Irreducibility of the Linear Differential Equation Attached to Painlevé's First Equation

Keiji NISHIOKA

Keio University

Abstract. The linear homogeneous differential equation z'' = 12yz with y an arbitrary solution of Painlevé's first equation $y'' = 6y^2 + x$ will be proved irreducible.

1. Introduction.

Let K be a differential field of characteristic 0 with a single differentiation D='. Let U be a universal extension of K, and R be a differential field extension of K with finite transcendence degree over K, $R \subset U$. Suppose that the field of constants of R is algebraically closed in U. We adopt the usual notation of differential module of R over K, $\Omega_K(R)$. Denote by $d_{R/K}$ the canonical mapping of R to $\Omega_K(R)$. With D there is associated an additive homomorphism of the differential module D^1 satisfying $D^1d_{R/K}=d_{R/K}D$ on R. Since R is finitely generated, the $\Omega_K(R)$ is an R-vector space of finite dimension. Let $\omega_1, \omega_2, \cdots, \omega_n$ be a base for it. Then they satisfy

$$D^1\omega_i = \sum_{j=1}^n a_{ij}\omega_j \qquad (1 \le i \le n) ,$$

where the a_{ij} are elements of R. With this system of equations there associates the following system of linear differential equations

$$Dy_i = \sum_{j=1}^n a_{ij} y_j . \tag{1}$$

Thus we may consider the Picard-Vessiot group $\Gamma(R/K)$ for this system. The definition of $\Gamma(R/K)$ is independent of the choice of bases for $\Omega_K(R)$. It is clear that if R/K has an intermediate differential field S for which $0 < \text{tr.deg}_K S < \text{tr.deg}_K R$ then $\Gamma(R/K)$ is reducible.

Equation (1) is directly derived from the defining equation of y if R has the description $R = K \langle y \rangle$. Let $F(y, y', \dots, y^{(n)}) = 0$ be the defining equation of y over K. Let α be a formal parameter with $\alpha^2 = 0$ and suppose $y + \alpha z$ satisfies the equation F = 0. Then z satisfies

$$zF_{\nu}+z'F_{\nu'}+\cdots+z^{(z)}F_{\nu^{(n)}}=0$$
.

This works as equation (1).

Here we will restrict ourselves to investigating the linear differential equation

$$z'' = 12yz \tag{2}$$

attached to the first equation of Painlevé

$$v'' = 6v^2 + x (3)$$

where x'=1, $x \in K$. One of prominent properties of this equation is this: Let y be the general solution of equation (3) over K. If y satisfies a first order algebraic differential equation over a differential field extension L of K then it is algebraic over L. Therefore the differential field $R=K\langle y\rangle$ has no differential subfield L with tr.deg_KL=1. (cf. [2].)

We shall prove the following.

THEOREM. Suppose that K contains the element x with x'=1 and the field of constants of K is algebraically closed in U. Let y be the general solution of the first equation of Painlevé (3) over K. Then for the differential field extension $R=K\langle y\rangle$ of K the Picard-Vessiot group $\Gamma(R/K)$ is irreducible.

It is reasonable furthermore to conjecture that $\Gamma(R/K)$ is $SL_2(C)$, provided C, the field of constants of K, is algebraically closed.

2. Poincaré field.

Let K be a differential field of characteristic 0 with the element x, x'=1. Let y be the general solution of the first equation of Painlevé (3) and $R=K\langle y \rangle$. The polynomial algebra K[y, y'] is a differential ring extension of K. We divide the differentiation D into three parts

$$D = \xi + \eta + \zeta$$
,

where

$$\xi = y'\partial/\partial y + 6y^2\partial/\partial y'$$
, $\zeta = x\partial/\partial y'$

and η indicates the derivation of K[y, y'] over K with $\eta y = \eta y' = 0$. Let $\gamma = y'^2 - 4y^3$, $A = K[\gamma]$ and $L = K(\gamma)$. Then $K[y, y'] = A[y] \oplus y' A[y]$. The derivation operator ξ of R over L can be represented by $\xi = y'd/dy$. We thus have the so-called Poincaré field $R = L \langle y \rangle$ over L with respect to ξ :

$$y'^2 = 4y^3 + \gamma$$
, $\xi y = y'$, $\xi L = 0$.

Note $\xi^2 y = \xi y' = 6y^2$.

PROPOSITION 1. The field of constants of R with respect to ξ is the same as L.

PROOF. Every element of R = L(y, y') has the form

$$a+y'b$$
, $a, b \in L(y)$.

Suppose $\xi(a+y'b)=0$. Then we have

$$\frac{da}{dy} = (4y^3 + \gamma)\frac{db}{dy} + 6y^2b = 0.$$

This implies b=0.

Let us define a differential operator of Lamé type:

$$\lambda = \xi^2 - 12y = (4y^3 + \gamma)d^2/dy^2 + 6y^2d/dy - 12y \in R[\xi]$$

which is seen to be reducible (cf. Proposition 3). Clearly $\lambda A[y] \subset A[y]$, $\deg_y \lambda a \le \deg_y a + 1$ $(a \in A[y])$.

PROPOSITION 2. For $a, b \in L(y)$, we have

$$\lambda(a+y'b)=f+y'g,$$

where f, g are elements of L(y) with

$$f = \lambda a$$
, $g = \mu b = y'^2 \frac{d^2 b}{dv^2} + 18y^2 \frac{db}{dv}$.

Proof. In fact

$$\xi^{2}(a+y'b) = \xi \left(6y^{2}b + y'^{2}\frac{db}{dy} + y'\frac{da}{dy}\right)$$
$$= 6y^{2}\frac{da}{dy} + y'^{2}\frac{d^{2}a}{dy^{2}} + y'\frac{d}{dy}\left(6y^{2}b + y'^{2}\frac{db}{dy}\right).$$

PROPOSITION 3. Let w be an element of some extension of R with $\xi w = y'^{-2}$. Then y' and wy' constitute a fundamental system of solutions for $\lambda z = 0$. The element w does not belong to R. Every element of R satisfying $\lambda z = 0$ belongs to y'L.

PROOF. It is straightforward that $\lambda(wy') = 0$. Suppose that we write $w = \alpha + y'b$, $a, b \in L(y)$. We then have

$$y'\frac{da}{dy} + 6y^2b + y'^2\frac{db}{dy} = y'^{-2}$$
,

hence

$$\frac{da}{dv} = 0$$
, $f^2 \frac{db}{dv} + \frac{1}{2} f \frac{df}{dv} b = 1$,

where $f = y'^2$. From the last equality we see that b has a pole of at most 1 order at

y = e, with e satisfying $4e^3 + \gamma = 0$, whence $c = fb \in L[y]$. The element c must satisfy

$$(4y^3 + \gamma)\frac{dc}{dy} - 9y^2c = 1$$
.

This is, however, impossible.

From this the operator λ is seen to be reducible.

3. Proof of Theorem.

Putting u=z'/z in equation (2), we have the Riccati equation

$$u' + u^2 = 12y . (4)$$

Suppose that (4) has a rational solution u over R. Write u = f/g, f, $g \in K[y, y']$, where f and g are coprime. Then we have

$$f'g - fg' + f^2 = 12yg^2$$
,

or

$$f(f-g') = g(12yg-f')$$
.

Since f, g are coprime it follows that f - g' is divisible by g, namely, there is an $h \in K[y \cdot y']$ with

$$f=g'+gh, \qquad u=g'/g+h.$$

By (4),

$$g'' + 2g'h + gh^2 = 12yg. (5)$$

We here use the weight function w of K[y, y'] in [2], which is defined as $w(F) = \max\{2i+3j; a_{ij}\neq 0\}$ for any nonzero element $F = \sum a_{ij}y^iy^{ij}$ of K[y, y']. For this weight function we know $w(F') \leq w(F) + 1$ if $F' \neq 0$.

If $w(h) \ge 2$ then $w(gh^2) = w(g) + 2w(h) \ge w(g) + 4$. By the way

$$w(gh^2) = w(12yg - g'' - 2g'h) \le \max\{w(g) + 2, w(g) + w(h) + 1\}$$
.

This is a contradiction. We thus have h=0 or $w(h) \le 1$, and hence $h \in K$ (cf. [3]). Enlarging K, if necessary, we may assume K has a nonzero element e of U with e'=he. Set $P=eg \in K[y,y']$. This polynomial satisfies equation (2). We shall prove that there does not exist such a polynomial. Let H_i denote the vector space consisting of the zero polynomial and all polynomials with weight $i: K[y,y'] = \sum_{i=0}^{\infty} H_i$. Let us assume the polynomial P has the decomposition: $P = \sum_{i=0}^{n} P_i$, n = w(P). By $D^2P = 12yP$ we have

$$\lambda P_{i} = -2\xi \eta P_{i+1} - \eta^{2} P_{i+2} - (\xi \zeta + \zeta \xi) P_{i+4} - (\eta \zeta + \zeta \eta) P_{i+5} - \zeta^{2} P_{i+8}. \tag{6}$$

When i=n this reads $\lambda P_n = 0$. By Proposition 3, we have

$$P_n = ay'\gamma^r$$
, $n = 6r + 3$, $a \in K$.

In particular this implies $n \ge 3$.

When i=n-1 equation (6) reads

$$\lambda P_{n-1} = -2\xi \eta P_n = -2\xi (a'y'\gamma') = -12a'y^2\gamma'$$
.

Taking the weight into account, by Proposition 3 we see

$$P_{n-1} = 2a'y\gamma^r$$
.

When i=n-2 equation (6) reads

$$\lambda P_{n-2} = -2\xi \eta P_{n-1} - \eta^2 P_n = -2\xi (2a''y\gamma') - \eta^2 (ay'\gamma'),$$

hence

$$\lambda P_{n-2} = -5a''y'\gamma^r.$$

On putting $P_{n-2} = f + y'g$, $f, g \in L(y)$, by Proposition 2 we have

$$\lambda f = 0, \qquad \mu g = -5a''\gamma^r,$$

where μ indicates the derivative operator with the expression

$$\mu = (4v^3 + \gamma)d^2/dv^2 + 18vd/dv$$
.

From the second equation it follows that dg/dy = 0, and so that a'' = 0. This shows

$$P_{n-2} = 0$$
.

When i=n-3 equation (6) reads

$$\lambda P_{n-3} = -2\xi \eta P_{n-2} - \eta^2 P_{n-1} = -\eta^2 (a'y\gamma^r) = 0$$

hence by Proposition 3,

$$P_{n-3} = 0$$
.

If n=3, then P=ay'+2a'y and

$$D^{2}P = D(a(6y^{2} + x) + 3a'y')$$

$$= a(12yy' + 1) + 4a'(6y^{2} + x)$$

$$= 12yP + 4a'(6y^{2} + x) + a$$

which does not equal 12yP. Therefore n > 3, whence $n \ge 9$.

When i=n-4 equation (6) reads

$$\lambda P_{n-4} = -2\xi \eta P_{n-3} - \eta^2 P_{n-2} - (\xi \eta + \zeta \xi) P_n$$

= $-(\xi \eta + \zeta \xi) (ay' \gamma^r)$
= $-\xi (ax \gamma^r + 2rax y'^2 \gamma^{r-1}) - \zeta (6ay^2 \gamma^r)$

$$= -36ray^2y'y^{r-1}.$$

On putting $P_{n-4} = f + y'g$, $f, g \in L(y)$, we have

$$\lambda f = 0$$
, $\mu g = -36raxy^2 \gamma^{r-1}$.

This implies f = 0, $g = -2axy\gamma^{r-1}$, hence $P_{n-4} = -2axy\gamma'\gamma^{r-1}$.

When i=n-5, equation (6) reads

$$\lambda P_{n-5} = -2\xi \eta P_{n-4} - \eta^2 P_{n-3} - (\xi \eta + \zeta \xi) P_{n-1} - (\eta \zeta + \zeta \eta) P_n$$

= $-2\xi \eta (-2raxyy'\gamma^{r-1}) - (\xi \eta + \zeta \xi) (2a'y\gamma^r) - (\eta \zeta + \zeta \eta) (ay'\gamma^r).$

We calculate each term in the third member. The first term is

$$4r\xi[(a'x+a)yy'\gamma^{r-1}] = 4r(a'x+a)(y'^2+6y^3)\gamma^{r-1}$$

= $40r(a'x+a)y^3\gamma^{r-1} + 4r(a'x+a)\gamma^r$,

the second term is

$$\xi(4ra'xyy'\gamma^{r-1}) + \xi(2a'y'\gamma^r)$$

$$= 4ra'x(y'^2 + 6y^3)\gamma^{r-1} + 2a'x\gamma^r + 4ra'xy'^2\gamma^{r-1}$$

$$= 56ra'xy^3\gamma^{r-1} + 2(4r+1)a'x\gamma^r,$$

and the third term is

$$\eta(ax\gamma^{r} + raxy'^{2}\gamma^{r-1}) + \zeta(a'y'\gamma^{r})
= (a'x + a)\gamma^{r} + r(a'x + a)y'^{2}\gamma^{r-1} + a'x\gamma^{r} + ra'xy'^{2}\gamma^{r-1}
= 4r(2a'x + a)y^{3}\gamma^{r} + [2(r+1)a'x + (r+1)a]\gamma^{r}.$$

Hence

$$\lambda P_{n-5} = -12r(2a'x+3a)y^3\gamma^{r-1} + [(-6r-4)a'x+(3r-1)a]\gamma^r.$$

If we set $P_{n-5} = f + y'g$, $f, g \in L(y)$, we have

$$\lambda f = -12r(2a'x+3a)y^{3}\gamma^{r-1} + [(-6r-4)a'x+(3r-1)a]\gamma^{r},$$

$$\mu q = 0.$$

From the first equation, noting n-5=6(r-1)+4, we have the expression $f=by^2$, $b \in L$, so that

$$\lambda f = b[2(4y^3 + \gamma) + 12y^2 - 12y^23]$$

= 28by³ + 2b\gamma.

This yields

$$2b = -3r(2a'x + 3a)\gamma^{r-1} = [(-6r - 4)a'x + (3r - 1)a]\gamma^{r-1},$$

hence 4a'x = (12r - 1)a. This contradicts the fact that a'' = 0. Thus the proof of the Theorem is completed.

References

- [1] M. MATSUDA, First order algebraic differential equations, Lecture Notes in Math., 804 (1980), Springer.
- [2] K. Nishioka, A note on the transcendency of Painlevé's first transcendent, Nagoya Math. J., 109 (1988), 63-67.
- [3] P. PAINLEVÉ, Démonstration de l'irréductibilité absolue de l'équation $y'' = 6y^2 + x$, Œuvres de P. Painlevé III, 89-95, Éditions du C. N. R. S., Paris, 1975.

Present Address:

FACULTY OF ENVIRONMENTAL INFORMATION, KEIO UNIVERSITY AT SFC ENDOH, FUJISAWA 252, JAPAN