On the Galois Group of $x^{p}+a x+a=0$

Kenzo KOMATSU

Keio University

§ 1. Introduction.

Let $p(p>3)$ be a prime number, and let a be a rational integer with $(p, a)=1$ such that

$$
f(x)=x^{p}+a x+a
$$

is irreducible over the rational number field \boldsymbol{Q}. In the present paper we discuss the following problem: Is the Galois group of $f(x)=0$ over Q the symmetric group S_{p} ? Our results will be stated in Theorem 1 and Theorem 2.

We require the following lemma of van der Waerden:
Lemma 1 ([4]). Let K be an algebraic number field of degree n, and let \bar{K} denote the Galois closure of K over \boldsymbol{Q}. If the discriminant d of K is exactly divisible by a prime number $q\left(\right.$ i.e. $\left.q \mid d, q^{2} \nmid d\right)$, then the Galois group of \bar{K} / \boldsymbol{Q} contains a transposition (as a permutation group on $\{1,2, \cdots, n\}$).
§ 2. The case $p \equiv 3$ or 5 or $7(\bmod 8)$.
Theorem 1. Let a denote a rational integer, and let p denote a prime number with the following properties:

1. $p \equiv 3$ or 5 or $7(\bmod 8), p \neq 3$;
2. $(p, a)=1$;
3. $f(x)=x^{p}+a x+a$ is irreducible over \boldsymbol{Q}.

Then the Galois group of $f(x)=0$ over \boldsymbol{Q} is the symmetric group S_{p}.
Proof. Let α be a root of $f(x)=0$, and let $K=Q(\alpha), \delta=f^{\prime}(\alpha), D=\operatorname{norm} \delta$ (in $\left.K\right)$. Then ([1], Theorem 2)

$$
D=a^{p-1}\left\{(p-1)^{p-1} a+p^{p}\right\}
$$

[^0]Now let

$$
D_{0}=(p-1)^{p-1} a+p^{p}
$$

Then $\left|D_{0}\right|$ cannot be a square. In fact, if $\left|D_{0}\right|=m^{2}$ with an integer m, then

$$
D_{0} \equiv p^{p} \equiv p \equiv \pm m^{2} \quad(\bmod 8)
$$

This implies that $p \equiv 7(\bmod 8)$, and $D_{0}=-m^{2}$. Since

$$
\frac{p-1}{2} \equiv 3 \quad(\bmod 4)
$$

there is at least one prime factor p_{0} of $(p-1) / 2$ such that $p_{0} \equiv 3(\bmod 4)$. Now

$$
-m^{2}=D_{0} \equiv p^{p} \equiv 1 \quad\left(\bmod p_{0}\right),
$$

since $p \equiv 1\left(\bmod p_{0}\right)$. We see that -1 is a quadratic residue $\bmod p_{0}$. However, this is impossible, since $p_{0} \equiv 3(\bmod 4)$. A contradiction shows that $\left|D_{0}\right|$ is not a square. Hence there exists a prime number q such that $\left(D_{0}\right) q$ is an odd integer, where the symbol $\left(D_{0}\right) q$ means the largest integer M such that D_{0} is divisible by q^{M} (cf. [1]). Since ($\left.p, a\right)=1$, we have

$$
q \neq p, \quad(q, a)=1, \quad(q, p-1)=1
$$

Let d denote the discriminant of K. Then d is exactly divisible by q ([1], Theorem 2), since D_{q} is odd. It follows from Lemma 1 that the Galois group G of $f(x)=0$ over \boldsymbol{Q} contains a transposition. Since p is a prime, G is primitive. Hence $G=S_{p}$ ([5], Theorem 13.3).

Remark. If $p=3$, the Galois group of $x^{p}+a x+a=0$ is not always symmetric. For example, the Galois group of

$$
x^{3}-7 x-7=0
$$

is cyclic, since its discriminant is

$$
-4(-7)^{3}-27(-7)^{2}=7^{2} .
$$

§3. The case $p \equiv 1(\bmod 8)$.
Theorem 2. Let $p \equiv 1(\bmod 8)$ be a prime number and let a be a rational integer with $(p, a)=1$ such that

$$
f(x)=x^{p}+a x+a
$$

is irreducible over \boldsymbol{Q}. Then the Galois group G of $f(x)=0$ over \boldsymbol{Q} is the symmetric group S_{p} if and only if $(p-1)^{p-1} a+p^{p}$ is not a square. If $(p-1)^{p-1} a+p^{p}$ is a square, then G
is a non-cyclic simple group, and the minimal splitting field of $f(x)=0$ is unramified (with respect to the finite prime spots) over $Q(\alpha)$, where α denotes an arbitrary root of $f(x)=0$.

Proof. Since $p^{p} \equiv p \equiv 1(\bmod 8),(p-1)^{p-1} a+p^{p}=-m^{2}$ is impossible. Hence, if $(p-1)^{p-1} a+p^{p}$ is not a square, there exists a prime number q such that the discriminant d of $K=Q(\alpha)$ is exactly divisible by q, and so $G=S_{p}$ (See the proof of Theorem 1). The second half of Theorem 2 is proved in [2] (pp. 123-125; $(p, d)=1$, and every prime factor of d is completely ramified in K).

Remark. We proved in [2] (Theorem 5 and its proof) that, for every prime number $p \equiv 1(\bmod 8)$, there exist infinitely many integers a with the following properties:

1. $f(x)=x^{p}+a x+a$ is irreducible over \boldsymbol{Q};
2. $(p, a)=1$;
3. $(p-1)^{p-1} a+p^{p}$ is a square.

References

[1] K. Komatsu, Integral bases in algebraic number fields, J. Reine Angew. Math., 278/279 (1975), 137-144.
[2] K. Komatsu, Discriminants of certain algebraic number fields, J. Reine Angew. Math., 285 (1976), 114-125.
[3] K. Komatsu, Square-free discriminants and affect-free equations, Tokyo J. Math., 14 (1991), 57-60.
[4] B. L. van der Waerden, Die Zerlegungs- und Trägheitsgruppe als Permutationsgruppen, Math. Ann., 111 (1935), 731-733.
[5] H. Wielandt, Finite permutation groups, Academic Press, 1964.

Present Address:

Department of Mathematics, Faculty of Science and Technology, Keio University Hiyoshi, Kohoku-ku, Yokohama 223, Japan

[^0]: Received October 13, 1990

