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Introduction.

This paper is the continuation of [15]. In [15], the authors showed
that some theorems on function algebras can be generalized to the case
of a wider class of function spaces containing the class of funection
algebras. This class is of function spaces having the condition (A) (see
§1). In this paper, we introduce the conditions (B) and (C) which are
weaker than (A). In §1, we discuss the conditions (B) and (C), and
give some examples connected with them. In §2, we consider the class
& of function spaces having (B) and the class & of function spaces
having (C), and give characterizations to assert that A=C(X) for
Ae# or Aec#. Especially, we establish generalizations of a theorem
of Rudin [13] and a theorem of Hoffman and Wermer [11] (Theorems 2.1
and 2.5).

§1. Conditions for function spaces.

Throughout this paper, X will denote a compact Hausdorff space.
A is said to be a function space (resp. function algebra) on X if A is a
closed subspace (resp. subalgebra) in C(X) containing constant functions
and separating points in X, where C(X) denotes the Banach algebra of
complex-valued continuous functions on X with the supremum norm.

Let A be a function space on X. For a subset E in X, we denote

AE)={feC(E): fgec A|; for any gec A|g}
Ap(E)={feCy(E): fgc Alg for any geAlg},
where A|; is the restriction of A to E and Cp(F) is the set of all real-
valued continuous functions on E.

Let E be a subset in X. Then we call E an antisymmetric set for
A if any function in AR(E) is constant. We write .2#°(4) the family
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of maximal antisymmetric sets for A.

Let A be a uniformly closed subspace in C(X) or Cr(X). Then a
closed subset F' in X is called a peak set for A if f(x)=1 (xe F) and
|If@@)|<1 (xe X\F) for an fe A. A p-set for A is an intersection of
peak sets for A. A closed subset F in X is called a BEP-set for A if
for any fe€ A|, and for any closed subset G in X with GNF=@ and
any ¢>0, there is a g€ A such that g=f on F, |g(x)/l<e on G and
lgll=|Ifllz, Where [lg|l=8up,.x|g9(x)| and | f|lr=8sup,erlf(x)]. For a uni-
formly closed subspace A in C(X), F' is a BEP-set for A if and only if
e € At for any pe A*, where A* denotes the set of measures ¢ on X

such that Sfdp=0 for any fe A (cf. [8]).

Let A be a uniformly closed subspace in C(X) or Cr(X). A closed
subset F in X is called a sharp peak set for A if for any closed subset
G in X with GNF=o and for any £¢>0, there is an f€ A such that
f@)=1(weF), |[f(x)|<e (xeq) and |f(x)|<1 (x€ X\F) (cf. [7]). We note
that if F' is a sharp peak set for A, then y(F)=0 for any pe A*.

The Bishop antisymmetric decomposition theorem for function spaces
is given as follows. This is a generalization of Bishop’s theorem on
function algebras ([2], [6], [9D).

THEOREM 1.1. Let A be a function space on a compact Hausdorff
space X. Then X 1is decomposed by the family 22 (A) of mawximal
antisymmetric sets for A and the following ts satisfied.

(i) Any Ke 227 (A) is a BEP-set for A.

(i) If feC(X) and if flx<€ Alg for any Ke 22 (A), then fe A.

This theorem was essentially proved in [1]. We also see it in [15].

Now we consider the following three conditions for a function space
A on X.

(A) Any peak set for A is a peak set for A(X).

(B) Any peak set for A is a BEP-set for A.

(C) Any peak set for A is a sharp peak set for A.

THEOREM 1.2. Let A be a function space on X. Then the following
are satisfied:

(i) If A has (A), then it has (B).

(ii) If A has (B), then it has (C).

PrOOF. (i) Let A have (A) and let F be a peak set for A. Then
F is a peak set for A(X), that is, there is an f,€ A(X) such that
fo@)=1 (xe F) and |f(x)|<1l (xe X\F'). By the definition of A(X),
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JfeeA for any feA and for any ne€N. For any pe A+, Sfdﬂ=
F
SFffo”dgu:—S ffedpe—0 (n—o0). From this p¢,c A' and so (B) holds.
X\F .
(ii) Let A have (B) and let F' be a peak set for A. Then F is a

BEP-set for A and a G;set. It follows that F' is a sharp peak set for
A.

But, implications (C) —(B) and (B)—(A) are not true in general.

EXAMPLES. (1) The following function space A has (C), but it does
not satisfy (B): Let D, D and 6D be {zeC: 1/2<|z|<1}, {zeC: 1/2=<
|2|=<1} and {zeC: |2]=1/2 or |z|=1} respectively. Let B be the restric-
tion of A(D) to 9D, where A(D) is the function algebra of continuous
functions on D which are analytic on D. We put A=Cf+B=
{M\f+9: n€C, ge B}, where f is the following function:

[0 on X,={zeC: [2|=1/2}

f= lon X,={z2¢eC: |z|=1}.

Then A is a function space on oD. It is not hard to see that a peak
set F' (F'+#0D) for A is a closed subset on 6D of Lebesgue measure 0 or
X, or X,. It implies that A has (C), because such a subset of measure
0 is a sharp peak set for B (cf. [12]). But A has not (B). For, X, is a
peak set for A but not a BEP-set for A.

(2) An example of function spaces which have (B) but not (A).
Let X={zeC: |2|=1} and let B be a disc algebra on X. We define a
continuous function f on X as follows:

P(t/m) : Ost=nm

feh)= P(2—t/m) : n<t=2r,

where ¢ is the Cantor function on [0, 1] (ef. [10], p. 83). We put
A=Cf+B. Then any peak set F (FF=X) for A is a closed subset on
X of Lebesgue measure 0. It follows that A has (B). But A has not
(A) since A(X)=C.

§2. Characterizations assert that A=C(X).

In [15] we gave some characterizations to assert that A=C(X) for
function spaces A having the condition (A). After this, we moreover
give characterizations to assert that A=C(X) for function spaces A
having the condition (B) or (C) which is weaker than (A).
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We denote by 9(4) and Ch(A) the Shilov boundary and the Choquet
boundary for a function space A respectively.

Our first goal is to generalize the Rudin’s theorem ([13]) to the case
of function spaces.

THEOREM 2.1. Let A be a function space on X having (C). If X
contains no non-void perfect subset, then A=C(X).

We begin with the following lemma.

LEMMA 2.2. Let A be a function space on X having (C) and let
Ke %2 (A). If x,€d(Alx) 18 an isolated point in K, then {x,} s a sharp
peak set for Alg.

PrROOF. Since z, is an isolated point in d(A|x), we have x,€ Ch(A4|x).
Hence there is an f € A| such that Re f<0, Re f(x,)> —a and Re f(x)<
—B (x e K\{z,}) for some a, B8 (0<a<p) (cf. [5]). By adding a sufficiently
large number ¢ to f if necessary, f+c becomes a scalar multiple of a
peaking function of {x,} in A|. That is, {x,} is a peak point for A|g.
It follows that {x,} is a sharp peak set for A|.. For, since A has (C)
and K is a BEP-set for A, it implies that Az has (C).

PROOF OF THEOREM 2.1. If A#C(X), by Theorem 1.1, K is not a
singleton for some Ke.%2(A). We put I={xcd(A|r): = is an isolated
point in d(A|g)} and J={xe€ K: « is an isolated point in K}. Then we
assert that JNo(A|x)=@. For, if a point x,€ JNd(A|x), by Lemma 2.2,
{x,} is a sharp peak set for A|,. Since {x,} is open in K, there is an
f € A|g such that f(z,)=1, f(x)=0 (xc K\{z,}). Hence fe Az(K) and it
contradicts that Ke .22 (4). It shows that JNo(Alp)=@. Next since
I+, we put x,€I. Then x, € IcCh(4|x)cCh(Als ). By a similar way
as in the proof of Lemma 2.2, we observe that {x,} is a peak point for
Alya,. Hence {z}=FNd(Alx) for a peak set F' for Alc. Since Al has
(C), F is a sharp peak set for A|;. So it is easy to see that {z,} is a
sharp peak set for Aly .. We here assert that JNF=@. For, if
xeJNF, there is a representing measure g, for « on d(Alg). Since
t.—0, € (Alg)* and F is a sharp peak set for A|z, &, (F)—0,(F)=(¢t,—0.)(F)=

0, where §, is the Dirac measure for x. But p,(F)=Sde,= el )dp,=
K

t.({x,)). From this, g,({z))=1, that is, p,=0, and x=z,. This is a
contradiction since z,€3(Alx), z,=x€J and JNI(Alp)=. So we have
JNF=@. Now, since {x,} is a sharp peak set for Al and {x} is
open in 3(A|g), it implies that there is a g € Ay, such that g(x,)=1 and
g=0 on d(A|x)\{z,}. For any « in J, g,—0,€(A|p)* for a representing
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measure 2, for x on 9(Alz). Hence p,(F)—0,(F)=(¢,—4,)(F)=0. Since
JNF=@ and € J, we have z ¢ F and so ,({x,})=#,(F)=0. Considering g

as a functionin Al g (x)~s " gd)ux ©.({x})=0 for any x € J. Since J=K,
a4

we have g=0 on K. Since g(acl) 1, it is a contradiction, concluding the
proof.

The Stone-Weierstrass theorem is stated as follows (see [15] for the
case of function spaces having (A)).

THEOREM 2.3. If a function space A on X having (C) is self-adjoint,
then A=C(X).

Proor. If A is self-adjoint, the real part Re A of A is a real-valued
function space. If F is a peak set for Re 4, it is a peak set for A
since Re ACA. By (C) F is a sharp peak set, that is, for any >0 and
any closed subset G with FNG=, there is an f € A such that f=1on
F, |£ll=1, |fI<1 on X\F and |f|<e on G. It implies that Re f=1 on
F, ||Re f||=1, |[Re f|<1 on X\F and |Re f|<e¢ on G. This shows that F
is a sharp peak set for Re A. Hence a theorem of Briem ([8]) guarantees
that Re A=Cg(X). From this A=C(X) since A=ReA+iRe A and this
completes the proof.

Next we generalize a theorem of Briem ([4]) as follows (see [15] for
the case of function spaces having (A4)).

- THEOREM 2.4. Suppose that a function space A on X has (B). Ir
any peak set for Re A is a peak set for A, then A=C(X).

Proor. If A has (B), any peak set for A is a BEP-set for A. By
the hypothesis, any peak set for ReA is a BEP-set for A. It follows
that A=C(X) by [14] Theorem 2.2.

Finally, we consnder a generallzatlon of the Hoffman-Wermer theorem
([11]) to the case of function spaces.

THEOREM 2.5. Assume that a function space A on X has (B). If
Re A i3 closed in C(X), then A=C(X).

We begin with the following lemmas.

I LEMMA 2.6. Let A be a function space on a compact Hausdorff
space X and let feCx(X). If F.={xeX: f(x)<r} is a BEP-set for A
Jor any re R, then fe A (X).
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PrOOF. We can assume that 0=<f=<1l. Put E, ={reX: 2"—1)<
f@)<2"4} ({=0,1,---,2"). Then E,, is a difference between two BEP-
sets. Hence if pgc A then gy cA'. For any geA, we put h,=

21 1/2"Xg,,9. Then Sh,,d#—» ng dp for any ¢ € A* since h,— fg boundedly.
Since Sh,.d;z=0 (n=1,2, 8,---), it implies that ng dpe=0 for any pne At
and so fgc A. It shows that f e Ax(X).

REMARK. Let X be a compact Hausdorff space and let A be a
function space on X. Let & be the family of all BEP-sets for A.
Then there exists a topology (.7, X) on X such that the family of
closed subsets in (.7, X) is .#° We can here prove the following: Let
feCyx(X). Then f is continuous on (7, X) if and only if f € Ax(X).

LEMMA 2.7. Suppose that a function space A on X has B). If A
is an algebra, then Ap=Ax(X), where Ar=ANCg(X).

ProoF. It is clear that Ax(X)CA,. We first introduce a relation
~ in X as follows.

x~y — f@)=f(y) for any f€Ag.

We set E={ye X: y~a} for x€ X and X={F: z€ X}. By defining
a topology in X such that the mapping ¢: x —% from X to X is con-
tinuous, X becomes a compact Hausdorff space. Put f@)=f(x) (f € Ap)
and A,={f: feAz. Then A, is a closed subalgebra in Cp(X) containing
1 and separating points in X. Hence A,=Cx(X). For feA, and any
reR, put F,.={xeX: f(x)=r}. Then ¢(F,)={§e)~(: f@ <r} is closed
in X It follows that @(F,) is a p-set for A,=Cn(X). Hence F, is a
p-set for A, and so it is a p-set for A. Since A has (B), F, is a BEP-
set for A. By Lemma 2.6, f€ Ax(X). Thus we have that A,C Ax(X)
and so the lemma is proved.

LEMMA 2.8. Let A be a function space on X having (C). If Re A
is closed im Cx(X) and Ap=Ax(X), then A=C(X).

PrROOF. For ze X, we put E,={yeX: f(y)=f(x) for any f € AR}
Since A, is an algebra, the function g=—e(f—f(®)*+1 is contained in
Ay for ce R, f€Ap. It is not hard to see that E, is a p-set for A,
by taking sufficiently small ¢>0 for each function g above. Since Ap=
An(X), E, is a BEP-set for A. For, since E, is a p-set for A, it is a
p-set for A,(X) and so we see that E, is a BEP-set for A by a similar
argument as in the proof of Theorem 1.2 (i). We here assert that FE,
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is a singleton. Suppose otherwise. Then there is a peak set F' for A,
with F&FE,. Since E, is a BEP-set for A, F is a p-set for A. By (C),
F' is an intersection of sharp peak sets for A. Since Re A4 is closed, we
have that (ANA)*=A*+A* ([5]). Clearly, ANA=A,+3iA, and we here
put A;=ANA. Take pcF and ge E~F. Then 0,—0,€ Af =A++ A",
Hence 6,—d,=pt+v,—1y,, where pte A* and p,+1iy,c A+ (v, v,: real meas-
ures). Since F' is an intersection of sharp. peak sets for A, there is a
sharp peak set F, for A such that FcCF, peF, and g¢ F,. Since
t(F)=0 and u,(F)+iv,(F)=(v,+1iv,)(F,)=0, it implies that (0,—0)(F)=
H(F) +v,(F)—iv,(F,)=0. On the other hand, (0p—0)(F)=0,(F,)—0,(F)=1,
since pe€ F, and ¢g¢ F,. This contradiction shows that E,={x} for any
xeX. Hence A, is a closed subalgebra in CL(X) containing 1 and sepa-
rating points in X. It follows that A,=C,(X) and so A=C(X).

PROOF OF THEOREM 2.5. By Lemmas 2.7 and 2.8, to prove the
theorem, it remains only to show that Ay is an algebra. As in the
proof of Lemma 2.8, if Re A is closed, Aif=(ANA)‘*=At+ A+, For any
peak set F' for A, and for any pc A#, we have p=p+u, for some g,
t.€A* and F is a peak set for A. By (B), (#)r€e At and ()€ AL,
Hence ptr=()r+(H)re A*+AL=AL. Tt follows that F is a BEP-set
for A,. Since F is a G,-set, F is a sharp peak set for A,.

We introduce a relation ~ in X as follows:

x~y — f(x)=f(y) for any feA,.

We put F={ye X: y~x} for xe X and X={F: xc X}). By defining
a topology in X such that the mapping ¢: x—#& from X to X is con-
tinuous, X becomes a compact Hausdorff space. Put f(&) =f(x) for f €A,
and A,={f: feA,). For any peak set F for A,, F=¢p ™ (F) is a peak
set for A,., By the fact stated above, F' is a sharp peak set for A,.
Hence F' is a sharp peak set for 4,. By putting A.={f: fed), A4, is
a real function space on X. Since A,=Az+1A;, we have that any peak
set F' of A, is a sharp peak set for A,. By a theorem of Briem (EI)R
A,=Cx(X). It implies that A, is an algebra and the proof is finished.
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