Токуо Ј. Матн. Vol. 15, No. 1, 1992

On the Conformal Transformation Group of a Compact Riemannian Manifold with Constant Scalar Curvature

Hiroyasu IZEKI

Keio University (Communicated by Y. Maeda)

§1. Introduction.

Let $\operatorname{Conf}(M, g)$ and $\operatorname{Isom}(M, g)$ be the conformal transformation group and the isometry group of a Riemannian *n*-manifold (M, g), respectively. It is obvious that $\operatorname{Isom}(M, g) \subset \operatorname{Conf}(M, g)$ and if g' is conformal to g then $\operatorname{Conf}(M, g') = \operatorname{Conf}(M, g)$. In late 1950's, conformal transformation groups of Einstein manifolds and Riemannian manifolds with parallel Ricci tensor were studied by Yano, Nagano, and Tanaka, and their results are stated as follows:

(1) If $Isom_0(M, g) \neq Conf_0(M, g)$ holds for a compact connected Einstein nmanifold (M, g), $n \ge 3$, then (M, g) is isometric to a Euclidean n-sphere, where $Conf_0(M, g)$ (resp. $Isom_0(M, g)$) denotes the connected component of the identity of Conf(M, g) (resp. Isom(M, g)) (Yano-Nagano [12]).

(2) If $Isom(M, g) \neq Conf(M, g)$ holds for a compact connected Riemannian *n*manifold $(M, g), n \ge 3$, with parallel Ricci tensor, then (M, g) is isometric to a Euclidean *n*-sphere (Tanaka [10], Nagano [7]).

(1) is also true if we replace the condition $\operatorname{Conf}_0(M, g) \neq \operatorname{Isom}_0(M, g)$ by $\operatorname{Conf}(M, g) \neq \operatorname{Isom}(M, g)$ (see (2) or [9] Proposition 6.2). On the other hand, Yamabe's theorem ([11]), which has been called the Yamabe problem later, says that every compact connected Riemannian *n*-manifold $(n \ge 3)$ is conformal to a Riemannian manifold with constant scalar curvature. Then it is natural to ask whether the same conclusion as (1) and (2) holds for Riemannian manifolds satisfying $\operatorname{Conf}(M, g) \neq \operatorname{Isom}(M, g)$ with constant scalar curvature. There are many results concerning this question and the above results (see [3], [8], [9] and their references). Ejiri, however in [3], gave a negative answer to this question. He proved that certain warped products of S^1 and Riemannian manifolds with positive constant scalar curvature satisfy $\operatorname{Conf}(M, g) \neq \operatorname{Isom}(M, g)$ and have constant scalar curvature. Note that the above

Received April 1, 1991 Revised May 15, 1991

HIROYASU IZEKI

warped products are rewritten in the form of what are obtained by deforming product metrics conformally with positive functions depending only on S^1 . Then this result is explained as follows;

We can deform product metrics conformally with non-constant functions so that resulting metrics have constant scalar curvature. Then the natural isometric S^1 -action with respect to product metrics turns out to be non-isometric but conformal with respect to resulting metrics.

Combined with an existence theorem for a solution of a certain nonlinear partial differential equation, this observation gives the following natural extension of Ejiri's result. As a consequence of our result, we get examples of compact simply connected Riemannian manifolds satisfying $Conf(M, g) \neq Isom(M, g)$ with constant scalar curvature (see Remark 4).

THEOREM. Let (M_1, g_1) be a compact connected homogeneous Riemannian m_1 -manifold and (M_2, g_2) a Riemannian m_2 -manifold with positive constant scalar curvature $(m_1 \ge 1, m_2 \ge 2)$. Then on the product $M = M_1 \times M_2$ there exists a Riemannian metric g with constant scalar curvature such that $Conf(M, g) \ne Isom(M, g)$.

REMARK 1. It should be noticed that neither the compactness nor the connectedness is assumed for M_2 in the theorem.

REMARK 2. The metric g in the theorem is conformal to the product metric $g_1 + \varepsilon^2 g_2$ for some positive real number ε . In case $m_1 = 1$, M_1 must be S^1 and the theorem coinsides with Ejiri's.

REMARK 3. If (M_2, g_2) is a compact connected homogeneous Riemannian manifold with positive scalar curvature then the scalar curvature of g_2 is constant by homogeneity. The theorem in this case has been shown by O. Kobayashi in [4].

REMARK 4. *M* may be simply connected. In fact, for example we can take $M_1 = M_2 = S^m \ (m \ge 2)$.

REMARK 5. In contrast to the theorem, Obata ([9]) and Lelong-Ferrand ([5], [6]) proved the following theorem.

(3) Let (M, g) be a compact connected Riemannian n-manifold $(n \ge 3)$. If $Isom(M, g) \ne Conf(M, g)$ holds for any Riemannian metric g' which is conformal to g then (M, g) is conformally equivalent to a Euclidean n-sphere ([5], [6], [9]). Furthermore if the scalar curvature of g is constant then (M, g) is isometric to a Euclidean n-sphere ([9]).

Thus there exists a Riemannian metric g', which is conformal to g in the theorem, such that $\operatorname{Conf}(M, g) = \operatorname{Conf}(M, g') = \operatorname{Isom}(M, g')$.

2. Preliminary.

The essential difference between the Ejiri's result and ours comes from that between an ODE and a PDE. To prove the theorem we need an existence theorem for a solution of a certain nonlinear PDE.

Let (N, h) be a compact connected Riemannian *n*-manifold. $C^{\infty}(N)$ denotes the space of smooth functions on N. The first non-zero eigenvalue of the Laplacian $\Delta_h = -\nabla^i \nabla_i$ of h is denoted by $\lambda_1(\Delta_h)$, and the volume element of h is denoted by dV_h .

LEMMA (cf. [11], [1] 16.37). For arbitrary real numbers k > 0, A and q > 2 with q < 2n/(n-2) (if $n \ge 3$) or $q < \infty$ (if n = 1, 2), there exists a positive C^{∞} solution u of (2.1) with $\int_{N} |u|^{q} dV_{h} = 1$:

$$(2.1) \qquad (q-2)k\Delta_h u + Au = \mu u^{q-1}$$

where

(2.2)
$$\mu = \inf I(f) = \inf \frac{(q-2)k \int_{N} |df|^{2} dV_{h} + A \int_{N} f^{2} dV_{h}}{\left(\int_{N} |f|^{q} dV_{h}\right)^{2/q}}$$

and the infimum is taken over all positive C^{∞} functions. Moreover if $\lambda_1(\Delta_h) < A/k$ then the solution u of (2.1) is a non-constant function.

In case $n \ge 3$, the first part of the lemma was proved by Yamabe ([11]). For the case n=1, 2, it can be shown similarly (or more easily) by using a variational method and a maximum principle. If we assume u = constant, a computation of the second variation of I at u gives $\lambda_1(\Delta_b) \ge A/k$. Thus we obtain the second part of the lemma.

3. Proof of Theorem.

Define a Riemannian metric g_{ε} on $M_1 \times M_2$ by $g_{\varepsilon} = g_1 + \varepsilon^2 g_2$ for $\varepsilon > 0$. Then the scalar curvature $R_{g_{\varepsilon}}$ of g_{ε} is constant and equal to $R_{g_1} + \varepsilon^{-2} R_{g_2}$. The scalar curvature R_g of

$$g = v^{4/(n-2)}g_{\varepsilon}, \quad v \in C^{\infty}(M_1 \times M_2), \qquad v > 0$$

is given by the following formula (see for example [1] 1. 161).

(3.1)
$$4 \frac{n-1}{n-2} \Delta_{g_{\ell}} v + R_{g_{\ell}} v = R_g v^{(n+2)/(n-2)}$$

where $n = m_1 + m_2$.

First we show that for suitable $\varepsilon > 0$ there exists a metric $g = u^{4/(n-2)}g_{\varepsilon}$ with

HIROYASU IZEKI

constant scalar curvature where u > 0 is a non-constant C^{∞} function and depends only on M_1 . The basic idea of the proof of this claim is the same as what Derdzinski has used in [2] to find a metric with harmonic curvature and non-parallel Ricci tensor (see also [1] 16.35).

Since g_{ε} is a product metric and $R_{g_{\varepsilon}}$ is constant, for any $v \in C^{\infty}(M_1) \subset C^{\infty}(M_1 \times M_2)$ (i.e., v depends only on M_1),

$$4 \frac{n-1}{n-2} \Delta_{g_{\iota}} v + R_{g_{\iota}} v = 4 \frac{n-1}{n-2} \Delta_{g_{1}} v + R_{g_{\iota}} v ,$$

and we can consider that the right hand side is defined on M_1 . Then (3.1) is reduced to the following formula defined on M_1 .

(3.2)
$$4 \frac{n-1}{n-2} \Delta_{g_1} v + R_{g_\ell} v = R_g v^{(n+2)/(n-2)}.$$

Thus to show the claim above we have to prove that there exists a non-constant positive C^{∞} solution u of the equation (3.2) with $R_g = \text{constant}$. To see this, take sufficiently small $\varepsilon > 0$ so that $\lambda_1(\Delta_{g_1}) < R_{g_c}/(n-1)$, and put $A = R_{g_c}$, k = n-1 and q = 2n/(n-2) in (2.1) (note that $2n/(n-2) < 2m_1/(m_1-2)$, or ∞). Then we can apply the lemma to the equation (3.2) with $R_g \equiv \mu$, and the claim follows.

Now, assume that $\operatorname{Conf}(M_1 \times M_2, g) = \operatorname{Isom}(M_1 \times M_2, g)$. For any $\varphi \in \operatorname{Isom}(M_1, g_1)$, we can define $\tilde{\varphi} \in \operatorname{Isom}(M_1 \times M_2, g_{\epsilon})$ by $\tilde{\varphi}(p, x) = (\varphi(p), x)$ where $p \in M_1$, $x \in M_2$. Hence $\operatorname{Isom}(M_1 \times M_2, g) = \operatorname{Conf}(M_1 \times M_2, g) = \operatorname{Conf}(M_1 \times M_2, g_{\epsilon}) \supset \operatorname{Isom}(M_1, g_1)$. Therefore the action of $\operatorname{Isom}(M_1, g_1)$ leaves g invariant. Let us denote g at $(p, x) \in M_1 \times M_2$ by g(p, x) and put $f = u^{4/(n-2)}$. If $\varphi(p) = q$ for $\varphi \in \operatorname{Isom}(M_1, g_1)$ and $p, q \in M_1$ then

$$\begin{aligned} (\tilde{\varphi}^*g)(p,x) &= \tilde{\varphi}^* \{ f(q)g_{\varepsilon}(q,x) \} = f(q) \{ \varphi^*(g_1(q)) + \varepsilon^2 g_2(x) \} \\ &= f(q) \{ g_1(p) + \varepsilon^2 g_2(x) \} = f(q)g_{\varepsilon}(p,x) \\ &= g(p,x) = f(p)g_{\varepsilon}(p,x) \end{aligned}$$

holds for any $x \in M_2$, where $\tilde{\varphi}^* g$ (resp. $\varphi^* g_1$) is the pull-back of g (resp. g_1) by $\tilde{\varphi}$ (resp. φ). Thus f(p) = f(q). Since $\text{Isom}(M_1, g_1)$ acts transitively on M_1 and f depends only on M_1 , f must be a constant function. That is, u is a constant function, a contradiction. Thus $\text{Conf}(M_1 \times M_2, g) \neq \text{Isom}(M_1 \times M_2, g)$. This completes the proof.

REMARK. Let Y be a gradient vector field of u on M_1 with respect to g_1 and take $p \in M_1$ such that $Y \neq 0$ at p. Since $\text{Isom}(M_1, g_1)$ acts transitively on M_1 , there exists a Killing vector field X of (M_1, g_1) such that X = Y at p. This vector field X can be lifted to a Killing vector field of $(M_1 \times M_2, g_\epsilon)$ and it is easy to see that X is not a Killing vector field of $(M_1 \times M_2, g_\epsilon)$. That is, $(M_1 \times M_2, g)$ admits a non-isometric conformal vector field.

References

- [1] A. BESSE, Einstein Manifolds, Springer-Verlag, 1987.
- [2] A. DERDZINSKI, An easy construction of new compact Riemannian manifold with harmonic curvature (Preliminary report), Preprint SFB 40-MPI no. 21, 1983, Bonn.
- [3] N. EJIRI, A negative answer to a conjecture of conformal transformations of Riemannian manifolds, J. Math. Soc. Japan, 33 (1981), 261–266.
- [4] O. KOBAYASHI, On the Yamabe problem (in Japanese), Seminar on Mathematical Sciences, 16, Keio University, 1990.
- [5] J. LELONG-FERRAND, Transformations conformes et quasi-conformes des variétés riemanniennes compactes (démonstration de la conjecture de A. Lichnerowicz), Acad. Roy. Belg. Cl. Sci. Mem. Coll. 8°(2), 39, no. 5, 1971.
- [6] J. LELONG-FERRAND, Geometrical interpretation of scalar curvature and regularity of conformal homeomorphism, *Differential Geometry and Relativity*, ed. by M. Cahen and M. Flato, Reidel Publ., 1976.
- [7] T. NAGANO, The conformal transformations on a space with parallel Ricci tensor, J. Math. Soc. Japan, 11 (1959), 10-14.
- [8] M. OBATA, Conformal transformations of Riemannian manifolds, J. Diff. Geom., 4 (1970), 311-333.
- [9] M. OBATA, The conjectures on conformal transformations of Riemannian manifolds, J. Diff. Geom., 6 (1971), 247-258.
- [10] N. TANAKA, Conformal connections and conformal transformations, Trans. Amer. Math. Soc., 92 (1959), 168–190.
- [11] H. YAMABE, On a deformation of Riemannian structures on compact manifolds, Osaka Math. J., 12 (1960), 21–37.
- [12] K. YANO and T. NAGANO, Einstein spaces admitting a one-parameter group of conformal transformations, Ann. of Math., 69 (1959), 451-461.

Present Address:

DEPARTMENT OF MATHEMATICS, TOKYO METROPOLITAN UNIVERSITY MINAMI-OHSAWA, HACHIOJI-SHI, TOKYO 192–03, JAPAN