On the Existence and Uniqueness of the Stationary Solution to the Equations of Natural Convection

Hiroko MORIMOTO

Meiji University
(Communicated by S.T. Kuroda)

1. Notations and results.

In this paper, we discuss the existence of weak solutions of a system of equations which describes the motion of fluid with natural convection (Boussinesq approximation) in a bounded domain Ω in \mathbb{R}^n , $2 \le n$. We consider the following system of differential equations:

$$\begin{cases} (u \cdot \nabla)u = -\frac{1}{\rho} \nabla p + v\Delta u + \beta g\theta, \\ \operatorname{div} u = 0, & \text{in } \Omega \end{cases}$$

$$(1)$$

$$(u \cdot \nabla)\theta = \chi \Delta \theta,$$

where $u \cdot \nabla = \sum_j u_j \partial/\partial x_j$. Here u is the fluid velocity, p is the pressure, θ is the temperature, g is the gravitational vector function, and ρ (density), ν (kinematic viscosity), β (coefficient of volume expansion), χ (thermal diffusivity) are positive constants. We study this system of equations with mixed boundary condition for θ . Let $\partial \Omega$ (the boundary of Ω) be divided into two parts Γ_1 , Γ_2 such that

$$\partial \Omega \!=\! \Gamma_1 \cup \Gamma_2 \;, \qquad \Gamma_1 \cap \Gamma_2 \!=\! \varnothing \;.$$

The boundary conditions are as follows.

$$\begin{cases} u=0, & \theta=\xi, & \text{on } \Gamma_1, \\ u=0, & \frac{\partial \theta}{\partial n}=\eta, & \text{on } \Gamma_2, \end{cases}$$
 (2)

where ξ (resp. η) is a given function on Γ_1 (resp. Γ_2), n is the outward normal vector to $\partial\Omega$. In this paper, we show the existence of weak solution of this problem for bounded domain Ω in \mathbb{R}^n , $2 \le n$, using the Galerkin method (Theorem 1). Some uniqueness result is also obtained (Theorem 2). In the previous paper [7], we treated this problem only for the case n=3.

In order to state the definition of weak solution and our results, we introduce some function spaces. The functions considered in this paper are all real valued. L^p and the Sobolev space W_p^m are defined as usual. We also denote $H^m = W_2^m$. Whether the elements of the space are scalar or vector functions is understood from the context unless stated explicitly. For the inner product and the norm of $L^2(\Omega)$, we use the notation $(u, v)_{\Omega}$ and $||u||_{\Omega}$, or simply, (u, v) and $||u||_{\Omega}$.

 $D_{\sigma} = \{ \text{vector function } \varphi \in C^{\infty}(\Omega) \mid \text{supp } \varphi \subset \Omega, \text{ div } \varphi = 0 \text{ in } \Omega \},$

 $H = \text{completion of } D_{\sigma} \text{ under the } L^{2}(\Omega) \text{-norm},$

 $V = \text{completion of } D_{\sigma} \text{ under the } H^{1}(\Omega) \text{-norm,}$

 \tilde{V} = completion of D_{σ} under the norm $||u||_{H^{1}(\Omega)} + ||u||_{L^{n}(\Omega)}$,

 $D_0 = \{ \text{scalar function } \varphi \in C^{\infty}(\overline{\Omega}) \mid \varphi \equiv 0 \text{ in a neighborhood of } \Gamma_1 \},$

 $W = \text{completion of } D_0 \text{ under the } H^1(\Omega) - \text{norm},$

 \widetilde{W} = completion of D_0 under the norm $||u||_{H^1(\Omega)} + ||u||_{L^n(\Omega)}$.

Consider L^2 inner product of the first equation of (1) with v in \tilde{V} , and the third equation of (1) with τ in \tilde{W} . Using the integration by parts, we obtain:

$$\begin{cases}
\nu(\nabla u, \nabla v) + B(u, u, v) - (\beta g \theta, v) = 0, & \text{for all } v \in \tilde{V}, \\
\chi(\nabla \theta, \nabla \tau) + b(u, \theta, \tau) = \chi(\eta, \tau)_{\Gamma_2}, & \text{for all } \tau \in \tilde{W},
\end{cases}$$
(3)

where

$$B(u, v, w) = ((u \cdot \nabla)v, w) = \int_{\Omega} \sum_{i, j=1}^{n} u_{j}(x) \frac{\partial v_{i}(x)}{\partial x_{j}} w_{i}(x) dx,$$

and

$$b(u, \theta, \tau) = ((u \cdot \nabla)\theta, \tau) = \int_{\Omega} \sum_{j=1}^{n} u_{j}(x) \frac{\partial \theta(x)}{\partial x_{j}} \tau(x) dx.$$

Now, we define the weak solution of (1), (2).

DEFINITION 1. A pair of functions $\{u, \theta\}$ is called a weak solution of (1), (2), if there exists a function θ_0 in $H^1(\Omega)$ such that $u \in V$, $\theta - \theta_0 \in W$, $\theta_0 = \xi$ on Γ_1 , and, $\{u, \theta\}$ satisfies (3).

For the domain Ω , we assume that Ω is a bounded domain in \mathbb{R}^n with C^1 boundary. Concerning the partition of $\partial\Omega$ into Γ_1 , Γ_2 appearing in (2), we further assume that the following condition is satisfied;

CONDITION (H).

$$\partial \Omega = \Gamma_1 \cup \Gamma_2$$
, $\Gamma_1 \cap \Gamma_2 = \emptyset$, measure of $\Gamma_1 \neq 0$,

and the intersection

$$\bar{\Gamma}_1 \cap \bar{\Gamma}_2$$

is an n-2 dimensional C^1 manifold.

Now, we state our results.

THEOREM 1. Let Ω be a bounded domain in \mathbb{R}^n with C^1 boundary satisfying Condition (H). If g(x) is in $L^{\infty}(\Omega)$, ξ is in $C^1(\overline{\Gamma}_1)$, and η is in $L^2(\Gamma_2)$, then there exists a weak solution of (1), (2).

REMARK 1. Generally, $\tilde{V} \subset V \cap L^n(\Omega)$ and $\tilde{W} \subset W \cap L^n(\Omega)$. For $2 \le n \le 4$, $\tilde{V} = V$ and $\tilde{W} = W$ (cf. Masuda [6], Giga [3]). Therefore our theorem contains the result of [7].

Let $g_{\infty} = ||g||_{L^{\infty}(\Omega)}$, and c, c_1, c_2 be constants in Lemma 3 (Section 2). As for the uniqueness, we have:

THEOREM 2. The weak solution $\{u, \theta\}$ of (1), (2) satisfying

(i) $u \in L^n(\Omega)$, $\theta \in L^n(\Omega)$,

(ii)
$$c \|u\|_n + \frac{\beta g_{\infty} c c_1 c_2}{\chi} \|\theta\|_n < v$$
, when $n \ge 3$,

$$((ii)' c||u||_p + \frac{\beta g_{\infty} c c_1 c_2}{\gamma} ||\theta||_p < v, \quad \text{for some } p > 2, \text{ when } n = 2),$$

is, if it exists, unique.

REMARK 2. The condition (i) is automatically satisfied when $2 \le n \le 4$.

REMARK 3. If we set

$$Re = \frac{c}{v} \|u\|_n$$
 (Reynolds number),

$$Ra = \frac{\beta g_{\infty} c c_1 c_2}{v \chi} \|\theta\|_n$$
 (Rayleigh number),

then the condition (ii) reads as

$$Re + Ra < 1$$
.

See also Joseph [5].

2. Some lemmas.

Here, we state some lemmas for the convenience of reference. For instance, the constants in Lemma 3 appear in the statement of Theorem 2.

LEMMA 1. \tilde{V} and \tilde{W} are separable Banach spaces.

PROOF. A subset of separable metric space is separable (e.g. Brezis [2]). If we show $V \cap L^n(\Omega)$ is separable, Lemma 1 is proved. We can identify $V \cap L^n(\Omega)$ as a subset

$$F = \left\{ \left(v, \frac{\partial v}{\partial x_1}, \cdots, \frac{\partial v}{\partial x_n} \right) ; v \in V \cap L^n(\Omega) \right\}$$

of $L^n(\Omega) \times L^2(\Omega) \times \cdots \times L^2(\Omega)$. Since the latter space is separable, the set F is also separable and Lemma 1 is proved.

Lemma 2 (Sobolev imbedding theorem), Lemma 3 (Inequalities of Poincaré type) and Lemma 4 (Continuity of the trace operator) are essentially well-known. On the other hand, Lemma 5 and Lemma 6 are concerned with the trilinear form familiar in the study of the Navier-Stokes equation (see e.g. Temam [8]).

LEMMA 2. Sobolev space $H^1(\Omega)$ is continuously imbedded in $L^q(\Omega)$, where q = 2n/(n-2) for $n \ge 3$, and $+\infty > q \ge 1$ for n = 2.

For the proof, see Adams [1].

LEMMA 3. There exist constants c_1 , c_2 , c depending on Ω and n such that

(i) $||u|| \le c_1 ||\nabla u||$ for $\forall u \in V$,

(ii)
$$||u||_q \le c||\nabla u||$$
 for $\forall u \in V$
$$\begin{cases} q = \frac{2n}{n-2} & (n \ge 3), \\ q = 4 & (n = 2), \end{cases}$$

(iii) $\|\theta\| \le c_2 \|\nabla \theta\|$ for $\forall \theta \in W$.

The inequalities (i), (iii) are well known, and (ii) follows from (i) and Lemma 2. For the boundary value of H^1 functions, we have:

LEMMA 4. There exists a positive constant C such that

$$||v||_{L^2(\partial\Omega)} \le C||v||_{H^1(\Omega)}$$
 for all v in $H^1(\Omega)$.

In particular there is a positive constant c_3 such that

$$\|\theta\|_{L^2(\Gamma_2)} \le c_3 \|\nabla \theta\|_{L^2(\Omega)}$$
 for all θ in W .

By Hölder's inequality and Lemmas 2, 3, we have:

LEMMA 5. Let $n \ge 3$. There exists a constant c_B dependeing on Ω and n such that

$$|B(u, v, w)| \le c_B \|\nabla u\| \|\nabla v\| \|w\|_n \qquad \text{for} \quad \forall u \in V, \quad \forall v \in H^1(\Omega), \quad \forall w \in L^n(\Omega),$$

$$|b(u, \theta, \tau)| \le c_B \|\nabla u\| \|\nabla \theta\| \|\tau\|_n \qquad \text{for} \quad \forall u \in V, \quad \forall \theta \in H^1(\Omega), \quad \forall \tau \in L^n(\Omega),$$

$$(4)$$

hold.

Using the integration by parts, we obtain:

LEMMA 6.

(i)
$$B(u, v, w) = -B(u, w, v)$$
 for $\forall u \in V$, $\forall v, w \in H^1 \cap L^n$

holds. In particular,

$$B(u, v, v) = 0$$
 for $\forall u \in V$, $\forall v \in H^1 \cap L^n$.

(ii)
$$b(u, \theta, \tau) = -b(u, \tau, \theta)$$
 for $\forall u \in V, \forall \theta, \tau \in H^1 \cap L^n$

holds. In particular,

$$b(u, \theta, \theta) = 0$$
 for $\forall u \in V$, $\forall \theta \in H^1 \cap L^n$.

LEMMA 7. Let Ω be a bounded domain in \mathbb{R}^n satisfying the condition (H). If ξ is a C^1 function defined on $\overline{\Gamma}_1$, then for any positive number ε and any $p \ge 1$, there exists an extension θ_0 of ξ such that

$$\theta_0 \in C_0^1(\mathbf{R}^n)$$
, $\theta_0 = \xi$ on $\overline{\Gamma}$, $\|\theta_0\|_p < \varepsilon$.

For the proof, see e.g. [4] Lemma 6.38.

3. Proof of Theorem 1.

Under our assumptions, we can extend ξ to a $C_0^1(\mathbb{R}^n)$ function which we denote by θ_0 . Using the Galerkin method, we construct approximate solutions of (3). Let $\{\varphi_j\}$ be a sequence of functions in D_{σ} , linearly independent and total in \widetilde{V} . We can assume

$$(\nabla \varphi_i, \nabla \varphi_k) = \delta_{ik}$$

without loss of generality. Let $\{\psi_j\}$ be a sequence of functions in D_0 , linearly independent and total in \tilde{W} . We can assume

$$(\nabla \psi_i, \nabla \psi_k) = \delta_{ik}$$
.

Since \tilde{V} (resp. \tilde{W}) is separable and D_{σ} (resp. D_0) is dense there, we can find these functions. We put

$$u^{(m)} = \sum_{j=1}^m \xi_j \varphi_j,$$

$$\theta^{(m)} = \sum_{j=1}^{m} \xi_{m+j} \psi_j ,$$

and we consider the following system of equations:

$$v(\nabla u^{(m)}, \nabla \varphi_j) + ((u^{(m)} \cdot \nabla)u^{(m)}, \varphi_j) - (\beta g \theta^{(m)}, \varphi_j) - (\beta g \theta_0, \varphi_j) = 0, \qquad 1 \le j \le m.$$
 (5)

$$\chi(\nabla \theta^{(m)}, \nabla \psi_j) + ((u^{(m)} \cdot \nabla)\theta^{(m)}, \psi_j) + ((u^{(m)} \cdot \nabla)\theta_0, \psi_j) + \chi(\nabla \theta_0, \nabla \psi_j) - \chi(\eta, \psi_j)_{\Gamma_2} = 0, \qquad 1 \le j \le m.$$
(6)

Substituting $u^{(m)}$, $\theta^{(m)}$ into these equations, we obtain:

$$\xi_{j} + \frac{1}{\nu} \sum_{k,l} \xi_{k} \xi_{l} ((\varphi_{k} \cdot \nabla) \varphi_{l}, \varphi_{j}) - \frac{1}{\nu} \sum_{k} \xi_{m+k} (\beta g \psi_{k}, \varphi_{j})$$

$$- \frac{1}{\nu} (\beta g \theta_{0}, \varphi_{j}) = 0, \qquad 1 \leq j \leq m,$$

$$(7)$$

$$\xi_{m+j} + \frac{1}{\chi} \sum_{k,l} \xi_k \xi_{m+k} ((\varphi_k \cdot \nabla) \psi_l, \psi_j) + \frac{1}{\chi} \sum_k \xi_k ((\varphi_k \cdot \nabla) \theta_0, \psi_j) + (\nabla \theta_0, \nabla \psi_j) - (\eta, \psi_j)_{\Gamma_0} = 0, \quad 1 \le j \le m.$$

$$(8)$$

The left hand sides of (7) and (8) determine polynomials which we denote by

$$\xi_i - P_i(\xi_1, \xi_2, \dots, \xi_{2m}), \qquad 1 \leq j \leq 2m.$$

 P_j is a polynomial in $\xi = (\xi_1, \dots, \xi_{2m})$ of degree 2. Let P be a mapping from \mathbb{R}^{2m} to \mathbb{R}^{2m} defined by $P(\xi) = (P_1(\xi), \dots, P_{2m}(\xi))$. Then the fixed point of P, if it exists, is a solution of (7), (8). We show the existence of a fixed point of P. Let $\xi = \xi(\lambda)$ be any solution of $\xi = \lambda P(\xi)$, $0 \le \lambda \le 1$. First we treat the case $n \ge 3$. Multiplying (7) by ξ_j and summing with respect to j, we have:

$$\begin{split} &\sum_{j=1}^{m} |\xi_{j}|^{2} = \|\nabla u^{(m)}\|^{2} = \lambda \sum_{j=1}^{m} P_{j}(\xi)\xi_{j} \\ &= -\frac{\lambda}{\nu} \sum_{j,k,l} \xi_{j} \xi_{k} \xi_{l}((\varphi_{k} \cdot \nabla)\varphi_{l}, \varphi_{j}) + \frac{\lambda \beta}{\nu} \sum_{j,k} \xi_{m+k} \xi_{j}(g\psi_{k}, \varphi_{j}) + \frac{\lambda \beta}{\nu} \sum_{j} \xi_{j}(g\theta_{0}, \varphi_{j}) \\ &= -\frac{\lambda}{\nu} ((u^{(m)} \cdot \nabla)u^{(m)}, u^{(m)}) + \frac{\lambda \beta}{\nu} \left\{ (g\theta^{(m)}, u^{(m)}) + (g\theta_{0}, u^{(m)}) \right\} \\ &\leq \frac{\lambda \beta g_{\infty}}{\nu} \left\{ \|\theta^{(m)}\| + \|\theta_{0}\| \right\} \|u^{(m)}\| \\ &\leq \frac{\lambda \beta g_{\infty} c_{1}}{\nu} \left\{ c_{2} \|\nabla \theta^{(m)}\| + \|\theta_{0}\| \right\} \|\nabla u^{(m)}\| \end{split}$$

where we have used Lemmas 3, 6. Therefore,

$$\|\nabla u^{(m)}\| \le \frac{\lambda \beta g_{\infty} c_1}{v} \left\{ c_2 \|\nabla \theta^{(m)}\| + \|\theta_0\| \right\}. \tag{9}$$

Similarly,

For n=2, we have

$$\|\nabla \theta^{(m)}\|^{2} \leq \frac{\lambda c}{\chi} \|\nabla u^{(m)}\| \|\nabla \theta^{(m)}\| \|\theta_{0}\|_{4} + \lambda \{\|\nabla \theta_{0}\| + c_{3}\|\eta\|_{\Gamma_{2}}\} \|\nabla \theta^{(m)}\|.$$

Therefore,

$$\|\nabla \theta^{(m)}\| \le \frac{\lambda c}{\chi} \|\theta_0\|_p \|\nabla u^{(m)}\| + \lambda \{\|\nabla \theta_0\| + c_3\|\eta\|_{\Gamma_2}\}$$
 (10)

where p=n when $n \ge 3$, and p=4 when n=2. Substituting (10) into (9), we obtain:

$$\left(1 - \frac{cc_1c_2\beta g_{\infty}\lambda^2}{\chi v} \|\theta_0\|_p\right) \|\nabla u^{(m)}\| \leq \frac{\lambda c_1\beta g_{\infty}}{v} (c_2\lambda \|\nabla \theta_0\| + \lambda c_2c_3\|\eta\|_{\Gamma_2} + \|\theta_0\|).$$

According to Lemma 7, we can choose θ_0 satisfying the estimate

$$1 - \frac{cc_1c_2\beta g_{\infty}}{\chi v} \|\theta_0\|_{p} > \frac{1}{2}. \tag{11}$$

Then, we have

$$\|\nabla u^{(m)}\| \leq \frac{2\lambda c_1 \beta g_{\infty}}{v} (c_2 \lambda \|\nabla \theta_0\| + \|\theta_0\| + \lambda c_2 c_3 \|\eta\|_{\Gamma_2})$$

$$\leq \frac{2c_1 \beta g_{\infty}}{v} (c_2 \|\nabla \theta_0\| + \|\theta_0\| + c_2 c_3 \|\eta\|_{\Gamma_2}) \equiv \rho_1.$$
(12)

From (11), θ_0 satisfies the inequality:

$$\|\theta_0\|_p < \frac{\chi v}{2cc_1c_2\beta g_\infty}.$$

Therefore the estimate

$$\|\nabla \theta^{(m)}\| \le 2\|\nabla \theta_0\| + \frac{1}{c_2}\|\theta_0\| + 2c_3\|\eta\|_{\Gamma_2} \equiv \rho_2 \tag{13}$$

follows from (10), (12). Note that ρ_1 and ρ_2 are constants independent of λ and m. Therefore the solution ξ of $\xi = \lambda P(\xi)$ satisfies:

$$\sum_{j=1}^{2m} |\xi_j|^2 \le \rho_1^2 + \rho_2^2 \equiv \rho^2 , \quad \text{for } 0 \le \forall \lambda \le 1 .$$

Brouwer's theorem [4] tells us the existence of a fixed point of the mapping $P: \xi = P(\xi)$, such that $|\xi| \le \rho$.

Thus we have obtained the solutions $u^{(m)}$, $\theta^{(m)}$ of (5), (6). Moreover, they satisfy the estimates:

$$\|\nabla u^{(m)}\| \leq \rho_1, \qquad \|\nabla \theta^{(m)}\| \leq \rho_2.$$

Since V (resp. W) is compactly imbedded in H (resp. L^2), we can choose subsequences of $\{u^{(m)}, \theta^{(m)}\}$ which we denote by the same symbols, and elements $u \in V$, $\tilde{\theta} \in W$ such that the following convergences hold:

$$u^{(m)} \rightarrow u$$
 weakly in V , strongly in H (14)

$$\theta^{(m)} \rightarrow \tilde{\theta}$$
 weakly in W , strongly in $L^2(\Omega)$. (15)

For these convergent sequences, the following lemma holds:

LEMMA 8.

$$B(u^{(m)}, u^{(m)}, v) \rightarrow B(u, u, v), \quad \text{for} \quad \forall v \in D_{\sigma},$$

$$b(u^{(m)}, \theta^{(m)}, \tau) \rightarrow b(u, \tilde{\theta}, \tau), \quad \text{for} \quad \forall \tau \in D_{0}.$$

The proof is found in [8] and omitted. Using this lemma for (5), (6), we find

$$v(\nabla u, \nabla v) + B(u, u, v) - (\beta g \tilde{\theta}, v) - (\beta g \theta_0, v) = 0, \qquad (16)$$

$$\chi(\nabla \tilde{\theta}, \nabla \tau) + b(u, \tilde{\theta}, \tau) + b(u, \theta_0, \tau) + \chi(\nabla \theta_0, \nabla \tau) - \chi(\eta, \tau)_{\Gamma_2} = 0, \quad (17)$$

hold for $v = \varphi_i$, $\tau = \psi_i$, $\forall j$. By Lemma 5, we see the linear functional

$$v \rightarrow B(u, u, v)$$
 (resp. $\tau \rightarrow b(u, \tilde{\theta}, \tau)$)

is continuous in L^n . Therefore the linear functional

$$v \rightarrow$$
 the left hand side of (16)

(resp.
$$\tau \rightarrow$$
 the left hand side of (17))

is continuous in $V \cap L^n$ (resp. $W \cap L^n$). Since $\{\varphi_j\}$ (resp. $\{\psi_j\}$) is total in \widetilde{V} (resp. \widetilde{W}), (16) (resp. (17)) holds for any v in \widetilde{V} (resp. for any τ in \widetilde{W}). Therefore $\{u, \theta\}$ $(\theta = \widetilde{\theta} + \theta_0)$

is a required weak solution.

4. Proof of Theorem 2.

Let $\{u_i, \theta_i\}$, i=1, 2, be weak solutions of (1), (2) satisfying (i), (ii). For i=1, 2, there is a function $\theta_0^{(i)}$ satisfying the condition in Definition 1, and u_i and θ_i satisfy (3). Since the trace of $\theta_0^{(1)} - \theta_0^{(2)}$ is 0 on Γ_1 , $\theta_0^{(1)} - \theta_0^{(2)}$ belongs to W. Therefore, $\theta_1 - \theta_2$ is also in W. Put $u = u_1 - u_2$, $\theta = \theta_1 - \theta_2$. Then, they satisfy the following relations:

$$v(\nabla u, \nabla v) + B(u, u_1, v) + B(u_2, u, v) - (g\beta\theta, v) = 0, \qquad \forall v \in \tilde{V},$$

$$\chi(\nabla \theta, \nabla \tau) + b(u, \theta_1, \tau) + b(u_2, \theta, \tau) = 0, \qquad \forall \tau \in \tilde{W}.$$
(18)

From the condition (i), we see

$$u \in \tilde{V}$$
, $\theta \in \tilde{W}$.

Therefore, we can take v = u, $\tau = \theta$ and we have

$$v\|\nabla u\|^2 = B(u, u, u_1) + \beta(g\theta, u),$$

$$\chi\|\nabla\theta\|^2 = b(u, \theta, \theta_1).$$
(19)

Here we have used Lemma 6.

Let $n \ge 3$. Making use of the Hölder's inequality to estimate (19), we have

$$v \|\nabla u\|^{2} \leq \|u\|_{2n/(n-2)} \|\nabla u\| \|u_{1}\|_{n} + g_{\infty}\beta \|\theta\| \|u\|,$$

$$\chi \|\nabla \theta\|^{2} \leq \|u\|_{2n/(n-2)} \|\nabla \theta\| \|\theta_{1}\|_{n}.$$

By Lemma 3, we estimate the right hand side of the above equations, and we obtain:

$$v\|\nabla u\| \le c\|u_1\|_n\|\nabla u\| + \beta g_{\infty}c_1c_2\|\nabla\theta\|,$$

$$\chi\|\nabla\theta\| \le c\|\theta_1\|_n\|\nabla u\|.$$

Therefore,

$$v\|\nabla u\| \leq \left\{c\|u_1\|_n + \frac{\beta g_{\infty}cc_1c_2}{\gamma}\|\theta_1\|_n\right\}\|\nabla u\|$$

holds. Since u_1 , θ_1 satisfy the condition (ii):

$$c \|u_1\|_n + \frac{\beta g_{\infty} c c_1 c_2}{\chi} \|\theta_1\|_n < v$$
,

therefore $\|\nabla u\| = \|\nabla \theta\| = 0$. Since u = 0 on $\partial \Omega$ and $\theta = 0$ on Γ_1 , we see u = 0, $\theta = 0$ in Ω . Therefore $u_1 = u_2$, $\theta_1 = \theta_2$ in Ω .

When n=2, we have

$$v \|\nabla u\|^{2} \leq \|u\|_{p'} \|\nabla u\| \|u_{1}\|_{p} + \beta g_{\infty} \|\theta\| \|u\|,$$

$$\chi \|\nabla \theta\|^{2} \leq \|u\|_{p'} \|\nabla \theta\| \|\theta_{1}\|_{p},$$

where 1/p + 1/p' = 1/2. We discuss in a similar way to the case $n \ge 3$, and we have u = 0, $\theta = 0$. Theorem 2 is proved.

References

- [1] R. A. Adams, Sobolev Spaces, Academic Press, 1975.
- [2] H. Brezis, Analyse Fonctionnelle. Théorie et Applications, Masson, 1987.
- [3] Y. Giga, Solutions for semilinear parabolic equations in L^p and regularity of weak solutions of the Navier-Stokes system, J. Diff. Eq., 62 (1986), 186-212.
- [4] D. GILBARG and N. S. TRUDINGER, Elliptic Partial Differential Equations of Second Order, Springer, 1983.
- [5] D. D. Joseph, On the stability of the Boussinesq equations, Arch. Rat. Mech. Anal., 20 (1965), 59-71.
- [6] K. MASUDA, Weak solutions of Navier-Stokes equations, Tôhoku Math. J., 36 (1984), 623-646.
- [7] H. Morimoto, On the existence of weak solutions of equation of natural convection, J. Fac. Sci. Univ. Tokyo Sect. IA, 36 (1989), 87-102.
- [8] R. TEMAM, Navier-Stokes Equations, North-Holland, 1977.

Present Address:

DEPARTMENT OF MATHEMATICS, SCHOOL OF SCIENCE AND TECHNOLOGY, MEIJI UNIVERSITY TAMA-KU, KAWASAKI 214, JAPAN