{k,r}(A_{r}e_{k})*(A_{r}e_{k})$ .

Neither left hand side nor right hand side of (2.3) depend on the adapted
frame chosen, so the formula $i8$ true for any (local) frame at any point
of $M$.

Next we compute $\Delta(H*x)$ using product formula for the Laplacian

(2.4)
$\Delta(H*x)=(\Delta H)*x-nH*H+2\sum_{i}(A_{H}e_{i})*e-2\sum_{i}(D_{\iota_{i}}H)*e$ .

Combining (2.1), (2.3) and (2.4) we finally obtain the following formula
for $\Delta^{2}\tilde{x}$ ;

(2.5)
$\Delta^{2}\tilde{x}=-n(\Delta H)*x+n^{2}H*H-2n\sum_{l}(A_{H}e_{i})*e_{i}+4n\sum_{i}(D_{e_{i}}H)*e_{i}$

+2 $\sum_{\prime}tr(A_{r}A_{\epsilon})e_{r}*e_{l}-2\sum_{\prime,k}(A_{r}e_{k})*(A_{r}e_{k})$ .
The right hand side of (2.5) is independent of the chosen point and an
adapted frame at that point. If $M^{n}$ is a hypersurface of $S^{n+1}$ in $E^{n+2}$

then the Laplacian of the mean curvature vector $H$ of $M^{n}$ in $E^{n}$ can
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be computed as [8, p. 273]

(2.6) $\Delta H=(\Delta\alpha^{\prime})\xi+tr(\overline{\nabla}A_{H})+(||A_{\xi}||^{2}+n)H^{\prime}-n\alpha^{2}x$ ,

where, as usual, symbols with ’ denote objects and quantities relative to
the immersion of $M^{n}$ into hypersphere $S^{n+1}$ . The mean curvature of $M^{n}$

in $E^{n+2}$ is denoted by $\alpha$ and the one in $S^{n+1}$ by $\alpha^{\prime}$ . They are related via
$\alpha^{2}=\alpha^{\prime 2}+1$ . $\xi$ is a local unit normal vector field of $M$ in $S^{n+1}$ such that
$\xi//H’$ , hence $H^{\prime}=\alpha^{\prime}\xi(H^{\prime}$ is the mean curvature vector of $M$ in $S^{n+1}$ and
$H=H^{\prime}-x)$ . $tr(\overline{\nabla}A_{H})$ is defined by

$tr(\overline{\nabla}A_{H})=\sum_{i=1}^{n}(\nabla_{\iota_{i}}A_{H})e+\sum_{i=1}^{n}A_{D_{e}H}e_{i}$

where $e_{1},$ $\cdots,$ $e_{n}$ is a local orthonormal frame of tangent vectors of $M^{n}$ .
For a spherical hypersurface we have by [9]

(2.7) $tr(\overline{\nabla}A_{H})=n\alpha^{\prime}\nabla\alpha^{\prime}+2A(\nabla\alpha’)$ .
Putting this back into (2.6) and combining with (2.5) we obtain for

the spherical hypersurface

(2.8) $\Delta^{2}x\sim=-n[\Delta\alpha’+\alpha^{\prime}(||A||^{2}+3n+4)]\xi*x-nW*x$

$+n(n\alpha^{2}+n+2)x*x+(n^{2}\alpha^{2}+2||A||^{2})\xi*\xi$

$+4n\xi*(\nabla\alpha^{\prime})-2(n+1)\sum_{i}e*e_{i}$

$-2n\alpha^{\prime}\sum_{i}(Ae_{i})*e_{i}-2\sum_{i}(Ae_{i})*(Ae_{i})$ ,

where $A=A_{\epsilon},$ $W=tr(\overline{\nabla}A_{H})=n\alpha’\nabla\alpha’+2A(\nabla\alpha’)$ and $||A||^{2}=trA^{2}$ (cf. [2]).

Assume that $M$“ has constant mean curvature $\alpha^{\prime}$ in $S^{n+1}$ . Then the cal-
culations from before give

(2.9) -A $\sum_{i}e_{i}*e_{i}=2nx*x+2||A||^{2}\xi*\xi-4n\alpha^{\prime}x*\xi-2\sum_{i}(e_{i}*e_{i}+Ae_{i}*Ae_{l})$
,

and since $\Delta\xi=||A||^{2}\xi-(trA)x$ , we also obtain

(2.10) $\Delta(\xi*\xi)=2||A||^{2}\xi*\xi-2na’ x*\xi-2\sum_{k}(Ae_{k})*(Ae_{k})$ ,

(2.11) $\Delta(x*\xi)=-n\alpha^{\prime}x*x-n\alpha^{\prime}\xi*\xi+(n+||A||^{2})x*\xi+2\sum_{k}(Ae_{k})*e_{k}$ .

Next, we outline deduction of formulas for $-\Delta\sum_{i}(Ae_{i})*e_{i}$ and
$-\Delta\sum_{i}(Ae_{i})*(Ae_{i})$ leaving out the details. We do computations at a point
$p$ , where we assume $(\nabla_{e_{k}}e_{i})(p)=0$ for every $k$ and $i$ . We always write
$h(X, Y)=\langle AX, Y\rangle\xi-\langle X, Y\rangle x$ .
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$-\Delta\sum_{l}(Ae_{i})*e_{i}=\sum_{i,k}\tilde{\nabla}_{e_{k}}\tilde{\nabla}_{\iota_{k}}(Ae_{i}*e_{l})$

$=\sum_{i,k}\tilde{\nabla}_{\iota_{k}}\{[\nabla_{\iota_{k}}(Ae_{i})+h(e_{k}, Ae_{i})]*e_{i}+Ae_{i}*[\nabla_{\epsilon_{k}}e_{i}+h(e_{k}, e_{i})]\}$

$=\sum_{i,k}\{\tilde{\nabla}_{\iota_{k}}[\nabla_{\epsilon_{k}}(Ae_{i})*e_{i}]+\tilde{\nabla}_{e_{k}}(Ae_{i}*\nabla_{\iota_{k}}e_{l})\}+2\sum_{k}\tilde{\nabla}_{e_{k}}(\xi*A^{2}e_{k}-x*Ae_{k})$

$=\sum_{i,k}[\nabla_{k}\nabla_{e_{k}}(Ae_{i})*e_{i}+Ae_{i}*\nabla_{\iota_{k}}\nabla_{e_{k}}e_{i}]-2\sum_{i}[Ae_{i}*e_{i}+Ae_{i}*A^{2}e_{i}]$

+2 $:\sum_{k}[\xi*(\nabla_{\iota_{k}}A)(Ae_{k})+\xi*\nabla_{\iota_{k}}(A^{2}e_{k})-2x*\nabla_{\iota_{k}}(Ae_{k})]$

+2(tr $A$)$ x*x-4(trA^{2})x*\xi+2(trA^{3})\xi*\xi$ .
However, at $p$ we have

$\sum_{k}\nabla_{e_{k}}(Ae_{k})=tr(\nabla A)=\nabla(trA)=0$ ,

$\sum_{k}[(\nabla_{\iota_{k}}A)(Ae_{k})+\nabla_{\iota_{k}}(A^{2}e_{k})]=2tr(\nabla A^{2})$ , and

$\sum_{i,k}[\nabla_{e_{k}}\nabla_{\iota_{k}}(Ae_{i})*e_{l}+Ae_{i}*\nabla_{\iota_{k}}\nabla_{e_{k}}e_{t}]=-\sum_{i}(\Delta A)e_{i}*e_{i}$ ,

where $\Delta A=\sum_{i=1}^{n}[\nabla_{\nabla_{e_{i}}\iota_{i}}A-\nabla_{i}(\nabla..A)]$ is the trace Laplacian of the shape
operator. Therefore, we obtain

(2.12) $-\Delta\sum(Ae_{i})*e_{i}=-\sum_{i}[(\Delta A)e_{i}*e_{i}+2Ae_{i}*e_{i}+2Ae_{i}*A^{2}e_{i}]$

+2(tr $A$)$x*x-4(trA^{2})x*\xi+2(trA^{3})\xi*\xi+4\xi*tr(\nabla A^{2})$ .
In a similar fashion one obtains

(2.13) $-\Delta\sum_{i}(Ae_{i})*(Ae_{i})=-2\sum_{i}[((\Delta A)e)*(Ae_{i})+Ae_{i}*Ae_{i}+A^{2}e_{i}*A^{2}e_{i}]$

+2(tr $A^{2}$)$ x*x-4(trA^{3})x*\xi+2(trA^{4})\xi*\xi$

$+4\xi*tr(VA^{3})-4x*tr(VA^{2})$

+2 $\sum(,\nabla_{e_{k}}A)e_{l}*(\nabla_{e_{k}}A)e_{i}ik$

One of the results of K. Nomizu and B. Smyth in [18] is computation
of $\Delta A$ for spherical hypersurface with tr $A=const$ . Namely,

(2.14) $\Delta A=(trA^{2}-n)A+(trA)I-(trA)A^{2}$

Also, using the Codazzi equation we have

(2.15) $tr(\nabla A^{2})=\frac{1}{2}\nabla(trA^{2})+A(\nabla(trA))$ ,

(2.16) $tr(\nabla A^{3})=\frac{1}{3}\nabla(trA^{3})+\frac{1}{2}A(\nabla(trA^{2}))+A^{2}(\nabla(trA))$ ,
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where in our case $\nabla(trA)=0$ .
Now taking Laplacian of (2.8) and using (1.4), (2.1), (2.9-2.16) we

get the following expres8ion for $\Delta^{a\sim}x$ for a spherical hypersurface with
constant mean curvature:

(2.17) $\Delta^{s}\tilde{x}=[(4+(trA)^{2})||A||^{2}+(trA)^{2}(5n+8)+4n(n+1)^{2}]x*x$

$+\{2\Delta||A||^{2}+||A||^{2}[4||A||^{2}+3(trA)^{2}+4n+4]$

$+(trA)^{2}(3n+4)+4(trA)(trA^{8})+4$ tr $A$ }$\xi*\xi$

$-\{8$ tr $A^{\epsilon}+(trA)[\Delta||A\Vert^{2}+||A||^{2}(||A||^{2}+4n+16)$

+4 $($tr $A)^{2}+7n^{2}+16n+8$]} $ x*\xi$

$-2x*[(trA)A(\nabla||A||^{2})+2\nabla||A||^{2}]$

$+\xi*[\frac{8}{3}\nabla(trA^{S})+12A(\nabla||A||^{2})+6(trA)\nabla||A||^{2}]$

$-4[(trA)^{2}+(n+1)^{2}]\sum e_{i}*e_{i}-4(trA)(||A||^{2}+n+4)\sum e*Ae_{i}$

$-8(1+||A||^{2})\sum_{i}Ae_{i}*Ae-4\sum_{i}A^{2}e_{i}*A^{2}e_{i}$

$+4\sum_{k}(\nabla_{k}A)e_{i}*(\nabla_{k}A)e_{i}$ .

We remark that each sum in the formulas (2.12), (2.13) and (2.17)

is independent of the particular frame $\{e_{i}\}$ chosen.

\S 3. Spherical hypersurfaces with $2$-type quadric representation.

Suppose that $ x=xx^{\iota}\sim$ is of 2-type. Then we have $\hslash^{\sim\sim}=x_{0}+\tilde{x}_{p}+x_{q}$ , where
$\tilde{x}_{0}=const,$ $\Delta x_{p}=\lambda_{p}x_{p}\sim\sim,$ $\Delta x_{q}=\lambda_{q}x_{q}\sim\sim$ and hence

(3.1) $\Delta^{2}\tilde{x}-(x_{p}+x_{q})\Delta^{\sim}x+x_{p}x_{q}(\tilde{x}^{\sim}-x_{0})=0$ .
In order to eliminate constant vector $ x_{0}\sim$ from this equation we find the

directional derivative $\tilde{\nabla}_{X}$ of (3.1) with respect to an arbitrary tangent

vector field $X$ and compute different components of such expression.

Let $ Q(x\sim)=\Delta^{2}x\sim-(\lambda_{p}+\lambda_{q})\Delta x+\lambda_{p}\lambda_{q}x\sim\sim$ . Then from (3.1), finding re8pective1y

$\xi*\xi$ and $x*x$ component of $\tilde{\nabla}_{X}[Q(x\sim)]$ we get

$0=g\sim(\tilde{\nabla}_{X}[Q(x\sim)], \xi*\xi)$

$=Xg\sim(Q(x\sim), \xi*\xi)+2\sigma(Q(x\sim), AX*\xi)$

$=X(2n^{2}\alpha^{\prime 2}+4||A||^{2})+8n\langle\nabla\alpha^{\prime}, AX\rangle$

$=\langle X, 4n^{2}\alpha^{\prime}\nabla\alpha^{\prime}+4\nabla||A||^{2}+8nA(\nabla\alpha^{\prime})\rangle$ ,
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$0=\tilde{g}(\tilde{\nabla}_{X}[Q(\tilde{x})], x*x)$

$=X\tilde{g}(Q(\tilde{x}), x*x)-2g\sim(Q(\tilde{x}), X*x)$

$=2nX(n\alpha^{2}+n+2)+2ng\sim(W*x, X*x)$

$=\langle X, 6n^{2}\alpha^{\prime}\nabla\alpha^{\prime}+4nA(\nabla\alpha’)\rangle$ .
Therefore,

(3.2) $A(\nabla\alpha’)=-\frac{3}{2}n\alpha^{\prime}\nabla\alpha^{\prime}$ ,

(8.3) $n^{2}\alpha^{\prime}\nabla\alpha’+\nabla||A||^{2}+2nA(\nabla\alpha’)=0$ .
These two equations imply

(3.4) $\nabla\Vert A\Vert^{2}=2n^{2}\alpha^{\prime}\nabla\alpha$
’ , $W=tr(\overline{\nabla}A_{H})=-2n\alpha^{\prime}\nabla\alpha^{\prime}$ .

Let $U=$ {$p\in M|\nabla(\alpha)^{?}\neq 0$ at $p$ }. Then $U$ is an open (possibly empty)

subset of $M$, and on $U$ we obviously have also $\alpha^{\prime}\neq 0$ and $\nabla\alpha’\neq 0$ . If $U$

is nonempty, then by (3.2) we see that $\nabla\alpha$ is an eigenvector of the
shape operator $A$ on $U$ with eigenvalue – $\ovalbox{\tt\small REJECT} n\alpha^{\prime}$ . On $U$ we choose unit
tangent vector $e_{1}$ to be in the direction of $\nabla\alpha^{\prime}$ , i.e. $e_{1}=\nabla\alpha^{\prime}/||\nabla\alpha^{\prime}||$ . We
find $e_{1}*e_{1}$ component of $\tilde{\nabla}_{X}[Q(\tilde{x})]$ on $U$ setting first $X=\nabla\alpha^{\prime}$ . Combining
(2.1), (2.8) and (3.1) we get the following:

$0^{\sim}=g(\tilde{\nabla}_{\nabla\alpha^{\prime}}[Q(\tilde{x})], e_{1}*e_{1})$

$=(\nabla\alpha^{\prime})g\sim(Q(\tilde{x}), e_{1}*e_{1})-2\tilde{g}(Q(x\sim), h(\nabla\alpha’, e_{1})*e_{1})$

$=-3n^{2}(\nabla\alpha^{\prime})(\alpha^{2})+g\sim(Q(x\sim), 3n\alpha’\xi*\nabla\alpha^{\prime}+2x*\nabla\alpha^{\prime})$

$=10n^{2}\alpha’||\nabla\alpha’||^{z}$

From this we conclude $a^{\prime}=0$ or $\nabla\alpha^{\prime}=0$ at any point of $U$. However,

this is a contradiction, and hence $U$ must be empty. This mean8 that
$\nabla(\alpha)^{2}=0$ everywhere on $M$, i.e. $a’=const$ . Therefore, a hypersurface
of $S^{n+1}$ with 2-type quadric representation must have constant mean
curvature $\alpha$

’ in sphere.
We are ready now to prove the following classification result.

THEOREM 3.1. Let $x:M^{n}\rightarrow S^{n+1}$ be an isometr$ic$ immersion of a
compact n-dimensional Riemannian manifold $M$ into $S^{n+1}(n\geqq 2)$ . Then
$X=xx^{t}$ is of 2-type if and only if either
(1) $M$ is a small hypersphere of $S^{n+1}$ of radius $r<1$ , or
(2) $M=S^{p}(r_{1})\times S^{n-p}(r_{2})$ , with the following possibilities for the radii $r_{1}$

and $r_{2}$ :
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$r_{1}^{2}=\frac{p+1}{n+2}$ . $r_{2}^{2}=\frac{n-p+1}{n+2}$ ;

$r_{1}^{2}=\frac{p+2}{n+2}$ , $r_{2}^{2}=\frac{n-p}{n+2}$ ;

$r_{1}^{2}=\frac{p}{n+2}$ , $r_{2}^{2}=\frac{n-p+2}{n+2}$ .
The immersions in (1) and (2) are given in a natural way.

PROOF. If $M$ is one of the submanifolds described in (1) and (2),
then $M$ is of 2-type via the second standard immersion of the sphere as
shown in [2]. Conversely, let us assume that for a spherical hypersurface
$x:M^{n}\rightarrow S^{n+1}$ the quadric repre8entation $\tilde{x}$ is of two type. Then (3.1)
holds, and from the above we see that the mean curvature $a^{\prime}$ of $x$ is
constant. In that case $\nabla a^{\prime}=W=\nabla||A||^{2}=0$ .

Let $e_{k}$ , $k=1,2,$ $\cdots,$ $n$ be the local orthonormal vector fields of principal
directions of $A$ and let $\mu_{k}$ be the corresponding principal curvatures.
Then, by a similar computation as before, from $g\sim(\tilde{\nabla}_{k}[Q(\tilde{x})], x*e_{k})=0$ we
obtain for every $k$

(3.5) $0=[2(n^{2}\alpha^{2}+n^{2}+4n+2)-2(n+1)(x_{p}+x_{q})+\lambda_{p}\lambda_{q}]$

$+na’(||A||^{2}+3n+8-x_{p}-\lambda_{q})\mu_{k}+4\mu_{k}^{2}$ .
This is a quadratic equation in $\mu_{k}$ with constant coefficients which do
not depend on $k$ . We conclude, therefore, that each principal curvature
is constant and that there are at most two distinct principal curvatures.
If $M$ has only one principal curvature, i.e. if it is umbilical, then $M$ is a
small hypersphere of $S^{n+1}$ . If $M$ has two distinct (constant) principal cur-
vatures then $M$ is the standard product of two sphere8, $M=S^{p}(r_{1})\times S^{n-p}(r_{l})$

with $r_{1}^{2}+r_{2}^{2}=1$ (see [3] or [21]). Then, according to [2] (Lemma 3), such
product will be of 2-type via $ x\sim$ if and only if the radii satisfy precisely
those three possibilities listed in (2).

Theorem 3.1 is a generalization of a re8u1t of M. Barros and B. Y.
Chen, who obtained similar result assuming, in addition, $M$ to be ma8\S$\cdot$

symmetric (cf. [2]).

\S 4. Minimal spherical hypersurfaces which are of 3-type and
mass-symmetric via $\tilde{x}$ .

Here we concentrate on minimal spherical hypersurfaces, even though
the investigation can be carried out for spherical hypersurfaces with
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constant mean curvature in quite an analogous way (with a bit more
involved calculations). We have the following characterization of minimal
spherical hypersurfaces with 3-type quadric representation.

THEOREM 4.1. Let $x:M^{n}\rightarrow S^{n+1}$ be an isometric immersion of a
compact manifold $M^{n}$ as a minimal hypersurface of $S^{n+1}$ . If $\tilde{x}$ is mass-
symmetric and of 3-type then
(1) tr $A=trA^{3}=0$ ,
(2) tr $A^{2}$ and tr $A^{4}$ are constant,
(3) $tr(\nabla_{X}A)^{2}=\langle A^{2}X, A^{2}X\rangle+p\langle AX, AX\rangle+q\langle X, X\rangle$ ,

for every tangent vector $x\in TM$, where $p$ and $q$ are constants (depending

on the order of $M$, tr $A^{2}$ and tr $A^{4}$). Conversely, if (1), (2) and (3) hold
then $M$ is mass-symmetric and of 1-, 2-, or 3-type via $ x\sim$ .

PROOF. Suppose that $M^{n}$ is mass-symmetric and of 3-type via $ x\sim$ so
that $x_{0}\sim=I/(n+2)$ and

(4.1) $\Delta^{3}\tilde{x}+a\Delta^{2}x\sim+b\Delta_{X}^{\sim}+c(x\sim-\frac{I}{n+2})=0$ ,

where $a,$
$b$ and $c$ are constants. Recall that from Lemma 1.1 we also

have

(4.2) $2I=x*x+\xi*\xi+\sum_{i}e_{i}*e_{i}$ .

We use formulas (2.17) (with trA $=0$), $(2.8),$ $(2.1)$ and (4.2) to find dif-
ferent components of (4.1). Namely, from $ x*\xi$ component of (4.1) we
get tr $A^{3}=0$ , and $x*x$ and $\xi*\xi$ components give respectively

(4.3) $8[n(n+1)^{2}+trA^{2}]+4an(n+1)+2bn+c\frac{n+1}{n+2}=0$ ,

(4.4) $8[(trA^{2})^{2}+(n+1)(trA^{2})+trA^{4}]+4a(trA^{2})-c\frac{1}{n+2}=0$ .

Therefore, tr $A^{2}$ and tr $A^{4}$ are constant, and (2.17) simplifies to

(4.5) $A^{3}X=4[n(n+1)^{2}+trA^{2}]x*x+4[(trA^{2})^{2}+(n+1)(trA^{2})+trA^{4}]\xi*\xi$

$-4(n+1)^{2}\sum_{i}e_{i}*e_{i}-8(1+trA^{2})\sum_{i}Ae_{i}*Ae_{i}$

$-4\sum_{i}A^{2}e_{i}*A^{2}e_{i}+4\sum_{i,k}(\nabla_{\iota_{k}}A)e_{i}*(\nabla_{\ell}kA)e_{l}$ .
Next, we find $X*Y$ component of (4.1) for arbitrary pair $X,$ $Y$ of tangent
vector fields on $M$. Observe first that
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$\sum_{k}\langle(\nabla_{k}A)e_{i}, X\rangle\langle(\nabla_{k}A)e_{i}, Y\rangle=\sum_{i,k}\langle e_{i}, (\nabla_{k}A)X\rangle\langle e_{i}, (\nabla_{*}kA)Y)\rangle$

$=\sum_{k}\langle(\nabla_{X}A)e_{k}, (\nabla_{Y}A)e_{k})\rangle$

$=tr(\nabla_{X}A)\circ(\nabla l^{\prime}A)$ ,

by the Codazzi equation and symmetry of the operator $\nabla_{k}A$ .
Now applying $g\sim(- , X*Y)$ to (4.1) and taking into account (2.1), (2.8)

and (4.5) we get

$-8(n+1)^{2}\langle X, Y\rangle-16(1+trA^{2})\langle AX, AY\rangle-8\langle A^{2}X, A^{2}Y\rangle$

+8 $tr(\nabla_{X}A)\circ(\nabla_{Y}A)-4a\langle AX, AY\rangle-4a(n+1)\langle X, Y\rangle$

$-2b\langle X, Y\rangle-c\frac{1}{n+2}\langle X, Y\rangle=0$ ,

from where

(4.6) $tr(\nabla_{X}A)\circ(\nabla_{Y}A)=\langle A^{2}X, A^{2}Y\rangle+p\langle AX, AY\rangle+q\langle X, Y\rangle$ ,

where $p$ and $q$ are con8tants given by

(4.7) $p=\frac{a}{2}+2(1+trA^{2})$ ,

(4.8) $q=(n+1)^{2}+\frac{a}{2}(n+1)+\frac{b}{4}+\frac{c}{8(n+2)}$ .
It is easy to see that (4.6) is equivalent, by linearization, to

(4.9) $tr(\nabla_{X}A)^{2}=\langle A^{2}X, A^{2}X\rangle+p\langle AX, AX\rangle+q\langle X, X\rangle$ ,

for any $XeTM$. Therefore, we proved necessity of the conditions (1),
(2), (3).

Conversely, given (1), (2) and (3) we have to show that we can find
constants $a,$ $b$ and $c$ so that (4.1) holds. That boils down to solving the
system of the following four equations (4.3), (4.4), (4.7) and (4.8) for
$a,$ $b,$ $c$ . Thi8 system of four linear equations in three unknown8 can be
uniquely solved if the eliminant is zero, i.e. if

tr $A^{4}+p$ tr $A^{2}+qn+(n-trA^{2})trA^{2}=0$ .
But thi8 formula is always satisfied under our conditions (1)$-(3)$ , by virtue
of

$0=\frac{1}{2}\Delta(trA^{2})=||\nabla A||^{2}-tr(\Delta A)A$
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(cf. [18, p. 369], also formula (4.24)). Therefore $P(\Delta)(x\sim-x_{0}\sim)=0$ , where
$P(t)=t^{3}+at^{2}+bt+c$ . Note that $M$ need not be exactly of 3-type, i.e.
can be of l-or 2-type, for example if there is a factor $P^{\prime}$ of $P$ of degree
1 or 2 so that $P^{\prime}(\Delta)(x\sim-x_{0}\sim)=0$ .

If $M$ is only a8sumed to have constant mean curvature in $S^{n+1}$ then
using (2.1), (2.8), (2.17) and (4.1) we can prove the following theorem in
the same way we proved the preceding one.

THEOREM 4. $1.a$ . Let $x:M^{n}\rightarrow S^{n+1}$ be a compact constant mean curva-
ture hypersurface of $S^{n+1}$ . If $X$ is mass-symmetrw and of 3-type then
(1) tr $A^{k}$ is constant for $k=1,2,3,4$ ,
(2) $tr(\nabla_{X}A)^{2}=\langle A^{2}X, A^{2}X\rangle+p\langle AX, AX\rangle+q\langle AX, X\rangle+r\langle X, X\rangle$ ,

for every tangent vector field $X\in TM$, where $p,$ $q$ and $r$ are constants.

Every minimal isoparametric hypersurface with three different prin-
cipal curvatures has quadric representation of 3-type as seen from the
following lemma.

LEMMA 4.1. If $M^{n}\subset S^{n+1}$ is a compact minimal isoparametric spheri-
cal hypersurface with exactly three distinct principal curvatures, then
$M^{n}$ is mass-symmetric and of 3-type via $\tilde{x}$ .

PROOF. From the Gauss equation we obtain the following for prin-
cipal directions $e_{i},$ $e_{k}$ and corresponding curvatures $\lambda_{i},$ $\lambda_{k}(i\neq k)$ :

(4.10) $R(e_{\iota}, e_{k}, e_{k}, e_{i})=1+x_{i}x_{k}$

$=e_{i}(\omega_{k}^{i}(e_{k}))-e_{k}(\omega_{k}^{l}(e_{l}))$

$+\sum_{j}\omega_{k}^{\dot{f}}(e_{k})\omega_{\dot{f}}^{i}(e_{i})-\sum_{j}\omega_{k}^{\dot{f}}(e_{\ell})\omega_{\dot{f}}^{i}(e_{k})$

$-\sum_{j}\omega_{k}^{\dot{f}}(e_{i})\omega_{k}^{i}(e_{j})+\sum_{j}\omega_{i}^{\dot{f}}(e_{k})\omega_{k}^{l}(e_{\dot{f}})$ .

For an isoparametric hypersurface, the Codazzi equation $(\nabla_{e_{i}}A)e_{k}=(\nabla_{e_{k}}A)e$

is equivalent to the following:

(4.11) $(x_{k}-x_{j})\omega_{k}^{\dot{f}}(e_{i})=(x_{i}-\lambda_{j})\omega_{i}^{\dot{f}}(e_{k})$ , for every $i,$ $j,$ $k$ ,

and hence

(4.12) $\omega_{i}^{\dot{f}}(e_{k})=0$ , for $x_{k}=x_{j}\neq x_{i}$ .
Therefore, if $\lambda_{i}\neq\lambda_{k}$ formula (4.10) reduces to

(4.13) $1+\lambda\lambda_{k}=-\sum_{\dot{f}}\omega_{k}^{\dot{f}}(e_{i})\omega_{\dot{f}}^{i}(e_{k})-\sum_{j}\omega_{k}^{\dot{f}}(e_{i})\omega_{k}^{i}(e_{j})+\sum_{j}\omega_{i}^{\dot{f}}(e_{k})\omega_{k}(e_{j})$ .
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All four minimal i8oparametric spherical hypersurface8 with three
distinct principal curvatures have curvatures equal to $-\sqrt{3},0$ and $\sqrt{3}$,
and the common multiplicity $m$ satisfies $me\{1,2,4,8\}$ , so that tr $A=$

tr $A^{3}=0$ . In order to prove that these hypersurface8 are of 3-type and
mass-symmetric it is enough to check condition (3) of Theorem 4.1, which
can be also written as

(4.14) $tr(\nabla_{i}A)^{2}=\lambda_{i}^{4}+p\lambda_{i}^{2}+q$ ,

where $e_{i}$ is a principal direction, $\lambda_{i}$ corresponding principal curvature,
and $p$ and $q$ constants. We transform $tr(\nabla_{0}A)^{2}$ as

(4.15) $tr(\nabla_{e_{i}}A)^{2}=\sum_{k,j}(\lambda_{k}-x_{j})^{2}[\omega_{k}^{;}(e_{i})]^{2}$ .
Let $e_{1},$ $\cdots,$ $e_{n}$ be the set of principal directions that correspond to

$-\sqrt{3}$ eigenvalue, $e_{n+1},$ $\cdots,$ $e_{zm}$ the set of principal directions that cor-
respond to $0$ eigenvalue, and $e_{2n\cdot+1},$ $\cdots,$ $e_{3n}$ those corresponding to $\sqrt{3}$

eigenvalue. We use the boldface type to denote the following set of
indices

$1=\{1, \cdots, m\}$ , $2=\{m+1, \cdots, 2m\}$ and $3=\{2m+1, \cdots, 3m\}$ .
Let $ie1,$ $k\in 2$ be any two indice8 so that $e_{i},$ $e_{k}$ are two principal directions
corresponding to the curvatures $-\sqrt{3},0$ respectively. Then from (4.13)
using (4.12) we obtain

(4.16) $1=1+\lambda_{i}\lambda_{k}=-\sum_{\dot{g}\in}\omega i(e_{i})\omega_{\dot{f}}^{i}(e_{k})-\sum_{\dot{g}\in S}\omega_{k}^{\dot{f}}(e_{i})\omega_{k}^{1}(e_{j})+\sum_{jel}\omega_{i}^{\dot{f}}(e_{k})\omega_{k}^{i}(e_{j})$ .
From the Codazzi equation (4.11) we get for $je3$

$\sqrt{3}\omega_{\dot{f}}^{k}(e_{i})=-\sqrt{3}\omega_{i}^{k}(e_{f})$ , $2\sqrt{3}\omega_{\dot{f}}^{i}(e_{k})=\sqrt{3}\omega_{k}^{i}(e_{j})$ ,

so that

(4.17) $\omega i(e_{i})=\omega_{i}^{k}(e_{\dot{f}})$ , $\omega_{i}^{\dot{f}}(e_{k})=\frac{1}{2}\omega_{*}^{k}(e_{j})$ .
Now in (4.16) we express everything in terms of $\omega^{k}(e_{j})$ using (4.17) and
simplify to get

(4.18) $\sum_{j\in\$}[\omega_{i}^{k}(e_{j})]^{2}=1$ , for every $i\in 1,$ $k\in 2$ .
By a similar computation, using $expres8ions$ for $1+x_{i}x_{k}$ , where $ie2,$ $ke3$

and, respectively, $ie1,$ $ke3$ , we obtain
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(4.19) $\sum_{je1}[\omega_{i}^{k}(e_{j})]^{2}=1$ , for every $i\in 2,$ $k\in 3$ ,

(4.20) $\sum_{;e2}[\omega_{i}^{k}(e_{j})]^{2}=\frac{1}{4}$ , for every $ie1,$ $k\in 3$ .
Next, we compute $tr(\nabla_{\iota_{i}}A)^{2}$ from (4.15) to get for $i\in 1$ :

$tr(\nabla_{\iota_{i}}A)^{2}=12$
$\sum_{\dot{g}e2,ke8}[\omega_{i}^{k}(e_{\dot{f}})]^{2}+3$ $\sum_{\dot{g}\in 3,ke2}[\omega_{i}^{k}(e_{j})]^{2}$

$=3m+12\frac{m}{4}=6m$ .

Similar computation can be carried out for $i\in 2$ and $ie3$ , yielding the
same result, so
(4.21) $tr(\nabla_{e_{i}}A)^{2}=6m$ , for every $i=1,$ $\cdots,$ $3m$ .
Therefore, we see that (4.14) is satisfied with $p=-3$ and $q=6m$ . We
conclude that all minimal isoparametric spherical hypersurfaces with three
curvatures are of 3-type via $\tilde{x}$ .

As a matter of fact we can show that

A$3\tilde{x}+a\Delta^{2}\tilde{x}+b\Delta\tilde{x}+c(x\sim-\frac{I}{3m+2})=0$

is satisfied for $a=-(10+24m),$ $b=4[(3m+1)(15m+6)-2]$ and $ c=-48m\times$

$(3m+1)(3m+2)$ , so that the three eigenvalues of the Laplacian arising
from the decomposition $\tilde{x}=\tilde{x}_{0}+x_{p}+x_{q}+x_{r}\sim\sim\sim$ are $x_{p}=6m,$ $x_{q}=2(3m+1)$ and
$x_{r}=4(3m+2)$ . The spectrum of the Cartan hypersurface was computed
in [15], from which we determine its order via $\tilde{x}$ to be [2, 3, 8].

EXAMPLE 4.1. Minimal isoparametric hypersurface in $S^{b}$ with 4
principal curvatures. As discussed in the Preliminaries, there is only
one (up to isometries) minimal isoparametric hypersurface $M^{4}$ in $S^{b}$ with
four curvatures which is the image of the following map

(4.22) $S^{1}\times S_{3,2}\rightarrow S^{6}\subset E^{6}$ ,

$(\theta, (x, y))\rightarrow z=e^{i\theta}$ ($\cos tx+i$ sin $ty$) ,

for $t=\pi/8$ . In general, (4.22) defines the isoparametric family studied by

Cartan [5] and Nomizu [16], [17]. To parametrize the Stiefel manifold
$S_{3,2}$ choose $x$ to be an arbitrary vector of the sphere $S^{2}$ , i.e. $x=$

($\cos\alpha$ cos $\beta$ , cos $\alpha$ sin $\beta$ , sin $\alpha$), and choose vectors $u$ and $v$ of $S^{2}$ that
span the plane perpendicular to $x$ , e.g. $u=$ (-sin $\beta$ , cos $\beta,$

$0$) and $v=u\times x=$

($\sin\alpha$ cos $\beta$ , sin $\alpha$ 8in $\beta,$ $-\cos\alpha$). For any vector $y\perp x,$ $y=\cos\phi u+\sin\phi v$
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so $y=$ (-sin $\beta$ cos $\phi+\sin\alpha$ cos $\beta$ sin $\phi$ , cos $\beta CO8\phi+\sin a$ sin $\beta 8in\phi,$ $-CO8a$ sin $\phi$).
Denote $r=\cos t$ and $s=\sin t$ . Then from (4.22) and the consideration above
we have the following parametrization of $M^{4}$ :

$z_{1}=r$ cos $\theta$ cos $a$ $\cos\beta-s$ sin $\theta$(-sin $\beta$ cos $\phi+\sin\alpha$ cos $\beta$ sin $\phi$),
$z_{2}=rco8\theta\cos\alpha 8in\beta-s$ sin $\theta$ ($\cos\beta$ cos $\phi+\sin\alpha$ sin $\beta$ sin $\psi$),
$z_{3}=r\cos\theta\sin a+s$ sin $\theta$ cos a $ 8in\phi$ ,

(4.23)
$z_{4}=r$ sin $\theta$ cos $a$ cos $\beta+s$ cos $\theta$(-sin $\beta$ cos $\phi+\sin$ $a$ cos $\beta$ sin $\phi$),
$z_{5}=r$ sin $\theta$ cos $\alpha$ sin $\beta+sco8\theta$ ($\cos\beta$ cos $\phi+\sin\alpha$ sin $\beta$ sin $\phi$),
$z_{6}=r$ sin $\theta$ sin $a-s$ cos $\theta CO8$ $a$ sin $\phi$

We differentiate $z=(z_{1}, \cdots, z_{6})$ to get basis vector fields $\partial_{1}=\partial/\partial\theta,$ $\partial_{2}=\partial/\partial\alpha$ ,
$\partial_{3}=\partial/\partial\beta,$ $\partial_{4}=\partial/\partial\phi$ . We compute $component8$ of the metric $ten8org_{ij}=$
$\langle\partial_{i}, \partial_{\dot{f}}\rangle$ to get the following matrix $G=(g_{ij})$ .

$G=\left(\begin{array}{lllll}1 & 2rssin\phi & -2rsCO8\alpha & cos\phi & 0\\2rssin\phi & r^{2}+S^{2}8in^{2}\phi & -S^{2}CO8a & CO8\phi 8in\phi & 0\\-2rsCO8\alpha cos\phi & -s^{2}cos\alpha CO8\phi 8in\phi & s^{2}+cos^{2}\alpha(r^{2}-s^{2}sin^{2}\phi) & & -s^{2}sina\\0 & 0 & -S^{2}8ina & & s^{2}\end{array}\right)$ .

The determinant of $thi8$ matrix is computed to be det $G=r^{2}s^{l}(1-4r^{2}s^{2})\cos^{2}a$ .
One can also compute the inverse matrix $G^{-1}$ and the Christoffel’s symbols
(see [10]). We want to find the shape operator $A$ of the hypersurface
and the $ba8i8$ of principal directionv. First it turns out that the unit
normal $\xi$ is obtained by differentiating $z$ with respect to $t$ , i.e. take $\xi=$

$-\partial/\partial t$ . For every $i,$ $j=1,2,3,4$ we can compute $\langle A(\partial_{i}), \partial_{j}\rangle=-\langle\overline{\nabla}_{\partial}\xi, \partial_{j}\rangle$

and find the matrix of $A$ in the basis $\{\partial_{i}\}$ . We get

$ A(\partial_{1})=\frac{r^{2}-s^{2}}{1-4r^{2}s^{2}}\{-2rs\partial_{1}+\sin\phi\partial_{2}-\frac{\cos\phi}{\cos\alpha}\partial_{8}-\tan$ $a$ cos $\phi\partial_{4}\}$ ,

$A(\partial_{2})=\frac{r^{2}-s^{2}}{1-4r^{2}s^{2}}\{\sin\phi\partial_{1}+\frac{s}{r}(\cos^{2}\phi-2r^{2})\partial_{2}$

$+\frac{s}{r}\frac{\sin\phi\cos\psi}{\cos\alpha}\partial_{8}+\frac{s}{r}$tan $a$ sin $\phi CO8\phi\partial_{4}\}$ ,

$ A(\partial_{\epsilon})=\frac{r^{2}-s^{2}}{1-4r^{2}s^{2}}\{-\cos$ $a$ $CO8\phi\partial_{1}+\frac{s}{r}$cos $\alpha$ sin $\phi$ cos $\phi\partial_{2}$

$+\frac{s}{r}(\sin^{2}\phi-2r^{2})\partial_{s}-\frac{1}{rs}$sin $a$($r^{2}-s^{2}$ sin2 $\phi$) $\partial_{4}\}$ ,

$A(\partial_{4})=\frac{r}{s}\partial_{4}$ .
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Minimal hypersurface in the family (4.22) is obtained when $t=\pi/8$ . In

that case $r=\cos\pi/8=\sqrt{2+\sqrt{2}}/2,$ $s=\sin\pi/8=\sqrt{2-\sqrt{2}}/2$ . Principal cur-
vatures of minimal $M^{4}$ are given as $follow8$ (Th. 1.1):

$k_{1}=\sqrt{2}+1$ , $k_{2}=-\sqrt{2}-1$ , $k_{3}=\sqrt{2}-1$ , $k_{4}=1-\sqrt{2}$

Next we find the orthonormal basis of principal directions by diagonalizing
matrix of $A$ in the basis $\{\partial_{i}\}$ . We get the following principal directions
corresponding respectively to the curvatures $k_{1},$ $k_{2},$ $k_{3},$ $k_{4}$ :

$e_{1}=\sqrt{4+2\sqrt{2}}\frac{\partial}{\partial\phi}$ ,

$e_{2}=\frac{\sqrt{4+2\sqrt{2}}}{2}\{\frac{\partial}{\partial\theta}$

-sin $\phi\frac{\partial}{\partial a}+\frac{\cos\phi}{\cos\alpha}\frac{\partial}{\partial\beta}+\tan\alpha$ cos $\phi\frac{\partial}{\partial\phi}\}$ ,

$ e_{8}=\frac{\sqrt{4-2\sqrt{2}}}{2}\{-\frac{\partial}{\partial\theta}-\sin\phi\frac{\partial}{\partial\alpha}+\frac{\cos\phi}{\cos a}\frac{\partial}{\partial\beta}+\tan\alpha$ cos $\phi\frac{\partial}{\partial\phi}\}$ ,

$ e_{4}=\sqrt{4-2\sqrt{2}}\{\cos\phi\frac{\partial}{\partial\alpha}+\frac{\sin\phi}{\cos\alpha}\frac{\partial}{\partial\beta}+\tan\alpha$ sin $\phi\frac{\partial}{\partial\phi}\}$

To check if $M^{4}i8$ of 3-type via $X$ or not we find connection coefficients
with respect to the $ba8is\{e_{i}\}$ . For example, we compute

$\omega_{1}^{2}(e_{\epsilon})=\langle\nabla_{e_{3}}e_{1}, e_{2}\rangle=0$ , $\omega_{1}^{2}(e_{4})=\sqrt{2-\sqrt{2}}$ , $\cdot$ . . etc.

But combining the equations of Gauss, Codazzi and condition (3) of
Theorem 4.1, it follows that in order that $M^{4}$ be mass-symmetric and of
3-type via $ x\sim$ we must have

$[\omega_{1}^{2}(e_{3})]^{2}=[\omega_{1}^{2}(e_{4})]^{2}=$ and $[\omega_{3}^{4}(e_{1})]^{2}=[\omega_{3}^{4}(e_{2})]^{2}=\frac{2+\prime\overline{2}}{2}$ .

Therefore, $M^{4}$ is not mass-symmetric and of 3-type via $X$ .
We now prove the following characterization of the Cartan hyper-

surface.

THEOREM 4.2. Let $x:M^{n}\rightarrow S^{n+1}$ be a compact minimal hypersurface
of $S^{n+1}$ of dimension $n\leqq 5$ . Then $\tilde{x}$ is mass-symmetric and of 3-type if
and only if $n=3$ and $M^{3}=SO(3)/Z_{2}\times Z_{2}$ is the Cartan hypersurface.
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PROOF. From Lemma 4.1, we know that the Cartan hypersurface
is mass-symmetric and of 3-type via $\tilde{x}$ . Conversely, suppose that $\tilde{x}$ is
mass-symmetric and of 3-type. We will show that $M^{n}$ is necessarily
isoparametric. From the computation carried out before that is already
clear for $n\leqq 4$ . If we compute $\Delta$ ($tr$ A) we obtain

(4.24) $\Delta(trA^{n})=m(trA^{2}-n)(trA^{*})$

$-\sum_{i}\sum_{\dot{g}\tau k}tr(A\circ\cdots\circ A^{\dot{g}k}\circ\nabla. A\circ A\circ\cdots A\circ\nabla_{i}A\circ\cdots\circ A)$ .
In particular, for $m=3$ we have

(4.25) $\Delta(trA^{S})=3(trA^{2}-n)(trA^{3})-6\sum_{:}tr[(\nabla_{i}A)^{2}\circ A]$ .
Since tr A3 $=0$ by Theorem 4.1, we will have ( $\{e_{i}\}$ is chosen to be the
basis of principal directions)

$0=\sum tr[(\nabla_{i}A)^{2}\circ A]$

$=\sum_{i,k}\langle(\nabla. A)^{2}Ae_{k}, e_{k}\rangle$

$=\sum_{i.k}\langle(\nabla_{:}A)^{2}(\lambda_{k}e_{k}), e_{k}\rangle$

$=\sum_{i.k}\langle(\nabla_{i}A)(\lambda_{k}e_{k}), (\nabla_{i}A)e_{k}\rangle$ , since $\nabla.$ $A$ is symmetric

$=\sum_{1k}\lambda_{k}\langle(\nabla_{\iota_{i}}A)e_{k}, (\nabla_{i}A)e_{k}\rangle$ , since $\nabla_{i}A$ is a $ten8or$

$=\sum_{i.k}\lambda_{k}\langle(\nabla_{k}A)e_{i}, (\nabla_{k}A)e_{i}\rangle$ , by the Codazzi equation

$=\sum_{k}x_{k}tr(\nabla_{\iota_{k}}A)^{2}$

$=\sum_{k}\lambda_{k}(\lambda_{k}^{4}+p\lambda_{k}^{2}+q)$ , by condition (3) of Th. 4.1

$=trA^{f}+p$ tr $A^{3}+q$ tr $A$

$=trA^{5}$ .
Therefore, conditions (1) $-(3)$ of Theorem 4.1 imply also tr $A^{f}=0$ . We
conclude that for $n\leqq 5$ the hypersurfaoe $M$ has to be isoparametric. If
$M$ has only one curvature it has to be umbilical in $S^{n+1}$ and therefore
(since it is minimal) great hypersphere which is of l-type via $\tilde{x}$ . If $M$

has two distinct principal curvatures and is minimal it must be Clifford
minimal hypersurface $M=M_{p,n-p}=S^{p}(\sqrt{p}/n)\times S^{n-p}(\sqrt{(n-p)}/n)$ . But the
product of spheres that satisfies the conditions of our Theorem 4.1 must
be of 2-type as can be seen from the following argument.

Suppose $\lambda_{1}$ and $\lambda_{2}$ are the two principal curvatures of $multiplicitie8$
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$m_{1}$ and $m_{2}$ respectively. Then tr $A=trA^{3}=0$ implies $m_{1}\lambda_{1}+m_{2}x_{2}=$

$m_{1}\lambda_{1}^{3}+m_{2}\lambda_{2}^{3}=0$ . Also, we have $1+x_{1}x_{2}=0$ . Using this to eliminate $m_{1}$ ,
$m_{2}$ , and $\lambda_{2}$ we obtain $\lambda_{1}^{2}=\lambda_{1}^{6}=(n-p)/p$ . Thus, $p=n-p=n/2,$ $x_{1}=\pm 1$ and
$x_{2}=\mp 1$ . So, $n$ has to be even, $p=n-p,$ $p/n=1/2$ and $ S^{p}(\sqrt{p/n})\times$

$S^{n-p}(\sqrt{(n-p)}/n)=S^{p}(\sqrt{1}/2)\times S^{p}(\sqrt{1}/2)$ . This hypersurface is mass-sym-
metric and of 2-type by Lemma 3 of [2]. If $M$ has three curvatures,
then according to the classification of Cartan $M$ is the Cartan hypersurface
which indeed is mass-symmetric and of 3-type via $ x\sim$ . If $M$ has four
principal curvatures, then the result of Takagi [23] classifies such hyper-
surface as the one considered in Example 4.1 which is not of 3-type via
$ x\sim$ . Finally, $M$ cannot have five principal curvatures by the result of
M\"unzner (Theorem $1.1(a)$). This completes the proof of the theorem.

REMARK. The proof above does not a priori exclude the case $n=1$ .
Actually, if $n=1$ there are no minimal curves in $S^{2}$ which are of 3-type
in $SM(3)$ via $ x\sim$ because such a curve is automatically a great circle of $S^{2}$

(totally geodesic), and therefore of l-type via $ x\sim$ .
Theorem 4.2 gives a new characterization of the Cartan hypersurface

in terms of the spectrum of its Laplacian. For other $characterization8$

see [13] and the references there.
As seen in Lemma 4.1, in dimensions greater than 5 there are

other examples of spherical hypersurfaces which are of 3-type and
mass-symmetric via $\tilde{x}$ .

LEMMA 4.2. If $M^{n}\subset S^{n+1}$ is a compact minimal rsoparametric hy-
persurface which is mass-symmetric and of 3-type via $ x\sim$ , then $M^{n}$ can
possibly have only 3, 4 or 6 distinct principal curvatures of the same
multiplicity.

PROOF. First, we saw before, from the proof of Theorem 4.2, that
if $\nu=1$ or 2 then $ x\sim$ is not of 3-type, and if $\nu=3$ then $\tilde{x}$ is of 3-type.
If there are six distinct principal curvatures, then by [1] the curvatures
$k_{l}$ have the same multiplicity ($m=1$ or 2) and they can be computed
using Theorem l.l(b) with $\theta=\pi/12$ (giving the minimal hypersurface) to
be

$2+\sqrt{3}$ , 1, $2-\sqrt{3}$ , $-(2-\sqrt{3})$ , $-1$ , $-(2+\sqrt{3})$ .
We see that these hypersurfacev satisfy conditions (1) and (2) of Theorem
4.1 and to determine if they are of 3-type and mass-symmetric via $ x\sim$ one
needs to check the condition (3). It is likely (but still not known) that
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all isoparametric spherical hypersurfaces with six curvatures are homo-
geneous. That is proved when $m=1[11]$ , classifying such hypersurface
as $G_{2}/SO(4)$ , but not yet for $m=2$ .

If $\nu=4$ , then

$ k_{1}=\cot\theta$ , $k_{2}=\cot(\theta+\frac{\pi}{4})$ , $k_{3}=\cot(\theta+\frac{\pi}{2})$ , $k_{4}=\cot(\theta+\frac{3\pi}{4})$ ,

and there are at most two different $multiplicitie8m_{1}$ (of $k_{1}$ and $k_{\epsilon}$) and
$m_{2}$ (of $k_{2}$ and $k_{4}$). Then from tr $A=0$ and tr $A^{\theta}=0$ we get respectively

$m_{1}\frac{\cos 2\theta}{\sin 2\theta}-m_{2}\frac{\sin 2\theta}{\cos 2\theta}=0$ , i.e. $\tan^{2}2\theta=\frac{m_{1}}{m_{2}}$ ,

$m_{1}\frac{\cos 2\theta(4-\sin^{2}2\theta)}{\sin^{3}2\theta}-m_{2}\frac{\sin 2\theta(3+\sin^{l}2\theta)}{\cos^{3}2\theta}=0$ ,

from where

$\frac{m_{1}}{m_{2}}=\tan^{4}2\theta\frac{3+\sin^{2}2\theta}{4-8in^{2}2\theta}$ .

Let $r=m_{1}/m_{2}$ . Then from these two equations we get

$r=r^{2}\frac{3+8in^{2}2\theta}{4-\sin^{2}2\theta}$ ,

which implies

$\sin^{2}2\theta=\frac{4-3\gamma}{r+1}$ , hence $r=\tan^{2}2\theta=\frac{4-3r}{4r-3}$ .

From the last relation we have $r=1$ , i.e. $m_{1}=m_{2}8O$ multiplicities of all
four curvatures are equal. We also get $\theta=\pi/8$ , and four curvatures to
be $k_{1}=\sqrt{2}+1,$ $k_{2}=\sqrt{2}-1,$ $k_{8}=1-\sqrt{2}$ , $k_{4}=-\sqrt{2}-1$ . Therefore, as
argued in the Preliminaries, the common multiplicity of curvatures is 1
or 2. If the common multiplicity is 1 then $M^{4}$ has to be the hypersurface
considered in Example 4.1 which is not of 3-type via $\tilde{x}$ . If the common
multiplicity is 2, then $M^{8}$ is minimal homogeneous hypersurface in $S^{\mathfrak{g}}$ of
type $Sp(2)/T^{2}$ , and again one needs to compute connection coefficients and
check the condition (3) of Th. 4.1 to see if it is of 3-type.

REMARKS. 1. From the above we know three eigenvalues of any
isoparametric spherical hypersurface with three curvatures. Even though
the spectrum of the Cartan hypersurface is known, not much information
is available about eigenvalues of the Laplacian for other isoparametric
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hypersurfaces with three curvatures. It is known, however, that any
minimal spherical hypersurface with tr $A^{2}=const$ has $n$ , tr $A^{2}$ and $n+trA^{2}$

as three eigenvalues of the Laplacian (cf. [15]).
2. In order to check which minimal isoparametric spherical hy-

persurfaces (or at least homogeneous ones) with four or six principal
curvatures are mass-symmetric and of 3-type via $ x\sim$ , one $ha8$ to check
the condition (3) of Theorem 4.1. That can be done (for homogeneous
ones) by the $method8$ of [24], considering the action of the Lie group
$K=Sp(2)$ or $G_{2}$ on the Euclidean space $m$ arising from the Cartan de-
composition $g=k\oplus m$ of the corresponding orthogonal symmetric Lie
algebra $(g, k, \sigma)$ , but the computations involved are rather long. $Fir8t$ ,
one has to choose a point $Pea$ (a 2-dimensional abelian subspace of m)
so that the orbit of $P$ under the adjoint action of $K$ is minimal in
sphere. That requires some manipulation with the roots of the Lie
algebra determined by $a$ . Second, one needs to find the principal di-
rections for the shape operator and compute the connection coefficients.
The shape operator of an orbit hypersurface is given by $AX=-[Y, \xi]$ ,
where $\xi$ is the unit normal to the hypersurface in sphere ( $\xi$ is perpen-
dicular to $P$, and $\xi$ and $P$ span $a$), and Ye $k$ is such a vector so that
$X=Y_{P}^{*}=[Y, P]$ (cf. [24]).

3. Also, it would be important to resolve if any minimal spherical
hypersurface which is of 3-type and mass-symmetric via $ x\sim$ is necessarily
isoparametric and if only such submanifolds are those four $example8$

with three curvatures.
Techniques used in this paper can be modified to study $hyper8urface8$

of a projective space which are of low type via the first $8tandard$ em.
bedding of a projective space. The author hopes to pursue this idea in
a future paper.
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