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Irreducibility of the Linear Differential Equation
Attached to Painlevé’s First Equation

Keiji NISHIOKA

Keio University

Abstract. The linear homogeneous differential equation z”=12yz with y an arbitrary solution of
Painlevé’s first equation y”=6y?+ x will be proved irreducible.

1. Introduction.

Let K be a differential field of characteristic 0 with a single differentiation D=".
Let U be a universal extension of K, and R be a differential field extension of K with
finite transcendence degree over K, R = U. Suppose that the field of constants of R is
algebraically closed in U. We adopt the usual notation of differential module of R over
K, Qx(R). Denote by dgx the canonical mapping of R to Q(R). With D there is
associated an additive homomorphism of the differential module D* satisfying
D'dgx=dg,xD on R. Since R is finitely generated, the Q,(R) is an R-vector space of
finite dimension. Let w,, w,, - - -, w, be a base for it. Then they satisfy

n
Dla),-= Z aija)j (ISlSn),
j=1
where the a;; are elements of R. With this system of equations there associates the
following system of linear differential equations

n
Dy;= .Zlaijyj‘ 1
j=

Thus we may consider the Picard-Vessiot group I'(R/K) for this system. The definition
of I'(R/K) is independent of the choice of bases for Q4(R). It is clear that if R/K has
an intermediate differential field S for which 0 <tr.degy S<tr.degg R then I'(R/K) is
reducible. »

Equation (1) is directly derived from the defining equation of y if R has the
description R=K<{y>. Let F(y,y’," - -, y™)=0 be the defining equation of y over K. Let
a be a formal parameter with «>=0 and suppose y+az satisfies the equation F=0.
Then z satisfies
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zF,+2'Fy+ - - +zPF,m=0.

This works as equation (1).
Here we will restrict ourselves to investigating the linear differential equation

z"=12yz 2)
attached to the first equation of Painlevé
Y =6y +x, 3

where x’=1, xe K. One of prominent properties of this equation is this: Let y be the

general solution of equation (3) over K. If y satisfies a first order algebraic differential

equation over a differential field extension L of K then it is algebraic over L. Therefore

the differential field R=K{y) has no differential subfield L with tr.degx L=1. (cf. [2].)
We shall prove the following.

THEOREM. Suppose that K contains the element x with x’ =1 and the field of constants
of K is algebraically closed in U. Let y be the general solution of the first equation of
Painlevé (3) over K. Then for the differential field extension R=K{y) of K the
Picard-Vessiot group I'(R/K) is irreducible.

It is reasonable furthermore to conjecture that I'(R/K) is SL,(C), provided C, the
field of constants of K, is algebraically closed.

2. Poincaré field.

Let K be a differential field of characteristic 0 with the element x, x’=1. Let y be
the general solution of the first equation of Painlevé (3) and R=K{y ). The polynomial
algebra K[y, y'] is a differential ring extension of K. We divide the differentiation D
into three parts

D=¢+n+(,
where
E=y'0/oy+6y2d/oy’,  (=x0/0y’

and # indicates the derivation of K[y, y] over K with ny=ny’=0. Let y=y'2—4y3,
A=K[y] and L=K(y). Then K[y, y'1=A[y] ® y'A[y]. The derivation operator ¢ of
R over L can be represented by &=y’d/dy. We thus have the so-called Poincaré field
R=L{y) over L with respect to ¢: :

yr=4y3+y, &y=y', EL=0.
Note £2y=¢Ey'=6y2.

PROPOSITION 1. The field of constants of R with respect to £ is the same as L.
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PrROOF. Every element of R=L(y, y’) has the form
a+y'b, a,bel(y).
Suppose &(a+ y'b)=0. Then we have

£=(4y3+y)£b—+6y2b=0 :
dy dy

This implies 5=0.
Let us define a differential operator of Lamé type:
A=82—12y=(4y>+y)d?*|dy*+6y>d/dy—12ye R[¢] ,

which is seen to be reducible (cf. Proposition 3). Clearly AA[y] < A[ v], degda<
deg,a+1 (ae A[y]).

PROPOSITION 2. For a, be L(y), we have
Ma+y'b)=f+y'g,
where f, g are elements of L(y) with
,d?*b , db
=la, =ub=y*—— +18y?—
f=42a g=pb=y" 57 T
PrOOF. In fact
db d
éz(a+y'b)=§<6y2b+y’2—+y’—3)
dy dy

2

da d*a d db
=6y —+y?— + ’—(6 b+ '2—).
Y PR PR & y“b+y &

PROPOSITION 3. Let w be an element of some extension of R with Ew=y'~2. Then
y' and wy' constitute a fundamental system of solutions for Az=0. The element w does
not belong to R. Every element of R satisfying Az=0 belongs to y'L.

PrROOF. It is straightfoward that A(wy’)=0. Suppose that we write w=a+ b,
a be L(y). We then have
da db
l______+6 2b_|_ 2 77 l"2,
y & y y e y
hence

4y, f2 b sy y,
dy dy 27 dy

where f=y’2. From the last equality we see that b has a pole of at most 1 order at
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y =e, with e satisfying 4e> +y=0, whence c=fb € L[y]. The element ¢ must satisfy
d
@3 +y) = —9y%e=1.
dy

This is, however, impossible.

From this the operator A is seen to be reducible.

3. Proof of Theorem.

Putting u=2z'/z in equation (2), we have the Riccati equation
w+ui=12y. 4

Suppose that (4) has a rational solution « over R. Write u= f/g, f, ge K[y, y'], where
f and g are coprime. Then we have

f'9—fa9' +f*=12y92,
or

fU—9)=9(12y9—1").
Since f, g are coprime it follows that f—g’ is divisible by g, namely, there is an
he K[y -y’] with

f=9'+gh, u=g'lg+h.

By (4),

9" +2g9'h+gh*=12yg . %)
We here use the weight function w of K[y, y'] in [2], which is defined as w(F)=
max{2i+3j; a;;#0} for any nonzero element F=Y a,;y'y" of K[y, y']. For this weight
function we know w(F')<w(F)+1 if F' #£0.

If w(h)>2 then w(gh®)=w(g)+2w(h)>w(g)+4. By the way
w(gh®)=w(12yg—g" —2g'h) <max{w(g) +2, w(g) +w(h) +1} .

This is a contradiction. We thus have h=0 or w(h)<1, and hence he K (cf. 3D).
Enlarging K, if necessary, we may assume K has a nonzero element e of U with ¢ = he.
Set P=ege K[y, y']. This polynomial satisfies equation (2). We shall prove that there
does not exist such a polynomial. Let H; denote the vector space consisting of the zero
polynomial and all polynomials with weight i: K[y, y'] =z:‘;oHi. Let us assume the
polynomial P has the decomposition: P=3)7_  P;,, n=w(P). By D>*P=12yP we have

AP;= —2EnP; 1 —N*Piyy —(ELHLOP 4 — M+ NPy s— (2 Pyyg . (6
When i=n this reads AP,=0. By Proposition 3, we have
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P,=ay'y", n=6r+3, aek.

In particular this implies n> 3.
When i=n—1 equation (6) reads

AP, =—2&nP,= —2¢(a'y'y")=—12a'y*y".

Taking the weight into account, by Proposition 3 we see

P,_,=2a'yy".
When i=n—2 equation (6) reads
AP, 3= =2{nP,_ —n*P,= —2¢Q2a"yy") —n*(ay'y") ,
hence
AP, _,=—5a"y'y".
On putting P,,;z =f+y'g, f, g€ L(y), by Proposition 2 we have
Af=0,  pg=-—35a"y",
where u indicates the derivative operator with the expression
u=(4y3+y)d?/dy?+ 18yd/dy.
From the second equation it follows that dg/dy =0, and so that a”’=0. This shows
P,_,=0.
When i=n—3 equation (6) reads
AP,_3=—=2LP,_,—n*P,_ ;= —n*(@’yy)=0,
hence by Proposition 3,
P,_,=0.
If n=3, then P=ay’+2a’y and
D2*P=D(a(6y*+x)+3a'y’)
=a(12yy’ + 1) +4a'(6y* +x)
=12yP+4a'(6y*+x)+a
which does not equal 12y P. Therefore n> 3, whence n>9.
When i=n—4 equation (6) reads
AP, 4= —2LnP,_3—n*P,_,—(n+()P,
=—(&n+{ay'y")
= —&(axy"+2raxy'?y" ") —{(6ay>y")
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r—1

= —36ray?y’y
On putting P,_,=f+y'g, f,ge L(y), we have’

Af=0, ug= —36raxy?y 1.
This implies =0, g= —2axyy"~ !, hence P,_,= —2axyy’y"" L.

When i=n—35, equation (6) reads
AP, s=—=2EnP,_4—n*P,_3—(n+{OP,_,—ml+{MP,
= —28n(—2raxyyy"” ) — En+LOQa’yy)— @l +{n)ay'y") -
We calculate each term in the third member. The first term is
drél(@x+a)yy'y " 1=a4r(@x+a)(y"*+6y>)y" !
=40r(a'x+a)y3y "1 +4r(a'x+a)y",

the second term is

E(@ra'xyy'y" ")+ {(2a'y'y")
=4ra'x(y'*+6y3)y "' +2a'xy"+4ra'xy’?y !
=56ra’'xy3y" "' +2(4r+ a'xy",
and the third term is

n(axy"+raxy'®y"" ) +{(a’y'y")
=(a/x+a),yr+r(arx+a)y/2.yr—1 +arx,},r+rarxy/2,y
=4rQa'x+a)y3y"+[2(r+ Da'x+(r+aly" .

r—1

Hence
AP,_s=—12rQ2a'x+3a)y3y" ' +[(—6r—4)a'x+@Br—1aly".
If weset P,_s=f+y'g, f,geL(y), we have
Af=—12rQRa'x+3a)y*y '+ [(—6r—4)a’x+@Br—1)aly",
ug=0.

From the first equation, noting n— 5= 6(r — 1) + 4, we have the expression f =by?2, be L,
so that

Af=b[2(4y*+7y)+12y%—12y?3]
=28by3+2by.
This yields
2b=—3rQRa'x+3a)y"  '=[(—6r—Aa'x+@Gr—Daly ",
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hence 4a’x=(12r—1)a. This contradicts the fact that a”=0. Thus the proof of the
Theorem is completed.
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