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1. Notations and results.

In this paper, we discuss the existence of weak solutions of a system of equations
which describes the motion of fluid with natural convection (Boussinesq approximation)
in a bounded domain Q in R", 2<n. We consider the following system of differential
equations:

1
(uViu= ——Vp+vAu+ Bgo ,
p

divu=0, in Q 1)
-V)0=yxA8 , |

where u+V =3 .u;0/0x;. Here u is the fluid velocity, p is the pressure,  is the temperature,
g is the gravitational vector function, and p (density), v (kinematic viscosity), # (coefficient
of volume expansion), y (thermal diffusivity) are positive constants. We study this system
of equations with mixed boundary condition for 6. Let dQ (the boundary of ) be
divided into two parts I',, I', such that

aQ=F1UF2, F10F2=g.

The boundary conditions are as follows.

=Os 9= ’ on F ’ y
* I ; : @
u=0, —=n, on I,,

on

where £ (resp. 1) is a given function on I', (resp. I';), nis the outward normal vector to oR2.
In this paper, we show the existence of weak solution of this problem for bounded
domain Q in R", 2<n, using the Galerkin method (Theorem 1). Some uniqueness result
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is also obtained (Theorem 2). In the previous paper [7], we treated this problem only
for the case n=3.

In order to state the definition of weak solution and our results, we introduce some
function spaces. The functions considered in this paper are all real valued. L? and the
Sobolev space W7 are defined as usual. We also denote H™ = W7. Whether the elements
of the space are scalar or vector functions is understood from the context unless stated
explicitly. For the inner product and the norm of L?(€2), we use the notation (i, v), and
|ullg, or simply, («, v) and [u].

D, = {vector function ¢ € C*(R2) | supp ¢ =€, div ¢ =0 in Q},

H =completion of D, under the L*(Q)-norm,

V =completion of D, under the H'(£2)-norm,

¥V =completion of D, under the norm |u|| m@+ |ull Lray,

Dy = {scalar function p € C*(2) | ¢=0 in a neighborhood of I',},

W =completion of D, under the H'(2)-norm,

W =completion of D, under the norm |[ul| g1+ |4l Lng)-

Consider L? inner product of the first equation of (1) with v in ¥, and the third equation
of (1) with t in W. Using the integration by parts, we obtain:

{ wWVu, Vv)+ B(u, u, v)—(Bg0, v)=0, for all ve Ii, )
x(VO, Vi) +b(u, 6, ©)=x(n, Or, » forall teW, :
where

B(u, v, w)=((u-V, w)= . i’jz';: . uyx) 6:;:(:) wix)dx ,
and

bl 0, 9= (@), D= | ¥ ufn) 0

0
Qi=1 ox;

T(x)dx .

Now, we define the weak solution of (1), (2).

DEerFINITION 1. A pair of functions {u, 8} is called a weak solution of (1), (2), if
there exists a function 6, in H'(£2) such that ue V, 0—6,e W, 8,=¢ on I'y, and, {u, 6}
satisfies (3).

For the domain Q, we assume that €2 is a bounded domain in R” with C! boundary.
Concerning the partition of 0Q into I'y, I', appearing in (2), we further assume that
the following condition is satisfied;

ConbITION (H).
0Q=r,ur,, Iynnr,=g, measure of I'y #0,

and the intersection
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rF,nrl,
is an n—2 dimensional C! manifold.
Now, we state our results.

THEOREM 1. Let Q be a bounded domain in R" with C* boundary satisfying Condi-
tion (H). If g(x) is in L*(Q), & is in CY(T"y), and n is in L¥(I",), then there exists a weak
solution of (1), (2).

REMARK 1. Generally, V<V A L"(Q)and W< W L(2). For2<n<4, V=V and
W= W (cf. Masuda [6], Giga [3]). Therefore our theorem contains the result of [7].

Let g, =gllL~@)> and ¢, c,, c, be constants in Lemma 3 (Section 2). As for the
uniqueness, we have:

THEOREM 2. The weak solution {u, 6} of (1), (2) satisfying
(1) uel"(Q), 0eL"(Q),

Bgwccic,

@) cllul,+ 18ll,<v, when n>3,

Bgccicy

()" cllull,+ 18l ,<v, for some p>2, when n=2),

is, if it exists, unique.
REMARK 2. The condition (i) is automatically satisfied when 2<n<4.

ReMARkK 3. If we set

Re=< llull . (Reynolds number) ,
v

_ﬂngCICZ

Ra 1161, (Rayleigh number) ,

then the condition (ii) reads as
Re+Ra<1.
See also Joseph [5].

2. Some lemmas.

Here, we state some lemmas for the convenience of reference. For instance, the
constants in Lemma 3 appear in the statement of Theorem 2.
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LemMA 1. ¥ and W are separable Banach spaces.

PROOF. A subset of separable metric space is separable (e.g. Brezis [2]). If we
show V' n L%(Q) is separable, Lemma 1 is proved. We can identify V'~ L*(£2) as a subset

F={(v,—ai, SN 2) ;veEV N L"(Q)}
0x, 0x,

of L"(Q)x L¥(Q)x - - - x L*(Q). Since the latter space is separable, the set F is also
separable and Lemma 1 is proved.

Lemma 2 (Sobolev imbedding theorem), Lemma 3 (Inequalities of Poincaré type)
and Lemma 4 (Continuity of the trace operator) are essentially well-known. On the
other hand, Lemma 5 and Lemma 6 are concerned with the trilinear form familiar in
the study of the Navier-Stokes equation (see e.g. Temam [8]).

LEMMA 2. Sobolev space H(Q) is continuously imbedded in L%YS), where
g=2n/(n—2) for n>3, and + 0>qg=1 for n=2.

For the proof, see Adams [1].
LEMMA 3. There exist constants c,, ¢,, ¢ depending on Q and n such that

(1) lul<e,lVull  for VueV,

2n
.. g=—— (n=3),
(ii)) lull,<cllVull  for VueV n—2

g=4 (n=2),
(i) 6l<c,IVOl  for VoeW.

The inequalities (i), (iii) are well known, and (ii) follows from (i) and Lemma 2.
For the boundary value of H! functions, we have:

LEMMA 4. There exists a positive constant C such that
ol 20y < Clivllgr@y  Sfor all vin H(RQ).
In particular there is a positive constant cy such that
10Nl L2y <€3lIVOl L2y  Sfor all Oin W.
By Holder’s inequality and Lemmas 2, 3, we have:
LEMMA 5. Let n>3. There exists a constant cg dependeing on 2 and n such that
| B(u, v, w)| <cgl|Vul |Vo|l lwll,  for VueV, VveH'(RQ), Vwel¥Q), @
| &(u, 0, t)| < cgllVull | VO iz, for VYueV, VOeH'(Q), Vtel'(9),
hold.
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Using the integration by parts, we obtain:
LEMMA 6.
@) B(u, v, w)= —B(u,w,v)  for VueV, VYv,weH' nL"
holds. In particular,
Bu,v,v)=0  for VueV, VYveH'nL".
(ii) bu,0,t)=—bu,t,0) for VYueV, V0,1eH'NL"
holds. In particular,
b(u,0,0)=0  for VYueV, VOeH'nL".

LEMMA 7. Let Q be a bounded domain in R" satisfying the condition (H). If { is a
C! function defined on I',, then for any positive number ¢ and any p>1, there exists an
extension 0, of & such that

0o Co(RY), 0o=¢ on T, |6,l,<e.
For the proof, see e.g. [4] Lemma 6.38.

3. Proof of Theorem 1.

Under our assumptions, we can extend ¢ to a C5(R") function which we denote
by 60,. Using the Galerkin method, we construct approximate solutions of (3). Let {¢;}
be a sequence of functions in D,, linearly independent and total in 7. We can assume

Vo js Vo )=46 jk

without loss of generality. Let {y ;} be a sequence of functions in D,, linearly indepen-
dent and total in W. We can assume

(Vy Jo Vllfk) = 5jk .

Since V' (resp. W) is separable and D, (resp. D,) is dense there, we can find these
functions. We put

um=3 $i®;s
i=1

G(M)= Z €m+jl//j ’
ji=1

and we consider the following system of equations:

WVu™, V) + (™ - VYu™, ¢)—(Bg0™, ¢)—(Bgbo, ) =0, l<j<m. (5)
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X(VO™, Vi ) + (™ - V)O™, Y ) + (™ - V)0, ¥ ))

(6)
+x(VOo, VY ) —x(n, ¥)r,=0, 1<j<m.
Substituting »™, 6™ into these equations, we obtain:
1 1
&+ > kX‘; &bl V)0, 0)— 5 Ek: Em+i(Ba¥s, @)
’ 1 Q)
*T(ﬁgeo, ®)=0, 1<j<m,
1 1
Cm+jt+ 7 kE; Eilm+ (@i VIV, ¥ )+ 7 2“: El(@xV)0o, V)
' ®)

+(V6o, VY ))—(n, ¥)r,=0, I<j<m.
The left hand sides of (7) and (8) determine polynomials which we denote by

E—PLEL Eyy o Eam) s 1<j<2m.

P; is a polynomial in £=(¢,, - - -, &,,,) of degree 2. Let P be a mapping from R>™ to
R?™ defined by P(&)=(Py(&), - - -, Pyn(%). Then the fixed point of P, if it exists, is a
solution of (7), (8). We show the existence of a fixed point of P. Let &=¢(A) be any
solution of {=AP({), 0<A<1. First we treat the case n>3. Multiplying (7) by ¢&; and
summing with respect to j, we have:

S 1gr=ivumiz=1 % pe,
j= j=

A A
=53, oV o)+ T bt o 0)+ L5 8060, 0)

= _i((u(m).v)u('n) u("'))+ {(gg(rn) u(m)) +(g00 u(m))}
v

lﬁgw

{161+ 16011} ™|

ABg.c
<20 (0 1901+ 10 V)

where we have used Lemmas 3, 6. Therefore,

ﬂgoo l{

V™| < c2 VO™ + 11601} - )
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Similarly,

‘Zl ' £m+j |2 = ”VH(M)HZ =’1 '21 Pm+j(é)€m+j
i= i=
A
= = L@ V)™, 07— (@™ V)0, 6)} — V6o, VE™)-+ 4, 6™,

A
< " 18 | 2mn - 2, | VO™ 1o+ AN VO™ [V + Al -, 0™

(by Holder’s inequality)
iji IVa™ IV 1861, + A{I V6ol +c3lInlir,} [VO™||  (by Lemma 3).
For n=2, we have
IVe™|* < ixi Ve[ IVO™ ] 1864 + A{IF Boll + 311, } VO™ .
Therefore,
IvVe™| < % 18011, I V™1 + A{IVOoll +c5lnlr,} (10)
where p=n when n>3, and p=4 when n=2. Substituting (10) into (9), we obtain:
(1—w;?ill9<>llp>lw ) <3P ¢ 219601 4+ 2cscalnlr, + 1601

According to Lemma 7, we can choose 6, satisfying the estimate

1 _00102.3900

166, (11)
Then, we have
24¢189
V) s—lfg—(czxu Vol + 18]l +Acseslinlin)
(12)
2¢189
< 1f" (V8o + 18]l +c2¢5 1) = py -

From (11), 6, satisfies the inequality:

xv
160l , < - ————.
d ZCCICZﬂgoo
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Therefore the estimate

1
IVE™|| <2||V6,| - 18oll +2¢5linlir, =P, (13)
2

follows from (10), (12). Note that p, and p, are constants independent of 4 and m.
Therefore the solution & of &= AP() satisfies:

2m

Y g 1P<pi+pi=p?, for 0<ViI.

i=1

Brouwer’s theorem [4] tells us the existence of a fixed point of the mapping
P: &= P(&), such that | €] <p.

Thus we have obtained the solutions u™, 8™ of (5), (6). Moreover, they satisfy
the estimates:

V™l <p,, V6™l <p,.

Since V (resp. W) is compactly imbedded in H (resp. L?), we can choose sub-
sequences of {u™, 6™} which we denote by the same symbols, and elements ueV,
Ge W such that the following convergences hold:

“™—u  weakly in V, strongly in H (14)
6™ -F  weakly in W, strongly in L¥(). (15)
For these convergent sequences, the following lemma holds:
LEMMA 8.
B@u™, u™, v)— B(u, u, v) , for VveD,,
bu™, 6™ t)—-bu, 9, 7), for VieD,.

The proof is found in [8] and omitted. Using this lemma for (5), (6), we find
W(Vu, Vv)+ B(u, u, v)—(Bgd, v)—(Bgb,, v)=0, (16)
x(V8, V7)+ b(u, G, ©)+ bu, 04, 1)+ x(VOo, VI)—x(n, ©)r,=0,  (17)

hold for v=¢;, t=y;, Vj. By Lemma 5, we see the linear functional
v—>Bu,u,v)  (resp. 1-bu, 9, 7))
is continuous in L". Therefore the linear functional

v—the left hand side of (16)
(resp. t—the left hand side of (17))

is continuous in ¥ N L" (resp. W~ L"). Since {@;} (tesp. {y,}) is total in ¥ (resp. W),
(16) (resp. (17)) holds for any v in ¥ (resp. for any 7 in W). Therefore {u, 8} (0=0+6,)
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is a required weak solution.

4. Proof of Theorem 2.

Let {u;, 0;}, i=1, 2, be weak solutions of (1), (2) satisfying (i), (ii). For i=1, 2,
there is a function 0% satisfying the condition in Definition 1, and ; and 0, satisfy (3).
Since the trace of 8V —6{ is 0 on I';, 8 — 6 belongs to W. Therefore, 0, —0, is
also in W. Put u=u, —u,, =60, —0,. Then, they satisfy the following relations:

v(Vu, Vo) + B(u, u,, v)+ B(u,, u, v)—(gpo, v)=0, Yve ¥,

x(VO, VT)+ b(u, 6,, )+ bu,, 6, 1)=0, VieW. (1%
From the condition (i), we see '
ueV, fe W .
Therefore, we can take v=wu, t=0 and we have
vl Vul|® = Bu, u, u;) + (g0, u) ,
19)

xIVO2=b(u, 0, 6,) .

Here we have used Lemma 6. _
Let n>3. Making use of the Holder’s inequality to estimate (19), we have

VIVl < lull 2yn— 2y I Vel 2ty ln+ g BION 12l
XNVOI2 < Nt 2nn -2 I VO 16,11 -
By Lemma 3, we estimate the right hand side of the above equations, and we obtain:
vIIVull <cllug . Vull + Bgocac.1IVOI
xIVOl <cll0y ]|, Vall -

Therefore,
©CC1C
v|[Vul < {CIIul ”n+% 16, lln}IIVuII

holds. Since u,, 0, satisfy the condition (ii):

Bgccicy
cllugll,+——=

"01”n<v ’
therefore ||Vu|| =||VO|| =0. Since u=0 on 02 and =0 on I',, we see u=0, =0 in Q.
Therefore u, =u,, 6,=0, in Q.

. When n=2, we have
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vIIVull 2 < llull | Vaell lluey 1|, + Bg o O el
xNVOI> < Jlull - IVOI 1641, ,

where 1/p+1/p’=1/2. We discuss in a similar way to the case n>3, and we have
u=0, 6=0. Theorem 2 is proved.
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