Tokyo J. MATH.
VoL. 14, No. 2, 1991

Homogeneous Siegel Domains of Nonpositive
Holomorphic Bisectional Curvature

Tadashi TSUJI

Mie University
(Communicated by T. Nagano)

Introduction.

The notion of quasi-symmetric Siegel domains was introduced by Satake [10] in
an algebraic manner. D’Atri and Dorfmeister [2] proved that an irreducible
homogeneous Siegel domain D is quasi-symmetric if and only if the Bergman metric
of D induces a symmetric metric on the canonical tube domain associated with D. They
proved in [3] that every quasi-symmetric Siegel domain has nonpositive holomorphic
bisectional curvature relative to its Bergman metric. Besides these, few other differential
geometric characterizations of quasi-symmetric Siegel domains are known. It is
interesting to see whether a homogeneous Siegel domain D of nonpositive holomorphic
bisectional curvature in the Bergman metric is necessarily quasi-symmetric. In this paper,
we will prove it affirmatively in the following special cases:

(1) The holomorphic sectional curvature restricted on a certain submanifold of
D satisfies a pinching condition;

(2) D is a domain over a dual square cone due to Xu [14];

(3) The rank of D is less than or equal to three;

(4) The dimension of D is less than or equal to ten.

We note that the same problem for the sectional curvature has been solved by D’Atri
and Miatello [4]. '

The main results are proved in §4.
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§1. Normal j-algebras and Bergman metrics.

In this section, we describe briefly some of the basic facts on the structure of normal
J-algebras which we need later. For more details, the reader is referred to [1], [4]-[9].

L.1. Let g be a solvable Lie algebra over the field R of real numbers. We suppose

that g has an almost complex structure j and a linear form w satisfying the following
conditions:

Lix, jy1=Jjlix, y1+jlx, jy]1+[x, y] forall x,yegq;
(1.1) o(Ljx, jy}) =[x, y]) forall x,yeg;
o[ jx, x])>0 for x#0eg.

If the adjoint representation of g is triangular in gl(g), then the pair (g, j) is called a
normal j-algebra.

It is known that homogeneous Siegel domains in complex vector spaces and normal
j-algebras are in one to one correspondence up to holomorphic equivalence and
J-isomorphism, respectively. Let us recall this correspondence briefly. Let D be a
homogeneous Siegel domain. Then there exists a maximal R-triangular subalgebra (the
Iwasawa algebra) g in the Lie algebra of the affine automorphism group of D. Since
the Lie group generated by g acts simply transitively on D, the tangent space of D at
a base point can be identified with g as vector spaces. By this identification and the
complex structure of the domain D, we can define an almost complex structure j on the
Lie algebra g. Taking the linear form w on g defined by

(1.2) w(x)= % trace(ad(jx)—jad(x)),

we have a normal j-algebra (g, j). By this correspondence, the Bergman metric { , )
of D at the base point is given on g as follows:

(1.3) {x, y>=w(ljx, y]) forall x,yeg ([8]).

1.2. Let D be a homogeneous Siegel domain and (g,j) the normal j-algebra
corresponding to D. Let a be the orthogonal complement of [g, g] in g with respect to
the Bergman metric { , ). Then a is an abelian subalgebra. For a linear form « on a,
we define the root space g(a) by

g(@)={xe[g, g] ; [h, x]=o(h)x for hea}.

Let dim a=r. Then it is known by [9] that there exists a system {e,, &,, - - -, ¢,} of linear
independent roots satisfying the following (1.4)—(1.6):

(1.49) All roots are of the form 1¢,, g (1<k<r), 3(g;+¢) (1<i<k<r)
(but not all these need be roots) and
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g=a-+ ; ale)+ 2. o((ei+&))+ Y o3 —e))+ ; a(3&0)

i<k i<k
is the orthogonal direct sum with respect to the Bergman metric.
o) =a; oG +ea))=03E—8) (<i<k<r);
AaGel)=9(Zey) -

(1.6) Let us take a pair (i, k) of indices i <k satisfying
dim g(3(g; + &) #0. Then for any a;, # 0 € g(4(e; + &), the following
linear mappings are injective:

(1.5)

xeg((a+e)) — Liaw x]eglle+e)  (k<1);
yeg(e+e) — Ly, anlegie+e))  (5<i);
ueg(}e) — Ljau. uleglie) .

Let us define numbers {n}, {m}, {#} by

Ny =My =dim g(3(e; + &) (i<k);

(L7 m,=dimg(}ey) ;
n—-1+1m+1 >n +1 Y.n
k 4 k 2 = ik ) = ki *
Then (1.6) implies the following:
(1.8) If n,#0 (resp. n,#0) for a triplet (i, k, ) of indices i<k<l/,
then ny, <n, (resp. ny <ny).
(1.9) If n;, #0 for a pair (i, k) of indices i<k, then ny <m;,.

Since dim g(g,)=1 (1 <k <r), we take E; € g(g,) which satisfies £(jE;)= ;. By using
(1.2)~(1.5), we have

(1.10) (Ey, E>=o([JEy, E])= w(Ey)=ny .

We define the rank of a domain D by the dimension of a. A homogeneous Siegel
domain D is said to be irreducible if the domain D does not admit the direct product
decomposition into homogeneous Siegel domains of lower dimension. By the notation
i~k for two indices i and k, we mean that n;,#0. It is known that a domain D is
irreducible if and only if the normal j-algebra (g, j) corresponding to D satisfies the
following connectedness condition on the indices; for any indices 1<i<k<r, there
exists a sequence i, i,, * * -, i of indices such that i; =i, i;=k, and iy ~i,~ - ~i; ([5],

(6.

1.3. Now we explain how we compute the curvature of the Bergman metric of a
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Siegel domain D in terms of the normal j-algebra (g, j) corresponding to D ([7]).

Let V be the invariant connection induced by the Bergman metric of D. Then V
is identified with a bilinear mapping V: (x, y)e g x g—=V(x, y)eg which satisfies the
following conditions:

2<V(xa y)’ Z> = <[Z, x]’ .V> + <[Z, y]’ x) + <[xa J’], Z> 5
V(x, jy)=jV(x, y)

(1.11)

for all x, y,zeg.
We denote by R the curvature tensor of the Bergman metric. Then R is given by
the following formula:

R: (x,y,z2)egxgxg—> R(x, y)z€eg,
R(x, y)z=V(x, V(y, Z»_V(y’ V(x, z))—V([x, y], 2)

for all x, y, zeg.
The holomorphic bisectional curvature HBSC is defined by

HBSC(x, y)= {R(x, jx)jy, y>

for x,yeg, <{x,x)=(y,y>=1. From the definition of the holomorphic sectional
curvature HSC, it follows that HSC(x)=HBSC(x, x) for xeg, {x, x)=1. By using V,
we get an explicit formula of HBSC as follows;

(1.12) HBSC(x, y)=2{V(x, y), VUx, y)> + {V([x, jx], y), jy> .

The subalgebra a+ja is totally geodesic, i.e., V(a+ja, a+ja) =a+ja. We define a
submanifold 4 in D by the orbit of the subgroup exp(a+ja) through the base point.
Then the submanifold A4 is totally geodesic and holomorphically equivalent to the
product of r upper-half planes.

§2. Curvature on the submanifold 4 of D.

We denote by r the rank of a homogeneous Siegel domain D. Since a domain of
rank one is holomorphically equivalent to an open unit ball and it is symmetric, we
assume that r is greater than one.

First we compute the holomorphic bisectional curvature HBSC(x, y) for unit vectors
x, yea+ja. It is easy to get the following formulas:

2.1 V(JE, g)=0;
(2.2) V(E;, E)=jlJE; Ek] = 6ikjEk .

Let us take x=)Y ,(&E,+bJjE) and y=Y (GE.+dJE,) in a+ja satisfying
(x, x>=Y,nlaz+bH=1and (y, y>=)  mlc?+di)=1, respectively. Then, using the
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formulas (2.1) and (2.2), we have
V(x, y) =; a(— dEy+ e JEy) and V(jix, y) =§, bu(diEx—cJEy) -
Hence, {jV(x, »), V(jx, »)>=0. Since [x, jx]= —Y (ai + b7)E,, we have V([x, jx], y)=
Y (a? +bI)d,E,— cijEy). Therefore,
HBSC(x, y)=<V([x, jx], »),Jy> = — 2. mlai +bi)ci +di) .
Putting x=y in HBSC, we have the holomorphic sectional curvature

HSC(x)= — Y. nJaZ +b2)*.
k

In these formulas, calculating the maximum and the minimum of HBSC(x, y) (resp.
HSC(x)) under the constraint {x, x) = {p, y> =1 (resp. {x, x> = 1), we have the following:

LeMMA 1. Let HBSC, and HSC , be the holomorphic bisectional curvature and the
holomorphic sectional curvature restricted to the submanifold A of D, respectively. Then
HBSC,, and HSC, satisfy (i) —1/L<HBSC,<0 and (i) —1/L<HSC,< —1/M, where
L=min{n,} and M=n,+n,+ - +n,.

We note that the inequalities in (ii) of the lemma stated above were proved by
Zelow [15]. Using Lemma 1, we have the following easily:

LEMMA 2. The following two conditions are equivalent:.
(i) HSC, is pinched as — Kr<HSC, < — K with K>0;
(ii) n1=n2="'=n,.

It was proved by D’Atri and Miatello [4] that an irreducible domain D
corresponding to a normal j-algebra (g, ;) is quasi-symmetric if and only if the root
spaces of g satisfy the following:

2.3) ng=n,,>0" (I1<i<k<r) and my=m,=---=m,.

By the definition of the numbers {n,}, we have n;=n,="---=n, for an irreducible
quasi-symmetric domain D, and hence, we have the pinching of HSC, in Lemma 2.

REMARK. There exist irreducible domains which are not quasi-symmetric but
satisfy the condition in Lemma 2. We can find examples of such domains in low
dimension from the classification ([6], [12]).

§3. Nonpositivity of HBSC.

In this section, we try to get necessary conditions for the holomorphic bisectional
curvature HBSC to be nonpositive. We put B(x, y)={R(x, jx)jy, y> for x, yeg. Then
HBSC is nonpositive if and only if B(x, y)<0 for all x, yeg. We denote general root
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| vectors in g(3(e;+ &) by Xiy, Vigs Zias = -, (k<! )-

3.1. Bymakinguseof(1.1),(1.4), and (1.5), we have the bracket relation as follows:

3.1 Lixas Ed=0xxy (i<k).

(3.2) [ yad =0 Y2 B ey
(3.3) Lixes yad=Liyva, xud (i<k<l).
Moreover, by (1.3), we get

3.4 <Lixie> Yads za> = UiYaas> zads X (i<k<l).

For the connection V, we have the following formulas easily by (1.1), (1.4), (1.5), and
(1.11) (cf. [1]):

i 3.5 V(xu, E)=V(E,, xy)= —%—(5,-1 + 0x)J Xk (i<k).
(3.6) V(X Vi) = <x";’n y g <x";’n i’ ®E i<k
(3.7 Vi Vi) = -%—j[jx,-k, Vil (i<k<l).
(3.8) Ve o) =5 Uz ] G<k<l).
(3.9) (Vs 20} 9= (Live 7l 7> (G<k <)
(3.10) V(xu, E)= % (01— 0:i)Xix (i<k).
@3.11) V(iXuo Vi) = <xi;’n y w f,— <xi§’n i’ W (i<k).
(3.12) P Uz 7=V 2 =5 Do ] G<k<]).

3.2. We compute B(x, y) for some test vectors x, yeg to see the sign of HBSC
on some j-invariant planes. For indices 1<i, <i, < --- <i, <I/<r, we take root vectors
X, and y;; in g(3(g;, +¢)) (1 <k<m) and define two vectors x and y by

x=zk:Eik+El+;xikl and y=;Ex’k+EI+§yikl s

O
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respectively. We now put

<xikla Xpa) =204, Fits yikl> =2p, {Xits Vi) =2y (1<k<m).

LEMMA 3. For the test vectors x and y defined above, the following formula of the
holomorphic bisectional curvature holds:

2
Z(Zl’k) uf 5
B(x’y)=_k___”l—z<nik+2“k+2ﬂk M £+8 k+——>
k

n,

ix ng,

_? Z (Il [szsza yztl] + [.]ylsb ztz:l ||2 + 4<[Jx;,zs :,l] [JJ’z,l’ yltl]>)
s<t

PrROOF. We may assume that i, =k (1 <k <m) to simplify the notation. By using
(2.2) and (3.5)(3.8), we have easily the following:

Vix, =Y, (1 +§)J’Ek + (.1 +¥ ’—’—)JE + X U+
k k

k 1y

1 . .
+7 Y. GLixgs yad+iliyss xu) -
s<t

By (2.1), (3.3), and (3.10)-(3.12), we get

k k 1 , .
V(jx, y)= Zy— E — (Z y“) E, +‘2‘ Z Lixss yad+Liveas xul) -

k Ny kN s<t

2
F: (Zk: y")
G905, V0% Dy = = Z 422 S Ll + D 5l

k n; s<t

Hence,

On the other hand, (1.4) and (3.1)—(3.3) imply that

. 20 |
[xs.]x] = _Z(l + k> Ek El 22 xkl_zz [stl’ xtl]
k ny s<t
By the same computation as in the above, we have

V(Tx, jx], )= =Y (1 2%y 2”")JE,, (1 12y &),E,

ny ny g

. o . .
- 2zlixkz _§<1 +;k).]ykl - Z Ulixs> yul
k

s<t
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+j[jysl9 xtl]) -2 Z j[jxsla xtl]

s<t

-2 Z V([jxsb xtl]’ ysl) -2 z V([jxsb xtll ytl) .

s<t s<t

Using (3.4), (3.7), and (3.9), we get

V([x,jx], ), jy>=—m— Zk: (i + 2004, + 2, + 8yy)

—2?‘ ﬂ"—ZZ Lixss Xads Liysi yul) -

k
Y s<t
Substituting these formulas into (1.12), we have the formula of the lemma. q.e.d.

3.3. By making use of the explicit formula obtained in the above lemma, we have
the following:

LeMMA 4. If HBSC is nonpositive and n;, #0 for a pair (i, k) of indices i<k, then
n,<n,.

PrROOF. Let us take test vectors;
x=E+E+x; and y=E+E+yy, Xi> Yix € 8(3 (& + &)

Satisfying <xik, x,-k> = 2a, <yik’ yik> = 2b, al‘ld <xik, yik> = 2C. Then by putting m= l, il = i,
l=k,a,=a, B, =>b, and y, =c in the formula of Lemma 3, we have

1 1
B(x,y)=2c2<——-—>—(2a+2b+8c+n.-+nk+@).

ne n i
Now, putting a=b=n;, c= —n;, we have

B(x, y)= (2n;+nm)n;—ny) ,
n

k

which implies that n;<n,. q.ed.

On the inequality between the numbers #n; and n, in the lemma stated above, D’Atri
[1] proved the same one and n;<2n, under the condition of nonpositive sectional

curvature and of nonpositive holomorphic sectional curvature, respectively.

We now suppose that there exists a triplet (i, k, /) of indices i <k <! satisfying the
conditions n,,;#0 and n, <n,. Since the linear mapping: x; € g(3(¢; + &) — Lixu, aul €
g(4(e;+ &) is not injective for any a;;#0eg(3(g +¢;)), there exists a;#0e€ g(3(¢;+¢&))
satisfying [ ja;;, a,,]1=0.

By using Lemma 3, we prove the following:
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LemMMA 5. Let (i, k, 1) be a triplet of indices i<k < satisfying the conditions: ny, #0
and n;, <ny. If HBSC is nonpositive, then n;+n,<n,.

PROOF. Let us take a; #0 and a,, # 0 satisfying [ ja;, a,;]=0. Then, putting m=2,
iy =i, i,=k, Xxy= —ya=ay, and x;= —yy=ay in the formula of Lemma 3, we have
ay =P =—7y1, 0=B,=—7,, and

2(oty +0t5)? 4a2 402
" ng m
Therefore, substituting #; and n, for «; and a,, respectively, we have

_ {2(n;+ m) + n}{(n; +m)—mi}
LN ’

B(x, y)

which implies n;4+n, <n,. q.e.d.

We will make use of the following lemma to distinguish the domains of nonpositive
holomorphic bisectional curvature among the domains of low rank or of low dimension.

LEMMA 6. Let {iy, iy, """, im [} be the set of indices 1<i;<i,<--- <ip<I<r
satisfying the following conditions: :

() ny#0 (1 <k<m)and (i) n,;;=0 (1<s#*1<m).

If HBSC is nonpositive, then n; +ny,+ - +n, <n.

Proor. The condition (ii) implies that [jx;,;, x;,]=0 for all x;; and x;,;
(1 <s<t<m). Hence, by putting a4 =Py = —yx=n;, >0 in the formula of Lemma 3, we
have B(x, y)=(2Y 7t + 1) M, — 1)/7 - _ q.e.d.

§4. Characterization of quasi-symmetric domains.

In this section, we state the results obtained. By the curvature of a homogeneous
Siegel domain D in the following theorems, we mean the one relative to the Bergman
metric of D, exclusively.

4.1. First we prove the following:

THEOREM 1. Let D be an irreducible homogeneous Siegel domain of rank r and of
nonpositive holomorphic bisectional curvature. If the holomorphic sectional curvature
restricted on the submanifold A of D (defined in §1) takes the maximum —K and the
minimum —rK with K>O0, then D is quasi-symmetric.

PROOF. As we saw in Lemma 2, the pinching condition for HSC, implies the
equalities n; =n,= - - =n,. By using this, we can prove that n,, =n,, for 1<i<k<r
and m,=m, for 1 <i<r. In fact, let us take an arbitrary pair (s, 1) of indices 1 <s<t<r
with 7, #0. Then by Lemma 5, the equality n,,=n, holds for any index i with i<s. By
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(1.8) and (1.9), we have n,;<n; for t<i and m,<m,. Using the both of Lemma 5 and
(1.8), we have n;, <n, for s<i<t. On the other hand, by the definition of the numbers
ng and n, in (1.7), we have

O=n,—n,

=L(ms—mr)+‘1’ > (nis—'nit)“l'i > (nsi—nit)-l"l— 2 (ng—ny).
4 2 i<s 2 s<i<t 2 (<
Every term of the right-hand side of this equality is nonnegative. Hence, we have
my=m, and ng=n,; for i#s, t. Since D is irreducible, the set {1,2, - - -, r} of indices
satisfies the connectedness condition stated in §1, and hence, the numbers 7, and m,
are constants independent of indices. Therefore, the condition (2.3) holds and the
characterization by [4] stated in §2,shows that D is quasi-symmetric. q.e.d.

We note that the assumption on the holomorphic sectional curvature in the theorem
stated above is satisfied for any irreducible quasi-symmetric Siegel domain, but as we
see later, we can get the assertion of the theorem for domains of low rank or of low
dimension without this assumption.

4.2. Following Xu [14], we call a homogeneous Siegel domain a domain over a
cone of dual square type if the root space decomposition given by (1.4) satisfies the
conditions:

nk,k+1=nk,k+2=”'=nkr>04 (k=1,2, e, r—1).

THEOREM 2. Let D be a homogeneous Siegel domain over a cone of dual square
type. If the holomorphic bisectional curvature of D is nonpositive, then D is quasi-
symmetltric.

PrROOF. We put 4,=n, ;. (1<k<r—1) and 1,=0. Then by (1.8) and (1.9), we
have 4, <4, and m; . <m, (1<k<r-—1). By (1.7),

1 1 1
=1 +7('11 +Ar+ +Ak—1)+?("“k)}~k+7mk (1<k=<r).
Hence,
1 1
M — M4y =?(r—k— lxlk_'lk+1)+2‘(mk'—mk+ 1)=0

for every k (1<k<r—1). From this and Lemma 4, it follows that n,=n,=---=n,,
Ay=A4y=---=A_,,and m;=m,="-- =m, The domain D satisfies the condition (2.3)
and hence, D is quasi-symmetric. q.e.d.

The irreducible decomposition of a homogeneous Siegel domain is the de Rham
decomposition of a Kaehlar manifold with respect to the Bergman metric ([5]). Let D
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be a reducible homogeneous Siegel domain. Then D is quasi-symmetric if and only if
every irreducible component of D is quasi-symmetric ([11]). Therefore, in order to
prove that a domain D is quasi-symmetric, it suffices to prove it for every irreducible
component of D.

COROLLARY. Let D be a homogeneous Siegel domain over a self-dual cone. If the
holomorphic bisectional curvature of D is nonpositive, then D is quasi-symmetric.

PrROOF. As we noted above, we can assume that D is irreducible. Then D is a
Siegel domain over an irreducible homogeneous self-dual cone ([5]). Any irreducible
homogeneous self-dual cone is of dual square type ([13], [14]). Therefore, the assertion
follows from Theorem 2. q.e.d.

4.3. By using the classification of homogeneous Siegel domains of low rank or
of low dimension [6], [12], and the results obtained in the previous sections, we have
the following:

THEOREM 3. Let D be a homogeneous Siegel domain of rank < 3. If the holomorphic
bisectional curvature of D is nonpositive, then D is quasi-symmetric. '

PrROOF. Let (g, ) be a normal j-algebra of rank r with r <3. We can assume that
the domain D corresponding to (g, j) is irreducible and r>2. If r=2, then by Lemma 4,

1 1 1
n=l+—n,+—m,<n,=14+—n,,+—m, and m,<m,.
1 2 12 4 1 2 2 12 4 2 2 1

Therefore, this implies m, =m, and D is quasi-symmetric. Now we assume that r=3.
The irreducibility of the domain and the inequality (1.8) imply that the following three
cases may occur: (i) n,,n,3%#0, ny,,ny3<n,3; (il) ny3n3#0, ny,=0; (iii) n,,n,3#0,
n,3;=0. In the case (i), by Lemma 4, we have

1

n,= 1 +—2'—n12 +“~n13 +—4—m1

2

<n—1+1n +1n +1m
=1t 212 223 4 2

1
<ny=l4+—n;3+—n,3+—my.
3 5 3T 2T
If n,,<n,3, then by Lemma 5, we have n, +n, <n;. This implies

1 1
1+n12+"4_m1 +‘_4“"m2 S‘Z‘m3 ’

which contradicts my<m,. Hence, we have n,,=n;3=n,; and m,=m,=m;. The
domain D satisfies the condition (2.3). Thus, D is quasi-symmetric. Now we consider
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the case (ii). As we saw in the first case, by Lemma 5, we have n, + n, <n,, and hence,

14+—m; +—1 <—-1
m,<—m,.
I' 1 ' 2 ‘ 3

Since n,3n,3#0, we have m; <m,, m, by (1.9). This is a contradiction and the case (ii)
does not occur. In the case (iii), by Lemma 4, we have n, <n,, n,, and

1 1 1
n,+ns+—m<n,+—my, ni3+—m,.
12 13 2 1 12 2 2 13 2 3

This contradicts m,, m; <m,. Hence, the case (iii) also does not occur. q.e.d.

Applying Lemmas 4, 5, 6 and the theorems obtained above to every domain

~ classified by [6] and [12], we have the following theorem. The proof is easy but tedious;

SO we omit it.

THEOREM 4. Let D be a homogeneous Siegel domain of dimension<10. If the
holomorphic bisectional curvature of D is nonpositive, then D is quasi-symmetric.
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