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Introduction. Let $\mathfrak{g}=\oplus_{p\geq-\mu}\mathfrak{g}_{p}$ be a transitive graded Lie algebra of depth $\mu>0$ ,
and let $\mathfrak{g}_{-}=\oplus_{p<0}\mathfrak{g}_{p}$ be its negative part. Associated with the adjoint representation
of $\mathfrak{g}_{-}$ on $\mathfrak{g}$ , there is defined a cohomology group $H(\mathfrak{g}_{-}, \mathfrak{g})=\oplus_{p,r}H^{p}(\mathfrak{g}_{-}, \mathfrak{g})_{r}$ which we
call the generalized Spencer cohomology group (see \S 6).

If $\mu=1,$ $\mathfrak{g}_{-}$ is abelian and the cohomology group is well known as the Spencer
cohomology groups (see e.g., [2], [6]). The generalized Spencer cohomology group was
introduced by Tanaka [7] and has been used extensively in our studies of filtered Lie
algebras [3], geometric structures [4] and differential equations [5], based on filtered
manifolds, where it is this cohomology group that takes the r\^ole of the Spencer
cohomology group.

We know that $H^{p}(\mathfrak{g}_{-}, \mathfrak{g})_{r}$ vanishes for large $r$ by Noetherian property (see [3]),
however in various concrete problems we need further to compute this cohomology
group explicitly or to determine the range of $(p, r)$ in which $H^{p}(\mathfrak{g}_{-}, \mathfrak{g})_{r}$ vanishes. In the
case $\mu=1$ , as is well known, there is a fundamental theorem conjectured by Guillemin
and Stemberg and proved by Serre (see Appendix of [2]), which relates the vanishing
of the cohomology group with the existence of a quasi-regular basis.

The main purpose of this paper is to extend the theorem of Serre to the generalized
Spencer cohomology group. We shall give a criterion (explicit and in some extent
calculable) in terms of quasi-regular bases for the vanishing of the generalized Spencer
cohomology group, and also make clear the difference which lies between the special
case $\mu=1$ and the general case $\mu\geq 1$ .

The nature of our problem being better adapted to its dualized form, we shall
mainly discuss homology groups of graded modules, and in the last section we translate
the main results to the cohomology groups of graded Lie algebras.
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NOTATION AND $CoNVENTIONS$ . All vector spaces are considered over a field $F$ of
characteristic zero. Graded vector spaces are always Z-graded. Ifwe write $V=\oplus_{p=s}^{t}V_{p}$,
it is understood that $V_{p}=0$ for $p<s$ or $p>t$ . We say an element $x\in V$ is of degree $p$

and write $\deg x=p$ if $x\in V_{p}$ . For graded vector spaces $V=\oplus V_{p},$ $W=\oplus W_{p}$, gradations
considered on various associated vector spaces are those ones which are defined in
the standard way; for example, $(V\oplus W)_{p}=V_{p}\oplus W_{p},$ $(V\otimes W)_{p}=\oplus_{i+j=p}V_{i}\otimes W_{j}$,
$(V/W)_{p}=V_{p}/W_{p}$ (if $W$ is a graded subspace of $V$), $(V^{*})_{p}=(V_{-p})^{*}$ . A linear map $f$ : $V\rightarrow W$

is therefore of degree $r$ iff $f(V_{p})\subset W_{p+r}$ for all $p$ . For a graded vector space $V$, we define
its filtration $\{\mathscr{F}^{l}V\}_{l\epsilon Z}$ by setting

$\mathscr{F}^{l}V=\bigoplus_{p\geq l}V_{p}$ .

A graded Lie algebra $\mathfrak{g}=\oplus_{peZ}\mathfrak{g}_{p}$ is a graded vector space endowed with a Lie algebra
structure such that $[\mathfrak{g}_{p}, \mathfrak{g}_{q}]\subset \mathfrak{g}_{p+q}$ for all $p,$ $q\in Z$.

\S 1. Let $\mathfrak{n}=\oplus_{k=1}^{\mu}\mathfrak{n}_{k}$ be a finite dimensional graded Lie algebra and let $U(\mathfrak{n})$

denote its universal enveloping algebra. Let $E=\oplus_{peZ}E_{p}$ be a graded right $U(\mathfrak{n})$-module
satisfying:

$E_{p}\cdot \mathfrak{n}_{k}\subset E_{p+k}$ .
Then we have the homology group $H_{p}(\mathfrak{n}, E)$ associated with the complex

$(E\otimes\wedge \mathfrak{n}, \partial)$, where the boundary operator

$\partial$ : $E\otimes\wedge^{p}\mathfrak{n}\rightarrow E\otimes\wedge^{p-1}\mathfrak{n}$

is defined by

$\partial(\alpha\otimes X_{1}\wedge\cdots\wedge X_{p})=\sum_{i=1}(-1)^{i-1}\alpha\cdot X_{i}\otimes X_{1}\wedge\cdots\wedge\hat{X}_{i}\wedge\cdots\wedge X_{p}$

$+\sum_{i<j}(-1)^{i+j}\alpha\otimes[X_{i}, X_{j}]\wedge X_{1}\wedge\cdots\wedge\hat{X}_{i}\wedge\cdots\wedge\hat{X}_{j}\wedge\cdots\wedge X_{p}$

for $\alpha\in E,$ $X_{1},$ $\cdots,$ $X_{p}\in \mathfrak{n}$ .
Since both $E$ and $\mathfrak{n}$ are graded, we have the natural gradation: $E\otimes\wedge \mathfrak{n}=$

$\oplus(E\otimes\wedge \mathfrak{n})_{r}$ , where

$(E\oplus\wedge \mathfrak{n})_{r}=\bigoplus_{p+a+b+\cdot+c=r}..E_{p}\otimes \mathfrak{n}_{a}\wedge \mathfrak{n}_{b}\wedge\cdots\wedge \mathfrak{n}_{\epsilon}$ .

Clearly $(E\otimes\wedge \mathfrak{n})_{r}$ forms a subcomplex of $(E\otimes\wedge \mathfrak{n}, \partial)$ , of which homology group (resp.
p-th homology group) will be denoted by $H(n, E)$, (resp. $H_{p}(\mathfrak{n},$ $E)_{r}$). Then we have:

$H(\mathfrak{n}, E)=\oplus H_{p}(\mathfrak{n}, E)=\oplus H(\mathfrak{n}, E)_{r}=\oplus H_{p}(\mathfrak{n}, E)_{r}$ .
The following theorem is fundamental (for a proof see Morimoto [3]):
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THEOREM 1.1. If $E$ is finitely generated as $U(\mathfrak{n})$-module, then $H(\mathfrak{n}, E)_{r}=0$ for $r$

large enough.

In the following sections we will study explicit criterions in order for $H_{p}(\mathfrak{n}, E)_{r}$ to
vanish.

\S 2. Let $\mathfrak{n}$ and $E$ be as in the preceding section. An admissible sequence of $\mathfrak{n}$ of
length $r$ is a linearly independent sequence $\{u_{1}, \cdots, u_{r}\}$ in $\mathfrak{n}$ such that $u_{i}\in \mathfrak{n}_{k}$ if
$\dim\oplus_{p\geq k}\mathfrak{n}_{p}\geq t>\dim\oplus_{p>k}\mathfrak{n}_{p}$ . An admissible basis of $\mathfrak{n}$ is an admissible sequence of
length $n$ , where $n=\dim \mathfrak{n}$ . Take an admissible basis $\{u_{1}, \cdots, u_{n}\}$ of $\mathfrak{n}$ , and set:

$\chi(p)(=\chi(\mathfrak{n},p))=\sum_{i=1}^{p}d(u_{i})$ , where $d(u_{i})=\deg u_{i}$ .

Obviously $\chi(p)$ does not depend on the choice of admissible basis.

DEFINITION 2.1. An admissible sequence $\{u_{1}, \cdots, u_{r}\}$ of $\mathfrak{n}$ is called “injective to
$E_{m}$

’ if the following maps (multiplications by $u_{i}$) are all injective:

$\left\{\begin{array}{l}E_{m-d(u_{1})}\rightarrow^{u_{1}}E_{m}\\(E/E(u_{1}))_{m-d\langle u_{2})}\rightarrow^{u_{2}}(E/E(u_{1}))_{m}\\(E/E(u_{1}, \cdots, u_{r-1}))_{m-d\{u_{r})}\rightarrow^{u_{r}}(E/E(u_{1}, \cdots, u_{r-1}))_{m}\end{array}\right.$

where $(u_{1}, \cdots, u_{i})$ denotes the ideal of $U(\mathfrak{n})$ generated by $u_{1},$ $\cdots,$ $u_{i}$ . We say furthermore
that $\{u_{1}, \cdots, u_{r}\}$ is a quasi-regular sequence of $\mathfrak{n}$ relative to $\mathscr{F}^{l}E$ if it is injective to $E_{m}$

for all $m\geq l+\chi(1)$ .
THEOREM 2.1. Let $\mathfrak{n}$ and $E$ be as above. If there exists a quasi-regular sequence of

$\mathfrak{n}$ of length $r$ relative to $\mathscr{F}^{1}E$, then

$\mathscr{F}^{l+\chi\{p)}H_{p}(\mathfrak{n}, E)=0$

for $p=\dim \mathfrak{n}-r+1,$ $\cdots,$
$\dim \mathfrak{n}$ .

PROOF. Let us prove the theorem by induction on $r$ and $\dim \mathfrak{n}$ . Suppose that the
theorem holds if $\dim \mathfrak{n}<n$ or if $\dim \mathfrak{n}=n$ and the length of the quasi-regular sequence
is less than $r$ . Now, given a quasi-regular sequence $\{u_{1}, \cdots, u_{r}\}$ of length $r$, it suffices
to prove $\mathscr{F}^{\iota+\chi\langle p)}H_{p}(\mathfrak{n}, E)=0$ for $p=n-r+1$ .

First recall that $\mathfrak{n}$ acts on $E\otimes\wedge \mathfrak{n}$ through Lie derivative, that is, for
Yen, $\alpha\otimes X_{1}\wedge\cdots\wedge X_{q}\in E\otimes\wedge^{q}\mathfrak{n}$ , we set

$(\alpha\otimes X_{1}\wedge\cdots\wedge X_{q})\theta(Y)=\alpha Y\otimes X_{1}\wedge\cdots\wedge X_{q}+\sum_{i=1}^{q}\alpha\otimes X_{1}\wedge\cdots\wedge[X_{i}, Y]\wedge\cdots\wedge X_{q}$ .
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Then we have the following formulae:

(2.1) $\theta(Y)\cdot\partial=\partial\cdot\theta(Y)$ ,

(2.2) $\theta([X, Y])=-\theta(X)\theta(Y)+\mathfrak{A}Y)\theta(X)$ ,

(2.3) $\partial\cdot\lambda(Y)+\lambda(Y)\cdot\partial=\theta(Y)$ ,

where $\lambda(Y):E\otimes\wedge \mathfrak{n}\rightarrow E\otimes\wedge \mathfrak{n}$ is given by:

$(\alpha\otimes X_{1}\wedge\cdots\wedge X_{q})\lambda(Y)=\alpha\otimes Y\wedge X_{1}\wedge\cdots\wedge X_{q}$ .
We then have the following exact sequence of chain complexes:

(2.4) $E\otimes\wedge \mathfrak{n}E\otimes\wedge \mathfrak{n}\underline{q_{u_{1})}}\rightarrow^{\pi}E^{\langle 1)}\otimes\wedge \mathfrak{n}$ ,

where $E^{(1)}=E/E(u_{1})$, and $\pi$ is the natural projection. Note that since $[u_{1}, \mathfrak{n}]=0,$ $\theta(u_{1})$

is just the multiplication by $u_{1}$ . From our hypothesis the map:

$\mathscr{F}^{l}E\mathscr{F}^{l+d\langle u_{1})}E\underline{u_{1}}$

is injective, therefore we have the following commutative diagram whose rows are
all exact:

$\mathscr{F}^{l^{\prime}}(E\otimes\wedge^{p+2}\mathfrak{n})\downarrow\rightarrow^{q_{u_{1}})}\mathscr{F}\iota_{1\downarrow}^{\prime}+d(u_{1})(E\otimes\wedge^{p+2}\mathfrak{n})\mathscr{F}^{\iota^{\prime}+d(u_{1})}(E^{\langle 1)}\otimes\wedge^{p+2}\mathfrak{n})\underline{\pi}\rightarrow 0$

$\mathscr{F}\iota_{1\downarrow\downarrow}^{\prime}(E\otimes\wedge^{p+1}\mathfrak{n})\mathscr{F}^{l^{\prime}+d\langle u_{1})}(E\otimes\wedge^{p+1}\mathfrak{n})\mathscr{F}^{l^{\prime}+d(u_{1})}(E^{\langle 1)}\otimes\wedge^{p+1}\mathfrak{n})\underline{\alpha u_{1})}\underline{\pi}\rightarrow 0$

$0\rightarrow \mathscr{F}^{l^{\prime}}(E\otimes\wedge^{p}\mathfrak{n})\rightarrow^{\alpha u_{1})}\mathscr{F}^{l^{\prime}+d(u_{1})}(E\otimes\wedge^{p}\mathfrak{n})$ $\rightarrow^{\pi}\mathscr{F}^{l^{\prime}+d(u_{1})}(E^{(1)}\otimes\wedge^{p}\mathfrak{n})$ $\rightarrow 0$

$\downarrow$
$\downarrow$

$ 0\rightarrow \mathscr{F}^{l^{\prime}}(E\otimes\wedge^{p-1}\mathfrak{n})\rightarrow^{q_{u_{1}})}\mathscr{F}^{l^{\prime}+d\langle u_{1})}(E\otimes\wedge^{p-1}\mathfrak{n})\rightarrow\cdots$ ,

where we have put $l^{\prime}=l+\chi(p)$ . We then have the following long exact sequenoe:

$\mathscr{F}^{1^{\prime}}H_{p+1}(\mathfrak{n}, E)\rightarrow^{q_{u_{1}})_{*}}\mathscr{F}^{l^{\prime}+d(u_{1})}H_{p+1}(\mathfrak{n}, E)\rightarrow^{\pi_{*}}\mathscr{F}^{l^{\prime}+d\langle u_{1})}H_{p+1}(\mathfrak{n}, E^{\langle 1)})$

$\rightarrow^{\delta}\mathscr{F}^{l^{\prime}}H_{p}(\mathfrak{n}, E)\rightarrow^{q_{u_{1}})_{*}}\mathscr{F}^{l^{\prime}+d(u_{1})}H_{p}(\mathfrak{n}, E)\rightarrow\cdots$

Note that we have $F^{l^{\prime}+d(u_{1})}H_{p+1}(\mathfrak{n}, E)=0$ by using the induction assumption on account
of the inequality $l+\chi(p)+4u_{1})\geq l+\chi(p+1)$ . Note also that $\mathfrak{A}u_{1})_{*}=0$ by the Stokes’
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formula (2.3). Hence we have:

$0\rightarrow \mathscr{F}^{l^{\prime}+d\langle u_{1})}H_{p+1}(\mathfrak{n}, E^{\langle 1)})\rightarrow \mathscr{F}^{l^{\prime}}H_{p}(\mathfrak{n}, E)\cong\delta\rightarrow 0$ .

On the other hand, we have the following exact sequence of complexes:

$0\rightarrow E^{(1)}\otimes\wedge \mathfrak{n}\wedge u_{1}\rightarrow E^{\langle 1)}\otimes\wedge n\rightarrow E^{\langle 1)}\otimes\wedge \mathfrak{n}^{\langle 1)}\rightarrow 0$ ,

(2.5) $\Vert$

$E^{\langle 1)}\otimes\wedge \mathfrak{n}^{\langle 1)}\otimes u_{1}$

where $\mathfrak{n}^{\langle 1)}=\mathfrak{n}/\langle u_{1}\rangle$ . This yields the following exact sequence:

$\underline{\delta}\mathscr{F}^{l^{\prime}}H_{p}(\mathfrak{n}^{\langle 1)}, E^{\langle 1)})\rightarrow \mathscr{F}^{l^{\prime}+d\langle u_{1})}H_{p+1}(n, E^{\{1)})$

$-\triangleright \mathscr{F}^{l^{\prime}+d\langle u_{1})}H_{p+1}(\mathfrak{n}^{\langle 1)}, E^{\langle 1)})\rightarrow\cdots$

Now note that
$p=\dim \mathfrak{n}-r+1=\dim \mathfrak{n}^{\langle 1)}-(r-1)+1$

and
$\chi(\mathfrak{n},p)\geq\chi(\mathfrak{n}^{\langle 1)},p)$ , $\chi(\mathfrak{n},p)+d(u_{1})\geq\chi(\mathfrak{n}^{\{1)},p+1)$ .

Note also that $\mathfrak{n}^{\langle 1)}$ has a quasi-regular sequence of length $r-1$ relative to $\mathscr{F}^{t}E^{\langle 1)}$ . Then
by induction assumption we obtain

$\mathscr{F}^{l^{\prime}}H_{p}(\mathfrak{n}^{\langle 1)}, E^{\langle 1)})=\mathscr{F}^{l^{\prime}+d\langle u_{1})}H_{p+1}(\mathfrak{n}^{\langle 1)}, E^{\langle 1)})=0$ .
Hence

$\mathscr{F}^{l^{\prime}+d\langle u_{1})}H_{p+1}(\mathfrak{n}, E^{\langle 1)})=0$ .

Therefore
$\mathscr{F}^{l^{\prime}}H_{p}(\mathfrak{n}, E)=0$ ,

which completes the proof.

\S 3. In this section we examine in more detail the conditions for quasi-regular
basis. For that, we define a module $M(E^{(k)})$ for the graded $U(\mathfrak{n})$-module $E$; the dual
notion of prolongation.

We denote by $E^{(k)}$ the quotient module $E/\mathscr{F}^{k+1}E$, and by Trun the truncation
map: $E\rightarrow E^{(k)}$ . Let $R$ be the $U(\mathfrak{n})$ submodule of $E^{\langle k)}\otimes U(\mathfrak{n})$ generated by

{ $a\otimes\xi-a\xi\otimes 1|a\in E^{\langle k)},$ $\xi\in U(\mathfrak{n})$ with $\deg a+\deg\xi\leq k$} ,

and set $M(E^{\langle k)})=E^{\langle k)}\otimes U(\mathfrak{n})/R$ . We simply write $M(E^{\langle k)})=M$ if there is no fear of
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confusion. Then, as easily seen, $M$ possesses the following properties:
(P1) $M$ is a graded $U(\mathfrak{n})$-module and is generated by $\oplus,.kM$ .
(P2) There is a canonical isomorphism $q^{(k)}$ : $M^{(k)}\rightarrow E^{(k)}$ of graded U(n)-modules,

where $M^{\langle k)}=M/\mathscr{F}^{k+1}M$.
(P3) Given a graded $U(\mathfrak{n})$-module $F$, and $U(\mathfrak{n})$-homomorphism of degree $0$ ;

$f^{\langle k)}$ : $E^{\langle k)}\rightarrow F^{\langle k)}$ , then there exists a unique $U(\mathfrak{n})$ homomorphism $f$ : $M\rightarrow F$ of degree $0$ ,
such that the following diagram commutes:

$M-M\rightarrow^{f}$ $F$

$ Trun\downarrow$ $ Trun\downarrow$ $\tau_{run}\downarrow$

$M^{\langle k)}\rightarrow^{q^{(k)}}E^{(k)}\rightarrow^{l^{l)}}F^{(k)}$ .
Moreover if $F$ is generated by $\oplus_{p\leq k}F_{p}$ and $f^{(t)}$ is surjective then $f$ is also surjective.

In particular there is a canonical $U(\mathfrak{n})$-homomorphism $q:M\rightarrow E$ which makes the
following diagram commutative:

$M\rightarrow^{q}$ $E$

$ Trun\downarrow$ $\downarrow Trun$

$ M^{(k)}\rightarrow E^{(k)}q^{(\iota)}\cong$ .

We say that the $U(\mathfrak{n})$-module $E$ is k-determined if $q:M(E^{\langle t)})\rightarrow E$ is an isomorphism.
We then have:

PROPOSmON 3.1. Assume that $E$ is generated $by\oplus_{p\leq k}E_{p}$ . For an integer $l>k$ the
following conditions are equivalent:

(1) The surjection $M(E^{(k)})\rightarrow E$ induces an isomorphism $M(E^{(k)})^{\{l)}\rightarrow E^{(l)}$ .
(2) $H_{1}(\mathfrak{n}, E)_{j}=0$ for $k+1\leq j\leq l$.

Therefore $E$ is k-determined if and only if $\mathscr{F}^{k+1}H_{1}(\mathfrak{n}, E)=0$ .
$PR\infty F$ . By the properties (P1) (P2) (P3), we have:

$M(M(E^{\langle k)})^{(t)})=M(E^{\langle t)})$ for $l\geq k$ .
From this we see that in order to prove the proposition it suffices to show the assertion
for $l=k+1$ .

Let us first show that $H_{1}(\mathfrak{n}, M(E^{(k)}))_{k+1}=0$ . As before we write $M(E^{(k)})=M$. Let
$\omega\in(M\otimes \mathfrak{n})_{k+1}$ and suppose $\partial\omega=0$ . Consider the following commutative diagram:

$M\otimes\wedge^{2}\mathfrak{n}\rightarrow^{\partial}$ $M\otimes \mathfrak{n}$
$\rightarrow^{\partial}$

$M$

$\pi^{\prime}=\pi\otimes id_{\mathfrak{n}}\uparrow$ $|\pi$

$E^{\langle k)}\otimes U(\mathfrak{n})\otimes \mathfrak{n}\rightarrow^{\gamma}E^{(k)}\otimes U(n)$ ,
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where $\gamma$ is the multiplication tensored by $id_{E^{(k)}}$ . Take $\Omega e(E^{\langle k)}\otimes U(\mathfrak{n})\otimes \mathfrak{n})_{k+1}$ such that
$\pi^{\prime}(\Omega)=\omega$ . Since $\pi\circ\gamma(\Omega)=0$ , we can write

$\gamma(\Omega)=\sum(a\otimes\xi-a\xi\otimes 1)\cdot\eta$ ,

where the summation is taken over some number of $a\in E^{\langle k)},$ $\xi,$ $\eta\in U(\mathfrak{n})$ with $\deg(a\xi)\leq k$ .
Since $\deg\gamma(\Omega)=k+1$ , we can rewrite:

$\gamma(\Omega)=\sum(a\otimes\xi\cdot\xi^{\prime}-a\xi\otimes\xi^{\prime})y$ ,

where $y\in \mathfrak{n}$ and $\deg(a\otimes\xi\cdot\xi^{\prime})\leq k$ . Moreover we may assume without loss of generality
that

$\xi\cdot\xi^{\prime}=\xi^{\prime\prime}\cdot x$ with $\xi^{\prime\prime}\in U(\mathfrak{n})$ , $xe\mathfrak{n}$ .
Then

$\gamma(\Omega)=\sum a\otimes\xi^{\prime\prime}xy-a\xi\otimes\xi^{\prime}y$

$=\sum a\otimes\xi^{\prime\prime}yx+a\otimes\xi^{\prime\prime}[x, y]-a\xi\otimes\xi^{\prime}y$ .
Therefore by setting

$\Omega^{\prime}=\sum a\otimes\xi^{\prime\prime}y\otimes x+a\otimes\xi^{\prime\prime}\otimes[x, y]-a\xi\otimes\xi^{\prime}\otimes y$ ,

we see that $\gamma(\Omega)=\gamma(\Omega^{\prime})$ and $\pi^{\prime}(\Omega^{\prime})$ is a boundary. In fact
$\pi^{\prime}(\Omega^{\prime})=\sum\pi(a\otimes\xi^{\prime\prime}y)\otimes x+\pi(a\otimes\xi^{\prime\prime})\otimes[x, y]-\pi(a\xi\otimes\xi^{\prime})\otimes y$

$=\sum\pi(a\otimes\xi^{\prime\prime})y\otimes x+\pi(a\otimes\xi^{\prime\prime})\otimes[x, y]-\pi(a\otimes\xi^{\prime\prime})x\otimes y$

$=\partial(\sum\pi(a\otimes\xi^{\prime\prime})\otimes y\wedge x)$ .
On the other hand, since $\gamma(\Omega-\Omega^{\prime})=0$ we can write $\Omega=\Omega^{\prime}+\Omega^{\prime\prime}$ with

$\Omega^{\prime\prime}=\sum b\otimes\eta(u\otimes v-v\otimes u-1\otimes[u, v])$ ,

where $beE^{(k)},$ $\eta\in U(n),$ $u,$ $ve\mathfrak{n}$ . Obviously $\pi^{\prime}(\Omega^{\prime\prime})$ is a boundary. Therefore $\pi^{\prime}(\Omega)$ is a
boundary. Hence we have $H_{1}(n, M)_{k+1}=0$ . Now assume that the induced map
$M^{\langle k+1)}\rightarrow E^{\langle k+1)}$ is an isomorphism. Since $H_{1}(\mathfrak{n}, E)_{k+1}$ depends only on $E^{\langle k+1)}$ , we see
that $H_{1}(\mathfrak{n}, E)_{k+1}=H_{1}(\mathfrak{n}, M)_{k+1}=0$ .

Conversely suppose that $H_{1}(n, E)_{k+1}=0$ . In order to prove $\rho:M^{\langle k+1)}\rightarrow E^{\langle k+1)}$ is
an isomorphism, it suffices to show that $\rho:M_{k+1}\rightarrow E_{k+1}$ is injective. Suppose $\rho(\alpha)=0$

for an $\alpha eM_{k+1}$ . Since $\deg\alpha=k+1$ , we can write
$\alpha=\pi(\sum a\otimes x)$ , $aeE^{\langle k)}$ , $x\in \mathfrak{n}$ .

Then

$\partial(\sum a\otimes x)=\sum a\cdot x$

$=\rho\pi\sum a\otimes x=0$ .
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Therefore we can write
$\sum a\otimes x=\partial(\sum b\otimes y\wedge z)$ .

Then

$\alpha=\pi\partial(\sum b\otimes y\wedge z)$

$=\pi(\sum by\otimes z-bz\otimes y-b\otimes[y, z])$

$=\pi(\sum b\otimes yz-b\otimes zy-b\otimes[y, z])$

$=0$ ,

because $\pi(by\otimes z)=\pi(b\otimes yz),$ $\pi(bz\otimes y)=\pi(b\otimes zy)$ whenever $\deg(by),$ $\deg(bz)\leq k$, which
completes the proof.

Now let us recall the definition of quasi-regular basis. Given an admissible basis,
in order to see if it is quasi-regular we must in general verify an infinite number of
conditions. But if $E$ is k-determined (in many instances of application we know
beforehand the integer $k$ to which $E$ is k-determined), we have only to check a finite
number of conditions. More precisely we have the following proposition. For
convenience we assume $\mathfrak{n}_{\mu}\neq 0$ , so that $\chi(1)=\mu$ .

PROPOSmON 3.2. Let $E$ be a graded $U(\mathfrak{n})$-module satisfying $\mathscr{F}^{k+\mu}H_{1}(\mathfrak{n}, E)=0$ for
an integer $k$ . If an admissible basis $\{u_{1}, \cdots, u_{n}\}$ of $\mathfrak{n}$ is injective to $E_{k+j}$ for $0\leq j\leq\mu-1$ ,
then it is a quasi-regular basis of $\mathfrak{n}$ relative to $\mathscr{F}^{k-\mu}E$.

$p_{R\infty F}$ . We prove if $H_{1}(n, E)_{k+\mu}=0$ and if $\{u_{1}, \cdots, u_{n}\}$ is injective to $E_{k+j}$

$(0\leq j\leq\mu-1)$ , then $\{u_{1}, \cdots, u_{n}\}$ is injective to $E_{k+\mu}$ , that is,

(3.1) $(E/E(u_{1}, \cdots, u_{t}))_{k+-t)}\mu(u_{t+1}\underline{u_{l+1}}(E/E(u_{1}, \cdots, u_{\iota}))k+\mu$

is injective for $i=0,1,$ $\cdots,$ $n-1$ .
Now suppose that

$\alpha u_{i+1}\equiv 0$ $mod E(u_{1}, \cdots, u_{i})$

for an $\alpha\in E_{\iota+-du_{t+1}}\mu 1$ ). Then we can write:

$\alpha u_{i+1}=\sum_{a\leq i}\beta_{a}u_{a}$ ,

that is,
$\partial(\alpha\otimes u_{i+1}-\sum\beta_{a}\otimes u_{a})=0$ .

Since $H_{1}(\mathfrak{n}, E)_{k+\mu}=0$ , we can then find
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$\phi=\sum_{A<B\leq i+r}\phi_{AB}\otimes u_{A}\wedge u_{B}$

such that

(3.2) $\alpha\otimes u_{i+1}-\sum_{a\leq i}\beta\otimes u_{a}=\partial\phi$ .

Note that in computing $\partial\phi,$ $[u_{A}, u_{B}]$ can be always expressed as a linear combination
of $\{u_{C}|C\leq{\rm Min}(A, B)\}$ . Therefore if $r\leq 0$ it follows immediately from (3.2) that $\alpha=0$ .
If $r=1$ , comparing the coefficients of $u_{i+1}$ in (3.2), we have:

$\alpha=\sum_{A\leq i}\phi_{A,i+1}u_{A}$

$\equiv 0$ $mod E(u_{1}, \cdots, u_{i})$ ,

which shows that the map (3.1) is injective. Now in the case $r>1$ , let

$A_{0}={\rm Max}\{A|\phi_{A,i+r}\neq 0\}$ .

Then, comparing the coefficients of $u_{i+r}$ in (3.2), we have:

$\phi_{A_{O}.i+r}u_{A_{O}}=-\sum_{A<A_{O}}\phi_{A.i+r}u_{A}$ .

Note that

$\deg(\phi_{A_{O},i+r}u_{A_{O}})=\deg\phi-d(u_{i+r})$

$=k+\mu-d(u_{i+r})$ .

Therefore $k\leq\deg(\phi_{A_{O},i+r}u_{A_{O}})\leq k+\mu-1$ . Hence by our assumption, we can write:

$\phi_{A_{0},i+r}=\sum_{A<A_{O}}\eta_{A}u_{A}$ .

Now set

$\phi^{\prime}=\phi-\partial\sum_{A<A_{0}}\eta_{4}4\otimes u_{A}\wedge u_{A_{0}}\wedge u_{i+r}$
,

and let $\phi^{\prime}$ take the r\^ole of $\phi$ in (3.2). Then $A_{\acute{0}}<A_{0}$ , where $A_{\acute{0}}$ is the integer corresponding
to $\phi^{\prime}$ defined in the same way as $A_{0}$ . Repeating this procedure, we can reduce to the case
$r=1$ . We thus conclude that $\alpha\equiv 0mod E(u_{1}, \cdots, u_{i})$ . Hence (3.1) is injective. q.e. $d$ .

REMARK 1. Under the assumption of Prop. 3.2, we have actually $\mathscr{F}^{k}H_{1}(\mathfrak{n}, E)=0$

as a consequence of Th. 2.1.

REMARK 2. In the case $\mu=1$ , the dual version of Prop. 3.2 is well known ([6]
Prop. 3.3).
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\S 4. So far we have shown that the existence of a quasi-regular sequence implies
the vanishing of the homology group in certain range. In this section we consider
whether there exists a quasi-regular sequence. In this and next sections we shall assume
that the ground field $F$ contains more than countable elements (e.g., $R$ or C), and that
the graded module $E=\oplus,.zE$, satisfies $\dim E_{p}<\infty$ for $\forall p\in Z$.

In the case where $\mathfrak{n}$ is abelian a slight modification of Serre’s theorem (see Appendix
of [2]) gives a necessary and sufficient condition for the existence of a quasi-regular
sequence: Let $\mathfrak{a}$ be a finite dimensional graded abelian Lie algebra concentrated to
degree $v>0$ , namely $\mathfrak{a}=\mathfrak{a}_{v}$ , and let $E=\oplus E_{p}$ be a graded $U(\mathfrak{a})$-module with $\dim E_{p}<\infty$ .
Then:

THEOREM 4.1 (Serre). The following conditions are equivalent:
(1) There exists a quasi-regular sequence of $a$ of length $s$ relative to $\mathscr{F}^{\iota}E$.
(2) $\mathscr{F}^{l+pv}H_{p}(\mathfrak{a}, E)=0$ , for $p=\dim \mathfrak{a}-s+1,$ $\cdots,$

$\dim \mathfrak{a}$ .
In fact the implication (1) $\Rightarrow(2)$ follows from Th. 2.1. The converse (2) $\Rightarrow(1)$ follows

from the induction as in the proof of Th. 2.1 and the following:

LEMMA 4.1. The following conditions are equivalent:
(1) There exist a countable number ofproper subspaces $A_{i}\subset \mathfrak{a}$ such that

$\mathscr{F}^{l}E\rightarrow^{u}\mathscr{F}^{l+\nu}E$

is injective for all $u\in \mathfrak{a}\backslash \cup A_{i}$ .
(2) $\mathscr{F}^{l+vn}H_{n}(\mathfrak{a}, E)=0$ , where $n=\dim \mathfrak{a}$ .
Note that in the above lemma we do not assume $E$ is finitely generated as

$U(\mathfrak{a})$-module, the proof is however similar to that of Serre. For the sake of completeness
we will give the proof of Lemma 4.1: It is clear that (1) implies (2). To prove the
converse, let us consider $Ass(\mathscr{F}^{\iota}E)$ , the set of all associated prime ideals to $\mathscr{F}^{l}E$; a
prime ideal $p\subset U(\mathfrak{a})$ is said to belong to $Ass(\mathscr{F}^{l}E)$ if and only if there exists a non-zero
$\alpha\in \mathscr{F}^{\iota}E$ such that

$\mathfrak{p}=\{x\in U(\mathfrak{a})|\alpha x=0\}$ .

Then for $ue\mathfrak{a}$ , by a standard argument we see that the multiplication $\mathscr{F}^{\iota}E\rightarrow^{u}\mathscr{F}^{l+v}E$

is injective if and only if $u\not\in\bigcup_{peAss(},l{}_{E)}P$ .
On the other hand note that

$Ass(\mathscr{F}^{l}E)=\bigcup_{p\geq l}Ass(E_{p}U(a))$

and that $Ass(E_{p}U(\mathfrak{a}))$ is a finite set because $E_{p}U(\mathfrak{a})$ is finitely generated (cf. [1]). Hence
$Ass(\mathscr{F}^{l}E)$ is a countable set.

Now suppose that $\mathscr{F}^{\iota+vn}H_{n}(\mathfrak{a}, E)=0$ . Then the condition $\alpha\cdot U(\mathfrak{a})=0,$ $\alpha\in \mathscr{F}^{l}E$ ’
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implies $\alpha=0$ , that is to say $U(\mathfrak{a})\not\in Ass(\mathscr{F}^{l}E)$ . Hence $Ass(\mathscr{F}^{\iota}E)$ consists of a countable
number of proper ideals of $U(\mathfrak{a})$ . Therefore (2) implies (1).

Now returning to our nilpotent case, let $\mathfrak{n}=\oplus_{p=1}^{\mu}\mathfrak{n}_{p}$ be a graded Lie algebra and
$E=\oplus_{p\in Z}E_{p}$ a graded $U(\mathfrak{n})$-module. For each integer $i,$ $E/(E\cdot \mathscr{F}^{i+1}\mathfrak{n})$ becomes a graded
$U(\mathfrak{n}_{i})$-module, where $n_{i}$ is regarded as an abelian graded Lie algebra concentrated to
degree $i$, so that we can consider the homology group $H_{p}(\mathfrak{n}_{i}, E/(E\cdot \mathscr{F}^{i+1}\mathfrak{n}))$ .

For an integer $r\geq 0$ , define integer $\lambda,$ $s$ by
$r=\dim \mathscr{F}^{\lambda+1}\mathfrak{n}+s$ $(0\leq\lambda\leq\mu, 0\leq s<\dim \mathfrak{n}_{\lambda})$ .

Then we have:

THEOREM 4.2. There exists a quasi-regular sequence of $\mathfrak{n}$ relative to $\mathscr{F}^{l}E$ of length
$r$ if and only if

$\mathscr{F}^{l+\mu-i+pi}H_{p}(\mathfrak{n}_{i}, E/E\cdot \mathscr{F}^{i+1}\mathfrak{n})=0$

for $\lambda\leq i\leq\mu$ and

$p=\left\{\begin{array}{ll}1, \cdots, \mathfrak{n}_{i} & if i\geq\lambda+1,\\n_{\lambda}-s+1, \cdots, \mathfrak{n}_{\lambda} & if i=\lambda.\end{array}\right.$

In fact the existence of such a quasi-regular sequence is equivalent to the existence
ofquasi-regular bases of $n_{i}$ relative to $\mathscr{F}^{l+\mu-i}(E/E\cdot \mathscr{F}^{i+1}\mathfrak{n})$ for $\lambda<i\leq\mu$ and quasi-regular
sequence of $\mathfrak{n}_{\lambda}$ of length $s$ relative to $\mathscr{F}^{\iota+\mu-\lambda}(E/E\cdot \mathscr{F}^{i+1}\mathfrak{n})$ . Hence Theorem 4.2 follows
from Th. 4.1.

As a consequence of Th. 4.2, we see that there does not necessarily exist quasi-
regular sequence. In fact, if there exists one which covers $\mathfrak{n}_{\mu}$ , then we should have
$\mathscr{F}^{\iota}H_{\dim \mathfrak{n}_{\mu}}(n_{\mu}, E)=0$ for large 1. But $E$ is not necessarily finitely generated as $U(\mathfrak{n}_{\mu})-$

module even if so is as $U(\mathfrak{n})$-module. Therefore $\mathscr{F}^{l}H_{\dim \mathfrak{n}_{\mu}}(\mathfrak{n}_{\mu}, E)$ does not vanish in
general (cf. Th. 1.1). For example, if $\mathfrak{n}_{\mu}$ acts trivially on $E$, then $H(\mathfrak{n}_{\mu}, E)=E\otimes\wedge \mathfrak{n}_{\mu}$ ,
which has non-zero elements of arbitrary high degree provided that $\dim E=\infty$ . Hence
for such $E$, there does not exist any quasi-regular sequence of $\mathfrak{n}$ relative to $\mathscr{F}^{l}E$, however
large $l$ may be. This is a typical phenomenon of nilpotent cases contrary to abelian cases.

\S 5. Here we discuss how to compute the homology group $H(\mathfrak{n}, E)$ in general.
First we treat one extreme case.

THEOREM 5.1. If the $U(\mathfrak{n})$-module $E$ satisfies the following conditions:
(1) $\mathfrak{n}_{\mu}$ acts trivially on $\mathscr{F}^{l-\mu}E$,
(2) $\mathscr{F}^{l+\chi(\mathfrak{n}/\mathfrak{n}_{\mu},q)}H_{q}(\mathfrak{n}/\mathfrak{n}_{\mu}, \mathscr{F}^{l-\mu}E)=0$ for $q=\dim \mathfrak{n}/\mathfrak{n}_{\mu}-r+1,$ $\cdots,$ $\dim \mathfrak{n}/\mathfrak{n}_{\mu}$

(this condition is satisfied if there exists a quasi-regular sequence of length $r$ of
$\mathfrak{n}/\mathfrak{n}_{\mu}$ relative to $\mathscr{F}^{l}E$),

then $\mathscr{F}^{l+\chi\langle \mathfrak{n},p)}H_{p}(\mathfrak{n}, E)=0$ for $p=\dim \mathfrak{n}-r+1,$ $\cdots,$
$\dim \mathfrak{n}$ .
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$PR\infty F$ . We proceed by induction on $\dim \mathfrak{n}_{\mu}$ . Let $u$ be a non-zero element of $\mathfrak{n}_{\mu}$ and
put $\overline{n}=\mathfrak{n}/\langle u\rangle$ . Then $\mathscr{F}^{\iota-\mu}E$, which will be denoted by $E^{\prime}$ , is a $U(\overline{\mathfrak{n}})$-module satisfying
the conditions stated above. Hence by induction assumption we have:

(5.1) $\mathscr{F}^{l+\chi(\overline{n}.q)}H_{q}(\overline{\mathfrak{n}}, E^{\prime})=0$ for $q=\dim\overline{\mathfrak{n}}-r+1,$ $\cdots,$
$\dim\overline{\mathfrak{n}}$ .

Now identifying $\overline{\mathfrak{n}}$ with a subspace of $\mathfrak{n}$ complementary to $\langle u\rangle$ , we have the following
exact sequence:

$0\rightarrow\wedge\overline{\mathfrak{n}}\wedge n\underline{Au}\rightarrow\wedge\overline{\mathfrak{n}}\rightarrow 0$ .
Since $u$ acts trivially on $E^{\prime}$ , we have the exact sequence of complexes:

$0\rightarrow E^{\prime}\otimes\wedge\overline{\mathfrak{n}}E^{\prime}\otimes\wedge \mathfrak{n}\underline{\wedge u}\rightarrow E^{\prime}\otimes\wedge\overline{\mathfrak{n}}\rightarrow 0$ ,

which yields a long exact sequence:

(5.2) $\rightarrow \mathscr{F}^{k}H_{p-1}(\overline{\mathfrak{n}}, E^{\prime})\rightarrow \mathscr{F}^{k+\mu}HA\mathfrak{n},$ $E^{\prime}$) $\rightarrow \mathscr{F}^{k+\mu}H_{p}(\overline{\mathfrak{n}}, E^{\prime})\rightarrow\cdots$

Let $ k=l+\chi(n, p)-\mu$ and let $\dim \mathfrak{n}-r+1\leq p\leq\dim \mathfrak{n}$ . Then from (5.1), we see that

$\mathscr{F}^{k}H_{p-1}(\overline{\mathfrak{n}}, E^{\prime})=\mathscr{F}^{k+\mu}H_{p}(\overline{\mathfrak{n}}, E^{\prime})=0$ ,

because

$p-1\geq\dim\overline{\mathfrak{n}}-r+1$ ,

$k-(l+\chi(\overline{\mathfrak{n}},p-1))=\chi(\mathfrak{n},p)-\mu\chi(\overline{n},p-1)=0$ ,

$k+\mu-(l+\chi(\overline{\mathfrak{n}},p))=\chi(n,p)-\chi(\overline{\mathfrak{n}},p)\geq 0$ .
Hence by (5.2) we have $\mathscr{F}^{k+\mu}H_{p}(\mathfrak{n}, E^{\prime})=0$ . But note that

$\mathscr{F}^{k+\mu}(E^{\prime}\otimes\wedge^{i}\mathfrak{n})=\mathscr{F}^{k+\mu}(E\otimes\wedge^{i}n)$ for $i\leq p+1$ ,

because

$k+\mu-\chi(\iota)\geq k+\mu-\chi(p+1)$

$=l+\chi(p)-\chi(p+1)\geq l-\mu$ .
Therefore

$\mathscr{F}^{k+\mu}H_{p}(\mathfrak{n}, E)=\mathscr{F}^{k+\mu}H_{p}(\mathfrak{n}, E^{\prime})=0$ ,

which completes the proof.

Now let us sketch a general idea to compute $H(\mathfrak{n}, E)$ . We assume that $E$ is finitely
generated as $U1n$)-module.

Case 1, where there exists $ue\mathfrak{n}_{\mu}$ such that $E\rightarrow^{u}E$ is injective. In this case, using
the exact sequences (2.4), (2.5), we can reduce our computation to that of
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$H(\mathfrak{n}/\langle u\rangle, E/E(u))$ .
Case 2, where $\mathfrak{n}_{\mu}$ acts trivially on $E$ . By Prop. 5.1, the computation is reduced to

that of $H(\mathfrak{n}/n_{\mu}, E)$ .
General case: We define an ascending sequence of U(n)-submodules $\{K^{i}\}$ by

$K^{1}=\{\alpha eE|\alpha \mathfrak{n}_{\mu}=0\}$ ,

$K^{i+1}=\{\alpha\in E|\alpha n_{\mu}\subset K^{i}\}$ for $l\geq 1$ .
Then by Noetherian property this sequenoe stabilizes, say, $ K^{s}=K^{s+1}=\cdots$ , for an $s$ .
We have the following exact sequences:

$0\rightarrow K^{s}\rightarrow E\rightarrow E/K^{s}\rightarrow 0$

$0\rightarrow K^{s-1}\rightarrow K^{s}\rightarrow K^{s}/K^{s-1}\rightarrow 0$

$0\rightarrow K^{2}\rightarrow K^{3}\rightarrow K^{3}/K^{2}\rightarrow 0$

$0\rightarrow K^{1}\rightarrow K^{2}\rightarrow K^{2}/K^{1}\rightarrow 0$ .
Here $K^{1},$ $K^{2}/K^{1},$ $\cdots,$ $K^{s}/K^{s-1}$ are U(n)-modules on which $\mathfrak{n}_{\mu}$ acts trivially (case 2), and
$E/K^{s}$ is a module which satisfies $H_{\dim \mathfrak{n}_{\mu}}(\mathfrak{n}_{\mu}, E/K^{s})=0$ , henoe is of type treated in case 1
by virtue of Lemma 4.1. Thus by using the above exact sequences we may reduce our
computation to case 1 and case 2 (up to long exact sequences).

\S 6. Let $\mathfrak{g}=\oplus_{peZ}\mathfrak{g}_{p}$ be a transitive graded Lie algebra of depth $\mu>0$ , which is
by definition a graded Lie algebra satisfying the following conditions:

(1) $\dim \mathfrak{g}_{p}<\infty$ for all $p\in Z$,
(2) If $[x_{p}, \mathfrak{g}-]=0forx_{p}\in \mathfrak{g}_{p}(p\geq 0)$ , then $x_{p}=0$ , where we set $\mathfrak{g}-=\oplus_{q<0}\mathfrak{g}_{q}$ ,
(3) $\mathfrak{g}_{q}=0$ for $ q<-\mu$ .
Then we have the cohomology group $H(\mathfrak{g}_{-}, \mathfrak{g})$ associated with the adjoint

representation of $\mathfrak{g}_{-}$ on $\mathfrak{g}$ , that is the cohomology group of the cochian complex
$Hom(\wedge \mathfrak{g}-, \mathfrak{g})$ with the coboundary operator $Hom(\wedge^{p}\mathfrak{g}-, \mathfrak{g})\rightarrow Hom(\wedge^{p+1}\mathfrak{g}_{-}, \mathfrak{g})$

$\delta$

defined by

$\delta\phi(x_{1}, \cdots, x_{p+1})=\sum_{i=1}^{p+1}(-1)^{i-1}[x_{i}, \phi(x_{1}, \cdots,\hat{x}_{i}, \cdots, x_{p+1})]$

$+\sum_{i<j}(-1)^{i+j}\phi([x_{i}, x_{j}], x_{1}, \cdots,\hat{x}_{i}, \cdots,\hat{x}_{j}, \cdots, x_{p+1})$

for $\phi\in Hom(\wedge^{p}\mathfrak{g}_{-}, \mathfrak{g}),$
$x_{1},$ $\cdots,$ $x_{p+1}\in \mathfrak{g}_{-}$ . Let $Hom(\wedge \mathfrak{g}_{-}, \mathfrak{g})_{r}$ be the subspace of

$Hom(\wedge \mathfrak{g}_{-}, \mathfrak{g})$ consisting of all the elements of degree $r$ (an element $\phi\in Hom(\wedge \mathfrak{g}_{-}, \mathfrak{g})$

is said to be of degree $r$ if $\phi(\mathfrak{g}_{i_{1}}\wedge\cdots\wedge \mathfrak{g}_{i_{p}})\subset \mathfrak{g}_{i_{1}+\cdots+i_{p}+r}$ for any $i_{1},$ $\cdots,$ $i_{p}<0$). As
easily seen, $Hom(\wedge \mathfrak{g}_{-}, \mathfrak{g})_{r}$ is a subcomplex of $Hom(\wedge \mathfrak{g}_{-}, \mathfrak{g})$ . Denoting by $H(\mathfrak{g}_{-}, \mathfrak{g})_{r}=$

$\oplus H^{p}(\mathfrak{g}_{-}, \mathfrak{g})_{r}$ its cohomology group, we obtain the direct sum decomposition
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$H(\mathfrak{g}_{-}, \mathfrak{g})=\bigoplus_{p,r}H^{p}(\mathfrak{g}_{-}, \mathfrak{g})_{r}$
.

The cohomology group, endowed with this bi-gradation, is called the generalized Spencer
cohomology group of the graded Lie algebra $\mathfrak{g}$ .

Let $\mathfrak{n}=\oplus_{p>0}\mathfrak{n}_{p}$ and $E=\oplus E_{p}$ be given by $\mathfrak{n}_{p}=\mathfrak{g}_{-p}$ and $E_{p}=(\mathfrak{g}_{p})^{*}$ . Then $E$ is a
graded $U(\mathfrak{n})$-module generated by $E_{-}=\oplus_{p<0}E_{p}$, and the p-th homology group of
degree $r,$ $H_{p}(\mathfrak{n}, E)_{r}$ is dual to thep-th cohomology group ofdegree $r,$ $H^{p}(\mathfrak{g}_{-}, \mathfrak{g})_{r}$ . Moreover
$M(E^{\langle k)})=E$ if and only if $\mathfrak{g}$ is the prolongation of $\oplus_{p\leq k}\mathfrak{g}_{p}$ (for the definition of the
prolongation see e.g., [3]).

Therefore by passing to the dual, we can apply all the result of the preceding
sections to the cohomology groups of graded Lie algebras. Now let us translate the
main part of them.

Let $\mathfrak{g}=\oplus_{p\geq-\mu}\mathfrak{g}_{p}$ be a transitive graded Lie algebra of depth $\mu$ . A sequence
$\{e_{1}, \cdots, e_{r}\}$ in $\mathfrak{g}_{-}$ is called admissible if it is linearly independent and if $e_{i}\in \mathfrak{g}_{k}$ for all $i$

such that $\dim\oplus_{p<k}\mathfrak{g}_{p}<i\leq\dim\oplus_{p\leq k}\mathfrak{g}_{p}$, and called an admissible basis if moreover it
forms a basis of $\mathfrak{g}_{-}$ . By taking an admissible basis $\{e_{1}, \cdots, e_{n}\}$ , we define:

$\chi(p)=\chi(\mathfrak{g}_{-}, p)=\sum_{i=1}^{p}\deg e_{i}$ .

For an admissible sequence $\{e_{1}, \cdots, e_{r}\}$ , we set

$(\mathfrak{g}_{p})_{i}=$ { $A\in \mathfrak{g}_{p}|[e_{j},$ $A]=0$ for $j\leq i$}.

Then we have the following exact sequence:

$0\rightarrow(\mathfrak{g}_{p})_{i+1}\rightarrow(\mathfrak{g}_{p})_{i}\rightarrow^{e_{i+1}}(\mathfrak{g}_{p+\deg e\iota+1})_{i}$

for $0\leq i\leq r-1$ , where we denote also by $e_{i+1}$ the map: $A\vdash\rightarrow[e_{i+1}, A]$ .

DEFINITION 6.1. An admissible sequence $\{e_{1}, \cdots, e_{r}\}$ of $\mathfrak{g}_{-}$ is called “surjective
from $\mathfrak{g}_{m}$

’ if the following maps are surjective for $i=0,$ $\cdots,$ $r-1$ :

$\langle \mathfrak{g}_{m})_{i}(\mathfrak{g}_{m+depe_{t+1}})_{i}\underline{e_{j+1}}$ .

We say that $\{e_{1}, \cdots, e_{r}\}$ is a quasi-sequence of $\mathfrak{g}$ -with respect to $\mathscr{F}^{l}\mathfrak{g}$ if it is surjective
from $\mathfrak{g}_{m}$ for all $m\geq l+\chi(1)$ .

PROPOSITION 6.1. Assume that
(1) $\mathfrak{g}$ is the prolongation $of\oplus_{p<k+\mu}\mathfrak{g}_{p}$ ,

(2) An admissible basis $\{e_{1}, \cdots, e_{n}\}$ of $\mathfrak{g}-$ is surjective from $\mathfrak{g}_{k+i}$ for $i=$

$0,1,$ $\cdots,$ $\mu-1$ .
Then $\{e_{1}, \cdots, e_{n}\}$ is a quasi-regular basis with respect to $\mathscr{F}^{k-\mu}\mathfrak{g}$ .
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THEOREM 6.1. If there exists a quasi-regular sequence of $9-of$ length $r$ relative to
$\mathscr{F}^{l}\mathfrak{g}$ , then we have

$\mathscr{F}^{\iota+\chi\langle p)}H^{p}(\mathfrak{g}_{-}, \mathfrak{g})=0$

for $p=\dim \mathfrak{g}_{-}-r+1,$ $\cdots,$ $\dim \mathfrak{g}_{-}$ .
We can also dualize the discussion of \S 4 and \S 5.
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