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Introduction.

Let K be a field and A a subring of K. We denote by Zar(K |A) the set of valuation
rings of K which contain A. Introducing a topology and a sheaf of rings, Zar(K |A)
becomes a local ringed space. In fact, the topology is defined by the open base:
X ={Zar(K|A[E]) | E is a finite subset of K}, and the sheaf of rings @ is defined by
ov)=) rey R for any non empty open subsets V of Zar(K|A) (see also Lemma 1 in
[3D).

In the case that A is a subfield of K, the set of closed points of Zar(K |A) was
treated by O. Zariski as a topological space (see [4]). So our local ringed spaces Zar(K | 4)
are said to be Zariski ringed spaces in this paper (see also §5). We shall give a
characterization of Zariski ringed spaces among local ringed spaces and prove that
these are projective limits of schemes. Actually we prove,

MAIN THEOREM. Let K be a field and A a subring of K. If A is noetherian and K
is a finitely generated extension over the quotient field of A, then we obtain

Zar(K|A) =~ proj.limX,

where X runs over all proper integral schemes over Spec A with rational function field K.
Note that X could be assumed to be projective over Spec A.

The author wishes to express his thanks to Professor Shigeru Iitaka for his helpful
encouragement.

§1. By (L.R.S.) we denote the category of local ringed spaces and (Rings) the
category of commutative rings with unity. We introduce a natural transformation
n: I—-SpecoT’, in the following way. Here [ is the identity functor of (L.R.S.) and I'
is the contravariant functor from (L.R.S.) to (Rings) defined by global sections.

For a local ringed space (X, Oy), we define a mapping n, : X — SpecOx(X) by
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¢)) Ty : X > py x(m(Oy )

for any xe X. Here we denote by py ,: Ox(X)— Oy . the canonical mapping. The
mapping py , induces a homomorphism of local rings

(2) Px,x* mx(x)nx(x)_’wx,x .
Next we define a morphism =n§ : Ox(X)— ny, O of sheaves on SpecO,(X). For
this purpose, we define a ring homomorphism #}(U): (9;(X XU) = Ox(nx }(U)) for any

open set U of SpecOx(X). Let se€ Ox(X)XU). We may assume that s is a continuous
mapping from U to [ ],_,Ox(X)p. Then we put

3 H(x)=(px,xo5°Tx)(x)
for xeny (U). Hence t is a mapping from ny }(U) to 1. x%x. - We also put
“ i U):s—t.

Then the following lemma is easy to prove.

LemMal. Let (X, Ox) be a local ringed space. Then

(i) (mx, m3) : (X, Ox) = (SpecOx(X), Ox(X)) is a morphism of (L.R.S.), that satisfies
o) n{(SpecOx(X)) is the identity mapping of 04(X),
6 (X):=Px,x forany xeX.

) =n:I-> Spe(:o‘I" is a natural transformation.

§2. Here we introduce the condition (8) for local ringed spaces. Differentiable
manifolds and schemes satisfy the condition (8).

In general, for a ring A, let nil4 denote the nilradical of A4 that is the intersection
of all the prime ideals of 4. Let (X, Oy) be a local ringed space. Then we obtain

@ nilOy(X)<= ﬂ Tx(x),

xeX

and the following lemma:

LEMMA 2. Let (X, Ox) be a local ringed space, F a closed set in SpecOx(X) and a
an ideal of Ox(X). If F=V(a), then the following two conditions are equivalent:

(@)  nx(ny '(F)=F.
(b) N pP=Ja.

PelmaxnF

COROLLARY. The following two conditions for a local ringed space (X, Ox) are
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equivalent:

() Ty is dominant .

(® () 7x(x)=nil Ox(X) .
xeX

We consider the following condition for a local ringed space (X, Ox):
8 X has an open base consisting of open sets ¥ such that 7, is dominant .

Note that any scheme satisfies the condition (8).

Certain properties and conditions of schemes are naturally generalized to those of
local ringed spaces. In the following, we deal with reduced, integral or normal local
ringed spaces, and also consider the ring of rational functions Rat(X, Oy) of such a
local ringed space (X, ©y), which is abbreviated as RatX.

Let U be a dense open subset of X. Then we denote by

® f=LUf)
the canonical mapping: O,(U)— RatX. For ae RatX, we put
(10) dom(x)=|) U,

where U runs over the set of all dense open subsets of X such that (U, f> =« for some
fe0x(U).

Here we consider reduced local ringed spaces satisfying the condition (8). The
following two lemmas are easy.

LEMMA 3. Let (X, Oy) be a local ringed space. Then (X, Oy) is reduced and satisfies
the condition (8), if and only if Nrey v (X)=0 in Ox(V) holds for any open subset V of X.

LEMMA 4. Let (X, Oy) be a reduced local ringed space satisfying the condition (8).

(1) Let U, V be dense open subsets of X, and f € 04(U), geOx(V). If CU,f>=
<V, g in RatX, then py, yny(f)=py,uv(g) in Ox(UNV) holds.

(ii) For any acRatX, there exists an fe Oy(dom(a)) such that a={dom(), .

(ii) For a dense open subset U of X, we obtain

(11) Ox(U)={aeRatX | Ucdom(a)} = RatX .
Then we also have,
(12) RatX =) 0x(U)

and RatX is reduced.
(iv) RatX is a total quotient ring.

Next we consider integral local ringed spaces satisfying the condition (8). The
following three lemmas are easy to prove.
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LEMMA 5. Let(X, Oy) be alocal ringed space. If y is dominant and X is irreducible,
then SpecOx(X) is also irreducible. Hence nil Ox(X) is a prime ideal of Ox(X).

LEMMA 6. Let (X, Oy) be a local ringed space satisfying the condition (8). Then
(X, Oy) is integral if and only if (X, Oy) is reduced and irreducible.

LEMMA 7. Let (X, Oy) be an integral local ringed space satisfying the condition (8).
Then

(i) RatX is a field.

(i) For xe X, we have

(13) Ox,,={xeRatX | xedom(x)} = RatX .
Therefore,
(14) Ox(U) = Oy, . = RatX,

for xe U, and
(15) dom(0)={xe X |ae0y,},
for any a.e RatX. We also obtain

(16) Ox.x= |J 0x(U)cRatX,
Usx
a7 Ox(U)= () Ox .<RatX,
xeU
(18) RatX = ) Oy .= |J 0x(U).
xeX U+©@

COROLLARY. Rat is a contravariant functor from the category of integral local
ringed spaces satisfying the condition (8) and dominant morphisms to the category of
fields. Then

(19) v Ratny : Q04(X) = RatX .

As the restriction of (19), we obtain the mappings n%(U) and (n%),. Here we denote by
QA the quotient field of an integral domain A.

§3. Foraring 4, we denote by (L.R.S| A) the category of local ringed spaces over
Spec A. Then the following two propositions are easy to prove.

PROPOSITION 1. The following two conditions for a local ringed space (X, Ox) and
a field k are equivalent.
(@) The next diagram:
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k

N

Ox(V) = Map(V, k)
Pyu l 1 restriction of mappings
Ox(U) = Map(U, k)

commutes for any open subsets U and V of X such that U c V.
(b) (X, Oyx) is alocal ringed space over k, and is reduced satisfying the condition (8).
Further '

Ox, /m(Ox )~k forany xeX.

COROLLARY. Differentiable manifolds and algebraic varieties consisting of closed
points satisfy the condition (8).

PROPOSITION 2. Let (X, Ox) and (Y, Oy) be local ringed spaces satisfying all the
conditions of Proposition 1.
(i) Let f: X > Y be a continuous mapping such that

(20) if se Oy(V), then so(f |f-x(y,)e@x(f‘1(V)) for any open subset V of Y .

Defining f*: Oy— f,0x by fV):s—>so(f|;-1y)), we obtain a morphism (f,f%):
(X, Ox) = (Y, Oy) of (L.R.S|k).

(i) Conversely, let (f, 0): (X, Ox)—(Y, Oy) be a morphism of (L.R.S|k). Then f
satisfies the condition (20) and we obtain 9 =f*.

COROLLARY. (i) The category of real C'-class manifolds (r=0,1,2, - -, 0, w) is
a full subcategory of (L.R.S|R).

(ii) The category of complex manifolds is a full subcategory of (L.R.Sl O).

(i) Let k be an algebraically closed field. Then the category of algebraic varieties
consisting of closed points over k is a full subcategory of (L.R.S[k).

§4. Here we introduce the condition (21) for local ringed spaces. This is a local
condition characterizing the generalizations of a point by ring theory.
We consider the following condition for a local ringed space (X, Oy):

21) For any xe X, there exists a morphism of local ringed spaces
(xJ%) : SpecOx . — X such that Im(j,)={yeX |xe{y}} and
Uee: Oy, j.»y=(0Ox,,)p for any PeSpecOyx , .

The following two lemmas are easy.

LEMMA 8. Let (X, Oy) be a local ringed space satisfying the condition (21). Then
(1) Jj, is injective.
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(i) Je(m(Oy,.))=x for xe X .
(il)) (G, j}) is @ morphism over SpecOx(X). That is, the next triangle commutes:

SpecOy, « —i» X

22 Soecs \\\\\\‘ | =

SpecOy(X) .

v) (i} is uniquely determined by xe X.

(v) Let (Y, Oy) be a local ringed space satisfying the condition (21), and (f, 0):
(Y, Oy) = (X, Ox) a morphism of local ringed spaces. If x = f(y), then we have the following
commutative diagram:

S
‘] L

SpecOy,, V SpecOy , .

y

ExamPLes. (i) Any scheme satisfies the condition (21). Especially if X is an
affine scheme, then j, = Specpx . by (22). .

(i) Differentiable manifolds do not satisfy the condition (21). In general, a local
ringed space treated in §3 does not satisfy the condition (21).

LEMMA 9. Let X be a topological space with a generic point and satisfy the
separable condition T,. Assume that (X,0y) is an integral local ringed space satisfying
the conditions (8) and (21). Then j, is dominant and Ratj, is the identity mapping.

(24) Ratj, : RatX = Q(Oyx.,) .

§5. Here we consider the Zariski ringed spaces (see [3]).

Let K be a field and ZarK the set of valuation rings of K. If X is an irreducible
subset of ZarK, then (X, Oy) is a local ringed space. We also call this a Zariski ringed
space associated to the field K. Zariski ringed spaces are normal and integral.

For a Zariski ringed space (X, Ox) and Re X, we obtain

(25) nx(R)=Ox(X)nm(R) .

Therefore,

(26) N 7x(R)= () m(R).
ReX ReX

LeMMA 10. Let (X, Ox) be a Zariski ringed space associated to a field K. Then
(i) RatX=~|)g.xR<K holds.
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In what follows, we identify the above two rings. Then we obtain K =Q(RatX) and
27 dom(«)={Re X |xeR}

for any aeRatXcK.
(ii) The following five conditions for (X, Ox) and K are equivalent:
(@) X is dense in ZarK.
(b) K=RatX.
© Ngex ®x(R)=0.
(d) =y is dominant.
(¢) (X, Oy) satisfies the condition (8).

Proor. (i) The mapping ( ;. R— RatX defined by fi><{X nZar(K |{f},f>
is a ring isomorphism. (ii) is easy to prove.

In what follows, let Z denote the Zariski ringed space Zar(K[A), where A4 is a
subring of K. Then 0,(Z) is the integral closure of 4 in K, and the next triangle

4 "z Spec0,(Z)
(28) 1
¢K 14
SpecA

commutes. For the morphism @y, 4, see (10), (11) and (12) in [3]. We also obtain
7) dom(a) = Zar(K | A[a])

for any ae K=RatJX.

We denote by (P.Fields) the category of projective fields in which morphisms are
places. Since the canonical functor: (Fields) — (P.Fields) exists, (Fields) can be regarded
as a subcategory of (P.Fields), which is not a full subcategory.

For a place ¢: K, — L, we define a morphism of local ringed spaces Zaro :

Zar L - Zar Kby Q> ¢ ~*(Q). Thus we obtain a contravariant functor Zar : (P.Fields) —
(L.R.S)).

LEMMA 11. Let K and L be fields, A a subring of K and B an integrally closed
subring of L. Let X=Zar(K|A) and Y =Zar(L|B). If we put

M={¢pe Morp Fietasy(K s Lo) I o(4)c B},
then the mapping:

M — Morg g s)(Y, X)
¢ ———— (Zarg)|y

is bijective. Moreover, we obtain that ¢ is a morphism of (Fields) if and only if (Zarcp)ly
is dominant.
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PROOF. Surjectivity: For any (f, 6) : Y — X, we put Ry=f(L)€ X. Then we obtain
a ring homomorphism 8, : R, — L. Letting ¢ : K, — L, be an extension of 8,, we have
(f; 8)=(Zar ¢)|y. Injectivity: Let (Zar )|y =(Zary)|y=(f, 6). Then we have ¢|z,=0,=
Y|, and hence p=y. QE.D.

COROLLARY. The contravariant functor Zar : (P.Fields) - (L.R.S.) is fully faithful.

Topology T(0). Until the previous paragraph, we have been using the Zariski
topology only. We denote by T(0) the Zariski topology on Zar(KlA). Therefore T(0)
has an open base:

> ={Zar(K|A[E])) | E is a finite subset of K} .

Topology T(1). For ReZ=Zar(K|A), the inclusion ig : Zar(K|R) =, Zar(K | A)
is defined. Then we denote by T'(1) the strongest topology among the topologies such
that ig is continuous for any ReZar(K|A). We can also write:

T(1)={O<Z | O~Zar(K|R) is open in Zar(K|R) for any Re Z} .
It is clear that T(0)<= T(1).

LEMMA 12. Let K be a field, A a subring of K, Z=Zar(K|A) and ReZ. If a
topology T on Z satisfies T(0)= T< T(1), then we obtain

(i) {R}={R’€eZ|R'<R}.

(i1) The relative topology of T to Zar(K|R) is the Zariski topology.

Proor. (i) Let R’e{R}. For any aeR’, we put ¥V=dom(x)e T(0)= T. Then
Vn{R}+# & implies Re V and hence a € R. Therefore we have R’cR. Conversely, let
R’e Z satisfy R’ R. For any Oe T< T(1), we can write 0=Ukeo Zar(KlR). Hence
R’e0 implies R € 0. Therefore we have R'e {R}. (ii) is easy to prove.

Presheaf of Rings. Forany topology Ton Z =Zar(K | A), we can define the presheaf
0, by (8) in [3]. Especially if T satisfies T(0)= T'< T'(1), then we have 0; =R for any
Re Z. Therefore (Z, @®,) becomes a local ringed space. The proof is similar to that of
Lemma 1 in [3]. We also write (Z, T, 0;) instead of (Z, ¢0,), if necessary.

§6. Here we introduce the separatedness and the properness by means of valuation
theory without using direct products. As an application, we consider the projective limit
of proper (or projective) integral schemes.

DEFINITION. A morphism X — Yoflocal ringed spaces is called valuative-separated
(resp. valuative-proper), if the mapping: Mory(SpecQ, X) - Mor,(Spec L, X) defined by
(f, O)—(f, 0)oSpeci is injective (resp. bijective), for any valuation ring Q over Y. Here
we denote by L the quotient field of Q and i the inclusion mapping: Q< L.
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LeMMA 13. Let K be a field, A a subring of K, and let (X, Oy) satisfy the following
conditions:

(29) X is a topological space with a generic point and satisfies the separable
condition T .

(30) (X, Ox) is an integral local ringed space satisfying the conditions (8)
- and (21).
31 K=Rat(X, 0y) .

Then the morph‘ism X — Spec A is valuative-separated (resp. valuative-proper), if and only
if the set {xe X | R dominates Oy .} has at most one point (resp. only one point), for any
ReZar(K|A).

PrROOF. We only prove the separatedness case. The “only if”” part: Let M be
the subset of Mor,(SpecR, X) consisting of dominant morphisms (f, 8) such that
Rat(f, 0) is the identity mapping of K. Then there exists a bijection between the sets
M and {xe X | R dominates Oy ,} defined by

(/,0) +—— f(m(R))

JxoSpeci’ «——  x.

Here we denote by i’ the inclusion mapping: Oy ,<R. By the separatedness, we have
cardM<1.

The “if” part: Take (fy, 0;) : SpecQ — X (k=1, 2) that satisfy (f;, 8,)>Speci=
(f2, 62)°Speci=(g, ). Putting x,=g(0)e X, and we consider n,: Oy ,,— L. Let Ly,
be an algebraic closure of L. Then we define ¢’ : Oy ,, — L = L,,, by composition. ¢’
can be extended to a place ¢ : K, = (L,).- Then by ¢(4) = Q and Lemma 11, we obtain
a morphism Zare : Zar(Lalng) — Zar(K |A). For any PeSpecQ, we put x,=fi(P)
(k=1,2). Since the mapping Zar(L,,|Q)—Zar(L|Q) is surjective, there exists
Q'eZar(L,,,|Q) such that Qp=LnQ’. If we put R=¢ '(Q')eZar(K|A4), then R
dominates Oy . (k=1,2). Therefore, we have x,=x, and hence f;=f,. Since
(0p : O, — Qp is the restriction of ¢, we have 6, =0,. Q.E.D.

COROLLARY. If the morphism X — Spec A is valuative-separated, then Oy =0y y
implies x=y for any x, ye X.

DEerFINITION. For an integral domain A4, we define a subcategory #%(A4) of
(L.R.S|A) as follows: _
The objects (X, Oy) satisfy (29), (30) and the following condition:

(32) The structure morphism X — SpecA4 is dominant and valuative-
separated .

The morphisms of ¢(4) are dominant morphisms over SpecA.
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LeEMMA 14. The contravariant functor Rat : €(A) — (Q A-Fields) is faithful.

Proor. Let K=RatX, L=RatY and take (f;, 6;): Y- X (k=1, 2) which satisfy
Rat(f;, 0;)=Rat(f,, 0,)=¢. For any yeY, there exists QeZar(LlA) such that Q
dominates Oy,,. If we put R=¢~'(Q)e Zar(K|A), then R dominates Oy /., (k=1,2).
Therefore we have f(y)=/,(y) and hence f, =f,. Since (6,), is the restriction of ¢, we
have 0, =6,. Q.E.D.

DEFINITION. Let K be a field and A4 a subring of K. Then we define a subcategory
#(K | A) of (L.R.S|A) as follows: ‘
The objects (X, Oy) satisfy (29), (30), (31) and the following condition:

33) The structure morphism X — SpecA is valuative-proper .
The morphisms (f, 6) of ¢(K |A) satisfy the following condition:

(34) (f,0) is a dominant morphism over Spec4 and Rat(f, ) is the
identity mapping of K.

The category €(K |A) is a subcategory of €(A), which is not a full subcatggory. In
fact, for any objects X and Y of €(K |A), the set Morg i 4(Y, X) has at most one point
by Lemma 14.

LEMMA 15. Let K be a field, A a subring of K and Z=Zar(K|A). If a topology T
on Z satisfies T(0)= T< T(1), then (Z, T, O3) is an object of €(K|A).
The proof follows from Lemmas 10, 12 and 13.

For the topology T(1) on Z, the following lemma is important.

- LEMMA 16. Let K, A and Z be as in Lemma 15. Then,
(i) (Z,T(Q), 0z)~ind.lim SpecR in €(A), where R runs over Z.
(i) (Z, T(1), O;) is the initial object of €(K|A).

ProOOF. We put D=(Z, T(1), 0,).
(i) By Lemma 13, the morphism SpecR — SpecA is valuative-separated for any
R e Z. Therefore we obtain the following commutative diagram in €(A):

SpecR; SpecR,
l ij
\
D.

For any given commutative diagram in #A):
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SpecR, SpecR,

l fre
S,
X,

we put f(R)= fr(m(R)) for Re Z. Then f: D — X is continuous, dominant and JSr=f°jg.

(i) For any object X of %(K|A), we shall define a morphism @, : D — X. First
we define fx : SpecK — X by fy(0)=¢&; where ¢ is the generic point of X. Since X is
valuative-proper, there exists a morphism f : SpecR — X such that

SpecK SpecR
W7 |
X ———  SpecA,

for any Re Z. By (i), there exists a morphims @y : D— X such that f=®,0j, for any
ReZ. Then we obtain that @,(R)=x if and only if R dominates Oy, .. Therefore
®x : D~ X is a morphism of $(K | A4). Q.E.D.

Finally, we deal with the topology 7'(0), and consider the relationship to schemes.
We introduce the following two conditions for a local ringed space (X, Oy):

(35) The topology on X is generated by {dom(«x) | xeRatX}.
(36) For any xe X, Oy , is a valuation ring .

The following theorem gives a characterization of Zariski ringed space, induced
from (15), (27'), Lemmas 10, 15 and 16.

THEOREM 1. Let A be an integral domain.

(1) Let K be a field containing A. If we put Z=Zar(K l A), then (Z, T(0), O,) satisfies
the conditions (29), (30), (32), (33), (35), (36) and K ~Rat(Z, T(0), 0,).

(i) Conversely, suppose that (X, Oy) satisfies the conditions (29), (30), (32), (33), (35)
and (36). If we put K=Rat(X, Oy), then K contains A and (X, Ox)~(Z, T(0), 0,), where
Z=Zar(K|A).

Thus the functors Zar and Rat give a contravariant equivalence between the category
of fields containing A and the category of local ringed spaces satisfying the above conditions
with dominant morphisms.

DEFINITION.  Let A be a subring of a field K satisfying the following condition:
37 A is noetherian and K is a finitely generated extension over QA.

Then we denote by €,(K|4) (resp. %,(K|A)) the category of proper (resp. projective)
integral schemes (X, Oy) over A satisfying the condition (31) and morphisms (f, 6)
satisfying (34). : '
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Then we obtain

(38) %,(K|4) is a full subcategory of ,(K|4),

(38) %,(K|A) is a full subcategory of €(K|A4).

If we put

39) P={B| AcBcK, B is of finite type over 4, QB=K},

then X,={Zar(K|B)| Be P} is an open base of T(0).
We consider the following condition for a full subcategory € of ¢,(K |A):

(40) For any Be P, there exists an object X of ¢ and an affine open
subset V of X such that B=0y(V).

It is well known that €,(K |A) and %,(K |A) satisfy the condition (40). Therefore,
the following theorem implies Main Theorem as a corollary.

THEOREM 2. Let K be a field, A a subring of K satisfying the condition (37), and
Z=2Zar(K|A).

(i) Let € be a full subcategory of €,(K |A) satisfying the condition (40). Then we
obtain

(Z, T(0), 0;) = proj.lim & in €K|A).

(ii) The category %I(KIA) has an initial object if and only if (Z, T(0), O) is an
object of €,(K|A). Then we obtain that dimZ<1.

(iii) Suppose that K and A satisfy one of the following three conditions:
(@) A is of finite type over a subfield of K.
(b) A is integrally closed in K.
(c) A is an integrally closed integral domain and K is separable over QA.
Then €,(K | A) has an initial object if and only if dimZ < 1. Moreover, ®x : (Z, T(0), Oz) —
X are the normalizations of X for any objects X of ¢,(K ]A).

PrOOF. (i) We shall prove in the following three steps:

Step 1. The topology T(0) of Z is the weakest topology among the topologies
such that @, : Z — X is continuous for any object X of €.

Let X be an object of € and V an affine open subset of X. Then we have &5 (V)=
Zar(K | 0Ox(V)) and Ox(V)e P. Therefore @y is continuous with respect to T'(0). By (40),
we see that T(0) is weakest.

Thus we obtain a morphism @y : (Z, T(0), 0;) — (X, Ox) of €(K | A), for any object
X of 4,(K|A).

Step 2. Let R, R,eZ. If ®4x(R,)=Px(R,) holds for any object X of €, then
R,=R,.

If R, #R,, then we may assume m(R,) " R, # & without loss of generality. Hence
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there exist aem(R;)NR; and Be P such that xe B R, " R,. Then we have R,, R, €
Zar(KlB) and @y p(R;)# Pg p(R,). By (40), there exists an object X of € such that
Px(R,) # Px(Ry).

Step 3. Let Y be an object of %(KIA). If morphisms Y— X of %(K]A) are given
for any objects X of &, then there exists a topology T on Z such that T(0)c T< T(1)
and (Y,0y)~(Z, T, 0,). ;

By Lemma 16, the morphism @, : Z — Yis defined. Then @&, is bijective by Step
2. Let T be the topology of Z such that @y is a homeomorphism. By Step 1, we have
that 7(0)= T< T (1), and by (40), we have that &,(R)=y implies Oy,,=Rfor any Re Z.
Therefore we have (Y, 0y)~(Z, T, 0,).

Thus we obtain a morphism (Y, 0y) —(Z, T(0), 0;) of €(K|A).

(ii) Since the “if” part is clear, we shall prove the “only if” part. Let (Y, 0y) be
the initial object of ‘61(K|A). By Step 3 in (i), we have that @, is an isomorphism.
Therefore (Z, T(0), ©,) is an object of %,(K IA). By Theorem 20 in [3], we obtain that
dimZ<1.

(i) It is sufficient to prove the “if” part only. We remark that dimA4+
tr-degy K<1. :

(a) First we assume dim4=0. Then we have tr-deg, K <1. If tr-degy 4 K=0, then
Zar(K|A)=Zar(K|K)~SpecK is an initial object of %1(K|A). If tr-degy,K =1, then
Zar(K|A) is an algebraic curve over 4 and is an initial object of %.(K|A). Next we
assume dimA4=1. Let 4’ be the integral closure of 4 in K. Then A’ is a Dedekind
domain with quotient field K. Therefore Zar(KIA):SpecA’ is an initial object of
€. (K |A).

(b) We may assume dimA=1. Since K is an extension of finite degree over QA, we
have K =QA. Therefore Zar(K|A)~SpecA is an initial object of %,(K |A).

(c) We may assume dimA4 =1. Let A’ be the integral closure of 4 in K. Then A’ is a
Dedekind domain with quotient field K. Therefore Zar(K[A):SpecA’ is an initial
object of €;(K|A). Q.E.D.
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