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Introduction.

In [2], Hettling has proved that for any prime number g there exist infinitely many
totally real abelian fields F such that g divides the orders of K,0, Milnor’s K,-groups
of the rings of integers in F (cf. [4]), in discussing the divisibility properties of the
orders of these groups in certain cases. In this paper, we shall show that the prime ¢
in this proposition can be replaced by any integer ne IV. We shall use the same notations
as in [2], as explained in the following paragraph for completeness’ sake.
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§1. Notations and preliminaries.

For me N, let {,, be a primitive m-th root of unity, and Q((,)* :=0(,+{,") the
maximal totally real subfield of the full cyclotomic field @((,,). For an arbitrary abelian
number field F, O denotes its ring of integers, {r the Dedekind zeta-function associated
to F, and H the Dirichlet character group associated to F. For a character ye H, let
L(s, x) be the Dirichlet L-series associated to x and B; ,, i=1,2, 3, - - - the generalized
Bernoulli numbers. The ordinary Bernoulli numbers B;=B; ; belong to the principal
character y=1, refer to [7].

The Birch-Tate conjecture (cf. [1], [5]) states that

$K,0p=| Wy(F)-Ly(—1)|
for any totally real number field F, where

Wy(F):=max{me N | g*=1 for any element g e Gal(F({,)/F)} .
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Equivalently,
WZ(F) =2 nP""(F) s
' P

where the product is taken over all prime numbers p, and
n(F):=max{n | Q(,)* =F}.

For totally real abelian number fields, the work of Mazur and Wiles [3] on the
“Iwasawa Main Conjecture” implies the Birch-Tate conjecture up to the 2-primary
part. That is to say, for any odd prime number q and for any totally real abelian number
field F,

(D q*|#K,0p <= q*| W, (F)*{{(—1).

We will work with subfields Fof Q((,)*, p being an odd prime. Itis easy to see that

24, if Fe((,)*
24p, if F=Q,)".

Next we give a finite expression for |{g(—1)|. Let F be the subfield of Q((,)* with
[F: @] =n. Then every nontrivial character y € H is of conductor p. From the identities

(cf. [71)

(0)) WiF)= {

¢es)= 11 Ls, %)

xeH
and

1
L(—la X)= _?Bz,x s

we obtain

=D ==, I] By -
er
Furthermore, since B, ; =B,=1/6 and
1 7=
= Z xOwt—p),  x#1,

we obtain

I1 Z (Ot —p).

ICH(=D]= ——12 oy ler:
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Letting S, := f’;ll x(£)t(t— p) and considering (1), (2) we obtain

3) g | #K,0p <= q*| HHSx
X€E
x¥*1

for any prime number g #2, p.

§2. The main theorem.

THEOREM. Let F be a subfield of Q((,)*, O its ring of integers. For an integer k>1,
(i) If ¢=5 is a prime number and q* divides [F: Q), then q" divides #K,0r.
(i) If 32 divides p— 1 and 3* divides [F: Q], then 3* divides #K,0r.

Proor. By (3), we have only to show that

@ | T1 S,

xeH
L XFEL

Let F, be the subfield of F with [F,: Q]=¢* and H, the Dirichlet character group
associated to F,. Since H, < H, it is enough to show (4) in which H is replaced by H,.
We shall write

(4-k) - g 1] s,

xeH;
x¥*1

and prove this by induction on k.
In case k=1, the order of H, is g, all x(¢) are g-th roots of unity and S, e Z[{,]
for all ye H,. Furthermore, since

= —1)p—2

) t(t_1)=p(p Xp—2)
, Cr=1 3

g| 372} (e —1) if g=5 and 3| YPZ [ #(z—1) if g=3. Now consider congruences modulo

g in Z[{,]. Fix ye H,, x#1. Since p=1 (mod g),

p—1

Ep‘;l W= 1—Y ft—1)

t=1

=p; () —Duz—1) (modg).
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Now ({,— D) [(x()—1), 1<t<p—1, and ({,—1)|g, hence ({,~1)| S, for all ye H,, y #1.
Therefore,

=1 IT s, .

xeH,
x¥*1

Since ({,—1)?"*=(g) as ideals in Z[{,] and since [

g| I1 S,-

xeH;
x#*1

reHs S,€Z, we obtain
X

Next we shall prove (4-(r + 1)) assuming

@1 q’| I1 s,.

xeH,
x#1

Since the order of H,, , is ¢"*?, all x(¢) are ¢"* '-th roots of unity and S, € Z[{,,+:] for
all ye H, . ,. Similarly to case (4-1), it is easy to see that ({+:—1)|(x()—1), 1<t<p—1,
(g+1—1)|g, and ((p+1—1)|S, for all ye H,,,, x#1. Now consider the product

IT s=1IIs,x 11 s,.

xeHy+1 xeH, x€Hy+1\Hy
x#*1 x#*1

From the above, we see

(qu+l _ l)qr+l_qr

I s,.

x€H,+ 1\H,

Since ({p+1—1)7""' " =(g) as ideals in Z[{,+:] and since

IT s=1II s,/ 1lS,¢ez,
x€H,+ \H, x€Hy 4+ xeH,
1#1 x#1
we obtain
gl II s,,
xeHy+ 1\H,
hence
+1
g 11 s,.
x€Hy+
x¥1

COROLLARY. For any ne N there exist infinitely many totally real abelian fields F
with the property that n divides $K,0r.
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ProoF. For n=2°m, 2 fm, we put
P,:={p prime | p=1(mod 3m) and p>2e+1} .

By Dirichlet’s theorem on arithmetic progressions, P, has infinitely many elements. For
pe P, we consider F which is a subfield of Q(,)* such that m divides [F: Q] and
e<[F:Q], for example F:=Q((,)". By the Main Theorem, m divides #K,0p.
Furthermore, by Tate’s 2-rank formula (cf. [6]), which implies that 2F 2! divides #K,0r
for any totally real number field F, we have

2°| #K,0p,
hence
n=26m|#K2@F . .
REMARK. In case e=0, we may consider F with
[F:Ql=m=n.
In case e>0, we put d:=(m, e) and
. 6me
P, ={p prime | p=1 <mod—d—>} .
For pe P,, we may consider F with
[F:0]= M <.
d
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