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Logarithmic Projective Connections

Masahide KATO

Sophia University

In this note, we consider logarithmic version of the results in [K3]. Let X be a
complex manifold of dimension n>2 and D a reduced effective divisor on X with only
normal crossing singularities. We define logarithmic projective Weyl forms P,,
0<k<n, a kind of characteristic forms of the pair (X, D), by means of a C*-
logarithmic projective connection and prove the following formula
W®=Y (”+1_’)«n+1>-151(%7)>"—fﬁj(ﬁ), 0<k<n,

Jj=0

where the ¢,(8) are the logarithmic Chern forms defined by a suitable C *-logarithmic
affine connection § (Theorem 3.1). If X is compact, Kihler and admits a holomorphic
logarithmic projective connection, then the logarithmic projective Weyl forms are
d-exact. Hence, in this case, our formula gives the formula on the logarithmic
Chern classes

Ek=<";:1)((n+1)‘151)’°, 1<k<n.

The latter is the logarithmic version of Gunning’s formula [G], see also [K3].
In the last section, we shall reprove a formula on Chern classes of certain compact
non-Kahler 3-folds which were constructed in [K1] as an application of our main result.

NOTATION.
QF : the sheaf of germs of holomorphic p-forms on a complex manifold,
QP(log D) : the sheaf of germs of logarithmic p-forms along a divisor D on a com-
plex manifold,
0~Q° : the sheaf of germs of holomorphic functions on a complex manifold,
© : the sheaf of germs of holomorphic vector fields on a complex manifold,
©(—log D) : the sheaf of germs of logarithmic vector fields along a divisor D on a
complex manifold,
"(E) : the sheaf of germs of differentiable r-form-valued sections of a vector
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bundle E on a manifold,
APYE) : the sheaf of germs of differentiable (p, g)-form-valued sections of a
vector bundle E on a manifold,
T : the sheaf of germs of differentiable vector fields on a manifold,
FP=QP(End(O)),
F?{D)=Q"(log D)(End(6(—log D))),
%P1 = of/"4(End(O)),
g = ®p+q=rgp’q3
4P D) = #"%(log D)(End(6(—log D))),
G(DY =D p1q-r "D

1. Preliminaries.

Let X be a complex manifold of dimension n>1. Let D be a reduced effective
divisor on X with only normal crossing singularities. We call (X, D) a logarithmic pair.
Take a locally finite open covering # ={U,} of X such that on each U, there defined
a system of local coordinates z,=(zl, 22, - - -, z7) such that

Uar\D={z,‘;‘ziz°-'zi"=O}, 1<k<n,

where i, i,, - - -, i, are distinct integers satisfying 1<i,<n. Such a local coordinate
system is said to be a logarithmic coordinate system along D on U,, [1, page 321]. Put

Pap=2,°25" .
The transition function of the tangent bundle @ is given by
7,s = the Jacobian matrix of ¢, on U,nUs.
Put wk=(z¥)*, where
1 if Do({z¥=0} U,
"={o if Dp({zE=0} A U).

On each U,, we consider logarithmic 1-forms

j
wi=F 12, .n, (1)
Wa
and logarithmic vector fields
0j=wj 9 i=1,2,-,n )
a a az:' .] » b M

Let 7, be an n x n matrix defined by
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w, 0

T,= ‘ . 3)

0 Wy

Then, on U, n Uy, the transition function of the logarithmic tangent bundle @(—log D)
with respect to logarithmic coordinates on U, and U, is given by

faﬂ=1?;1"taﬂ"rﬁ ’ (4)
and that of the logarithmic cotangent bundle Q!(log D) is given by
Th=1,th1 ", ="ty . 5)

Here we note that each 7, may be singular on U,, but the product 7,, is non-singular
on U,n U,.
Define an n x n matrix-valued holomorphic 1-form by

Qup=Top'dT,p | (6)
and a scalar-valued holomorphic 1-form
0.5=(n+1)"'dlog(dett,z)=(n+1)"! Trace(r;'dz,p) . ©)
Similarly, for logarithmic version we define n x n matrix-valued holomorphic 1-form by
App=Top'dT,p ®)
and a scalar-valued holomorphic 1-form
Gup=(n+1)"'dlog(det )= (n+1) ! Trace(f'd7,p) . )
We write o,; (respectively for logarithmic version, &,p) as
Oup=04p;d2}
TeSP. Gop=0,p, 0}
and define p,; by _
(paﬂ)l{ =0 aﬂkdz ﬁ (10)

1esp.  (Pap)i =G} - (11)

We consider another n x n matrix-valued holomorphic 1-form by
Pap=0up—Pap— 1" O4p (12)
TESP.  Pap=0up— Pap—1"Gsp - (13)

LemMma 1.1. On U,n Upn U, we have the relations
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Oup+05,=04,, (14)
Thy GagTpy+ap, =0, , (15)
Tp—ylpapfﬁy +Ppy = Pay » (16)

Oup+05,=0yy, a7
T, AupTp, + Apy =0y (18)
Tay' PagToy+ Py = Pay - (19

By the above lemma, we have the 1-cocycles
{o,4}eHI(X,QY),
{aus}s {Pap}> {Pap} € H' (X, 2'(End())),
{Gp} € H'(X, Q'(log D)),
and
{a}> {Pup}» {og} € H'(X, 2*(log D)(End(6(—log D)))) .

It is easy to check that these cohomology classes are determined mdependently of the
choice of logarithmic local coordinate systems along D. We put

FP=QP(End(@)),
and
F (D) =Q"(log D)(End(®@(—log D))).
Let «/79(E) denote the sheaf of germs of C* sections of a locally free sheaf E. We put
GP1=ofPYEnd(@)),
G =D prg=r™,
979 D) = "(log D)(End(@(—log D))),
and
G(DY= D4 q-,9"%D) .
DEerFINITION 1.1. The cohomology class
ax={a, e H'(X, F1)
resp. ax<{D>={a,z}e H' (X, F'(D))

is called the obstruction to the holomorphic affine connection (resp. the obstruction to
the logarithmic affine connection with respect to D) of X. The cohomology class
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px={pyp} e H (X, F1)
resp. px={Pus} e H'(X, (D))

is called the obstruction to the holomorphic projective connection (resp. the obstruc-
tion to the logarithmic projective connection with respect to D) of X.

DerINITION 1.2. For a complex manifold X with ay =0 (resp. @y =0), there exists
a (holomorphic) 0-cochain {a,} (resp. {a,}) such that 6 {a,} ={a,z} (resp. 6{a,} ={G,s}),
which is called a holomorphic affine connection (resp. holomorphic logarithmic affine
connection with respect to D) of X. There always exists a C* 0-cochain {a,} (resp.
{a,}) in the natural sense, where the a, (resp. @,) is an element of

r,, ¢°
resp. I'(U,, 41°(D)).

The 0-cochain is called a smooth affine connection (resp. smooth logarithmic affine
connection with respect to D).

DermNITION 1.3. For a complex manifold X with py=0 (resp. pxy=0), there
exists a (holomorphic) 0-cochain {p,} (resp. {5,.}) such that 6{p,}={p.s} (resp.
8{P.} ={Pap}), which is called a holomorphic projective connection (resp. holomorphic
logarithmic projective connection with respect to D) of X. There always exists a C*®
0-cochain {p,} (resp. {§,}) in a natural sense, where p, (resp. p,) is an element of

r,,¢-°
resp. I'(U,, 4°(D)).

The O-cochain is called a smooth projective connection (resp. smooth logarithmic
projective connection with respect to D).

Let i: X\D—X be the natural inclusion. Since i*#P(D)~%7", i induces a
natural homomorphism

i*: HY(X, F7(D»)—~HY(X\D, F?).

Put
a,=t;'dt,, (20)
6,=(n+1)"'dlogdetz,, @21
Pa= (P , (22)
Pix=0Gu0 , (23)
Gu=0y—P,— 15, . (24)

LEMMA 1.2. On U,n Uz U,, we have the relations
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Aup=Tp 'AupTg+as—T5' AT,
Oup=0,3+05—0,,
Pap=Tp lpapfp +pg— fa—ﬁlﬁafaﬂ s
Pap=7T5 'PapTp+dp—Tap'GuTap -
As a corollary to the above lemma, we have
PROPOSITION 1.1.
itay{D>= ax\p » (25)
itPx<{D>=px\p - (26)

PROPOSITION 1.2.  The vanishing of ax (resp. ax{D)) implies the vanishing of Px
(resp. px<Dy).

PROOF. In the logarithmic case, given a holomorphic logarithmic affine con-
nection {a,}, then we can define a holomorphic logarithmic projective connection
0-cochain {p,} given by

where
6,=(n+1)"'Traced,=3d,;0],
(P =0uw] .
The (ordinary) affine connection case is settled by the same manner. [ ]

2. Logarithmic projective Weyl forms.

Let X be a complex manifold of dimension n>2 and D a reduced effective divisor
on X with only normal crossing singularities. In the following, logarithmic projective
connections (resp. logarithmic affine connections) imply smooth logarithmic projective
connections with respect to D (resp. smooth logarithmic affine connections with respect
to D) unless otherwise stated explicitly. Suppose that jx{D) is represented by a cocycle
{P.p}- Let ®={p,} be a (smooth) logarithmic projective connection on X with respect
to D, that is, on each U, there is an # x n matrix-valued (1, 0)-form p, such that

ﬁﬂ =paﬂ + fa—;ilﬁafap s (@27
where
(P)j=pk;of (28)

with C*-function p; defined on U,. Similarly, the (k, J)-component of p,; is written as
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(ﬁaﬁ)f =ﬁ:pi j cof, s (29)
with C*-function pj;; defined on U,,. Using the basis of (1) and (2), we have
8yp=gp;; 0 ® 0} ® O »
Pap=0{00p;00p ® 0} @ Opy ,
and
&aﬂ =6;645'w5 ® wﬁ ® Oﬂk .
Therefore the equality
ﬁ:pij=13a’faﬁ
holds. In view of this equality, it is easy to see that
qa = (q:J) ’
where
qa'fj =p-:ji wy,
is also a logarithmic projective connection. Hence {27 '(p,+¢,)} is a logarithmic
projective connection. Therefore we may assume that
13:11 =17: ji * (30)
Since Trace(p,s)=0, it follows from (27) that Trace(p,)=Trace(pp). Since {p,—
n~1Trace(p,):1} is also a projective connection, we may assume that

ﬁ&iij=0' @31

A logarithmic projective connection satisfying (30) is said to be normal. A logarithmic
projective connection satisfying (31) is said to be reduced. Thus any complex manifold
admits normal reduced (smooth) logarithmic projective connections. As we see from the
above argument, if a complex manifold admits a holomorphic logarithmic projective
connection, then the manifold admits a normal reduced holomorphic logarithmic
projective connection. In the following, we consider only normal reduced (holomorphic
or smooth) logarithmic projective connections.

Now we shall calculate the logarithmic projective Weyl curvature tensor. As in
[K3], we follow the argument of Eisenhart [E]. By (8) and (13), we have

Pp=Tup AT g— Pap— 1" Gop+Tag Palap -
Taking the exterior derivative, we get
dpg= —T ' AT, AT AT, — AP g — Tog' dTop A Top' PuTap 32)
| + T AP, T g — Tap' PaTap »
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where we have used the equation dé,;=0. Therefore we obtain
dﬁﬁ +pﬁ Apﬂ = fa_ﬁl(dp—a +p—a A p-a)faﬂ - dﬁaﬂ + p-aﬁ A ﬁaﬁ - fa_ﬂldfap A ﬁaﬁ (33)
- ﬁaﬂ A fa_ﬂldfaﬂ - ﬁaﬁ A fu—ﬁlp_afaﬂ _fa_ﬂlp—afuﬂ A puﬁ
— T AT g AT Gop—I+Gog AT g ATy — Tog' DaTup A " Gop

—I'o—'ap Afa_ﬂlﬁafaﬂ+1.o—-aﬁ/\1.6¢ﬂ+ﬁaﬂ AI.6¢p+1.6_¢ﬂAp¢ﬂ .

LEMMA 2.1.
Pa A TapPap= 0, (34)
Ay A pap=0, (35)
IGug NI Gog=Pog AI*Gog+1Gog A Pog (36)

=fa_ﬂldfuﬂ A I' 6aﬂ +I' 6aﬂ A fa_pldfap
=1Gap ATy PaTapt+ Tap' Palap N Grp
=0,
Pap A Pap=Pap N1*Gp . (37
PROOF. Since G, is a scalar-valued form, the equality (36) follows from the fact
that 6,4, d7,5 and p, are 1-forms. By the definition of f,g, Pag A Pag is given by
(G apm@f A Gogj0F) = (Gop; Wh A G ypm@f)
= ﬁap A I' a..ap .
Hence (37) is proved. Note that by (1.1) we have
ATug A Pap=Ts "{ —dT,T7 Tup A Pap+TapdTsTs ' A Papt+dTag A pag
—dt, Ty Tppp+ Tapd Tt Lpp+dT,ppp+dT,T7  Patap
—TopdTpT T g PuTap— ATapTap' PaTag)Ts - (38)

The (j, k)-component of dr,g A p,g is

a(;?;psm dz) A Goppdz) = a,,k< aj;;j;; )dz; Adzr=0. (39)
Hence
dTop A Pag=0. (40)
Similarly, we have
dt.s A pg=0, 41)
dt,gT5" ApP,=0. (42)

The (j, k)-component of 7,50, is given by
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Tiﬁml’aﬂkdzﬁn =paﬂkdza{ .
Therefore we have
ATy 1Tap A Pap=0.
Similarly, we have
dt,t; "Ts App=0.
It is easy to see that
drgtg ' A pg=0,
dtgty ' App=0,

dtpts "t Ap,=0.
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(43)

(44)

(45)

(46)
47

Then (35) follows from (40)—(47) and (38). By (30), the (j, k)-component of p, A T,p,p is

ﬁa{:swi A Tapm0 upr@f =G, aﬁk(ﬁa{:sw:z Awy)=0.
Thus (34) is proved.
By the above lemma and (33), we have
dpg+Pg A Pp="Tap (dPa+Pu A P)Tap—Tap »
where, using (13) and (27)

Faﬁ = p-aﬂ A fa_ﬁlp—afaﬁ + dﬁaﬁ _p—aﬂ AT 6aﬂ + ﬁaﬁ A fa—ﬂldfaﬁ

=Pap APp+dPoap+ Pap AN1°Gyp .

Note that 7,4 is a matrix-valued smooth (2, 0)-form. Put

Faﬂ = (F:ﬂi) = (F:ﬂijkwé' A a)’,‘,) .

Then by (49) we have

=h _ shx hx
’apzjk—‘sj’apik—5k’apija

where
- - m 1 - - -
2F apik = O upmP ik — . 0505 (logdet T,5) + G ,p:6 g1 -
Letting
aﬁﬂ +PgADg= (0 é'ijkwi A w’ﬁ) s
we have

X ;r'ijk = oﬁj(p[l;ik) - oﬂk(p;i'ij) +17[3'm P pik —p—;mkp;;j .

(48)

(49)

(50)

(51)

(52)

(53)

(54)
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Put Ypu= Y;ijk' Thel'l

Xpij=— epk(ﬁﬁij) +P.§mjp_ﬁ';k . (55)
It follows from (48), (50) and (51) that
_ 1 o o - -
Fapik = 7_——1— X, Bik ajmtzﬂit:bk) . (56)
Thus we obtain
Wp = fa—pl Wafaﬂ s (57)
where
. 1 -
Wa=dﬁa+p-aAﬁa+_—1Xa’ (58)
n —
X, =Xyl A 0f). (59)

Thus we have

PROPOSITION 2.1. The tensor field {W,} defined by (58) and (59), called the
(smooth) logarithmic projective Weyl curvature tensor, is an element of I'(X, 9*{D)).

If, further, the projective connection p, is holomorphic, then the tensor field {W,},
called the holomorphic logarithmic projective Weyl curvature tensor, is an element of
I'(X, F2(D)).

Let ¢ be an indeterminate and 4 be an nxn matrix. Define polynomials
Pos P15 *° s Py by

det(l——l—, tA) =Y @u(A)*.
2mi k=0

We put
Pk(ﬁ)=(pk(Wa)a k=09 19 tc,n,

where 7 stands for the normal reduced logarithmic projective connection {p,}. In view
of (57), P() are smooth 2k-forms defined globally on X.

THEOREM 2.1. i) P (%) is a d-closed smooth 2k-form.
ii) The de Rham cohomology class [P(®)] is a real cohomology class and is
independent of the choice of the normal reduced logarithmic projective connection.

DEFINITION 2.1. The d-closed smooth 2k-form P,=P() is called the k-th
logarithmic projective Weyl form.

Since 7 is reduced, we have
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P,=0. (60)

The above theorem is a corollary (Corollary 3.1) to Theorem 3.1 in the next
section.

REMARK 1. In holomorphic conformal geometry, we can define conformal Weyl
forms by means of conformal Weyl curvature tensor (cf. [K4]). Therefore, to avoid
confusion, we call by k-th projective Weyl form the d-closed smooth 2k-form
P, = P,(n) defined in [K3, Definition 2.31].

3. A formula on logarithmic projective Weyl forms and logarithmic Chern forms.

In this section, we shall prove the following theorem.

THEOREM 3.1. Let (X, D) be a logarithmic pair of a complex manifold X of
dimension n>2. Let 7t be any normal reduced smooth logarithmic projective connection
with respect to D on X. Then there is a smooth logarithmic affine connection 8 on X with
respect to D which satisfies the following equality;

$ a@u-avars 5 ro(+5 )

q=0 1+at

or, equivalently

Y B@ri=(1—aiy*y aq(a)( ! )q,
q=0 q=0

1—at
where ¢(0)=the k-th logarithmic Chern form associated with 8, a=n+1)"1¢,(9),
P (%)= the j-th logarithmic projective Weyl form associated with 7.

We shall give a proof of the above theorem by almost the same method as that
of [K3, Theorem 3.1]. In the logarithmic case, however, we cannot expect an analogue
of [K3, Lemma 3.14].

To prove the theorem, first we choose the smooth logarithmic affine connection 8.
Put

Ky=Ky+D,

where Ky is the canonical line bundle of X. We may assume that Ky is represented by
a 1-cocycle {K,z}, K,s€I'(U, N Uy, 0%). Let {h,} be a smooth metric of {K,,}. That is,
each %, is a real-valued positive smooth function on U, satisfying

hy=|K,4|%h, on U,nU. (61)
By (9), we have
Gog=—(n+1)"1010g K,z . (62)
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Put
6,=—(n+1)"'dlogh, . (63)
Then
Gup=0p—0, . (64)
We write 6, as
Gy =0qy0] (65)
and define
Pu=(Gu]) . (66)

Then p, is an n x n matrix-valued smooth (1, 0)-form, where the (j, k)-component is
G4w3, and satisfies

ﬁaﬁ = ﬁﬂ - fa_ﬁlﬁafaﬂ . (67)
Now let 7={p,} be any normal reduced (smooth) logarithmic projective connection.

Recall that the p, satisfy the relation (27). Define an nxn matrix valued smooth
(1, 0)-form 8, on U, by

Oy =Po+Pat+6,°1. (68)
Using (13), (64) and (67), we have
daﬂ = G.p - ‘f;pla-afaﬂ . . (69)

This shows that 8= {9;} is a logarithmic affine connection of X. We calculate the Chern
forms associated with 8. The curvature form of the logarithmic affine connection

0,=d0,+0,10, 70)
satisfies the equation
O,=74'60,7, on U,nU,. (71)
The logarithmic Chern forms are given by
G@)=0,6)) . (72)
LemMma 3.1.
PaNPa=dPy A Pe=Py AdP,=0. (73)
ProoF. These equalities follow immediately from the condition (30). ]

By (68), (70) and Lemma 3.1, we have
@a=d6a'1+dp_a+p—aAﬁa+ﬁaAp_a+dﬁa+ﬁaAp—a' (74)
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In what follows, we omit the subscript «. Put

i=1-——de=1-—1_75. (75)
2mi 2ni

It follows from Lemma 3.1 that

I——— O=NI=—— @ +FAD) \ = A\ I=5 (P +5 A D) ). (76
2ni ( 2miA (p+p/\p))( 2miA p/\p)( 2miA (dp p/\p)) (76)

LEMMA 3.2.

det([——t— X’)= 1.
2ni

ProoOr. Note that

t - 1 t \1¢ =
det([—-——fX>= D (——) Y. det X7, W)
2mi =0 2ni ) 7
where J runs all g-tuples {j, j,, ** -, j,} with j, <j,< - <Jjp 1<j3;<n, and' X7 is the

g x g-principal minor corresponding to J. Let S, denote the symmetric group of degree
q and put k;=j, (1), 0€S,. Then by

Xi=aw' A X oo™ ,

we have
YdetXi=3 3 (sgno) (@’ A Xy m@™ A - A@ItA X m,@™)
J J geSq
=q! Y 0N AKX O™ A A0IAX, o™
7
=Y O"A X @™ A AN A X m 0™
I
=(X;, @' A 0™ .
By (55), X;u@' A @™ =0 holds. Hence we have the lemma by (77) and (78). N |
LemMma 3.3.
t r
det([ ———(dp+p A 13)) =det<l — W) . (78)
2ni 2mi

ProOoOF. Note that

PAX=0 (79)
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holds. By (59), the (j, k)-component of j A X is

PIAXi=plo' A ' X A O™ .

(80)

The equality pjw’ A @' =0 follows from (30). Hence we get (79). Similarly we have the

equality
dpAX=0.
By (79), (81) and (58), we have the equality
- w= (1——’_- (d5+p Ap))<1—~t- : X’) :
2mi

2ni 2ni n—1

Then the lemma follows from Lemma 3.2.

LemMMmaA 3.4.

det(!—; ,6A13)=1 .
2mi

PrOOF. By (66), the (j, k)-component of p A p is
Pl A D=’ A G ™ .
Hence by the same calculation as in the proof of Lemma 3.2, we have
det(l -5 Aﬁ) > (——’f)q(élp'.'m-wf N
2mi q4=0 2ni
Since pl; ' Aw™=0 by (30), we have the lemma. |
LemMma 3.5.
1
n+1
PrROOF. By (66), the (j, k)-component of dp+ 5 A p is

det(I—L_ (dp+p A ﬁ)) = (1-— 51(5)t> o
2mi

dpi+pi A pr=(d6y— 6,6, 0" ) A 7.

Hence, by the same calculation as in the proof of Lemma 3.2, we have

n q
det([—; (dﬁ+ﬁ/\ﬁ))= ) <—t‘> (d6;—6;6,0") A )"
2ri q=0 \ 27i

n t g
.Eo(‘%)‘a"’

t 5 -1
1+—06 .
( +27zi 0)

@1

82

(83)
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Since 5535 = —;312,(F), we have the lemma. [

PROOF OF THEOREM 3.1. Put

Then
A=1+at.

Hence from Lemmas 3.2, 3.3, 3.4, 3.5 and the equalities (75) and (76), it follows easily
that

Y e @)= +a+ty P,,(ﬁ)( ! )q.
q=0

q=0 1+5t

If ¢/(1+af) is replaced by ¢, we obtain the latter formula of the theorem. [ |

REeEMARK 2. The first formula of Theorem 3.1 can be rewritten as
_ k fn+1—j i - _
A () =jZO< k—j J)(('H' 1)71¢,(8))/P.—;(7) . (84)

By Theorem 3.1, we have immediately the following

COROLLARY 3.1. The logarithmic projective Weyl forms are d-closed and cor-
respond to real de Rham cohomology classes. For a fixed logarithmic pair (X, D), these
de Rham classes are determined independently of the choice of normal reduced
logarithmic projective connections.

In view of this corollary, we can define the logarithmic projective Weyl classes as
the de Rham cohomology classes of the logarithmic projective Weyl forms.

REMARK 3. In what follows, the Weyl classes defined in [K3, page 437] are
called the projective Weyl classes.

Since the logarithmic projective Weyl forms are holomorphic for holomorphic
logarithmic projective connections, we have

COROLLARY 3.2. If a complex manifold admits a holomorphic logarithmic pro-

Jective connection, then the logarithmic projective Weyl forms are holomorphic and
d-closed. -

COROLLARY 3.3. If a compact (not necessarily Kéhler) complex manifold with
dimension n>2 admits a holomorphic logarithmic projective connection, then all kth
logarithmic projective Weyl forms with 2k > n vanish. If, further, it is of Kihler, then all
kth logarithmic projective Weyl forms with k> 1 vanish.
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PROOF... All kth logarithmic projective Weyl forms are holomorphic 2k-forms.
Therefore if 2k>n then the kth projective Weyl form vanishes. Since d-closed
holomorphic n-form represents a real de Rham cohomology class only if it represents
a zero class, we see that the nth logarithmic projective Weyl class also vanishes. If,
further, the manifold is of Kidhler then we can apply Hodge theory. Since the log-
arithmic projective Weyl forms are holomorphic, they are harmonic. On the other
hand, the logarithmic projective Weyl classes are real by Corollary 3.1. Therefore they
vanish by Hodge theory. [ ]

4. An example.

In this section, we shall give an example of compact complex manifolds which
does admit a holomorphic logarithmic projective connection with respect to certain
divisor but does not admit any holomorphic projective connection. We take a series of
compact (simply connected, non-Kihler) complex 3-folds {M,}:2 given in [K1]. The
series of manifolds is constructed by a succession of complex analytic connected
sum of copies of M,. See [K1], [KY] for the details. We recall here briefly the
construction of M,.

Let P? be a projective space of dimension 3 and [zy:z:z,:z;3] its standard
system of homogeneous coordinates. Let /, and /, be the two projective lines in P?
defined by zy =2z, =0 and z,=2z;=0. Put W=P*—1[,—1,. Let a be a constant satisfying
0<|a|<1, and ge PGL(4, C) the holomorphic automorphism of W defined by

[zo:21:25: 23] [0z 0z, :25:25] .

The quotient space M= W/{g) is a compact complex 3-fold with a holomorphic flat
projective structure. Define an elliptic fibre bundle structure on M by the projection

fi: M—-P' x P!,
where f'is the induced map of
[z0:21:25:23]>([20:21], [22:23]) -

Take a point p, say p=([1:0],[1:0]), on P'xP' and consider the fibre E:=
fUp)=C*/<a).

Let x=z,/z, and y=2,/z,. Then (x, y) is a system of local coordinates on P! x P!
with p=(0, 0). Take a small disk

A={(x,y)e P x P! : |x|>+|y|*<e?},
where ¢>0. The map

[20:21:22: 23] (%, ¥, Z0/22)
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induces an isomorphism
V,:f Y 4)-AxE.
Put ¥=(C?—{0}) x C, where O=(0, 0). Let 8 be the automorphism of ¥ defined by

(uy, uz, uz) = (Bouy, Pottss ﬂ61u3) ’

where B, =exp(2ni/a), o =exp(2nia). Denote by S the hypersurface u; =0 in ¥. Denote
by V the factor space ¥/{B) and by S the Hopf surface $/{B>. We indicate by
(1, u3, u3] the point corresponding to (u;, u,, u3)€ V. Put A*=A4—{p}. We consider a
holomorphic map

Y, A* X E-V
by
(x, y, &) [xg1e, pEtie, (EHn~1],
which is biholomorphic onto its image. It is easy to see that

W (A% X E)={[uy, uy, us]1€ V: 0<(uy |2 +| uy |?) us |> <62}

and that

Y204 x E)={[uy, uy, us1e V': (uy >+ uy %)\ us >=¢%}.
Put

N= {(uy, uy, uy) e & (g >+ uy 1?) us |? <e?},

N*={(uy, uz, us) eV : (uy 2 +|uy 1)) us | <e?, u3 #0} ,

and
N=N/KB),
N*=N*/{B>.

Obviously, N is a tubular neighborhood of S and N*=N\S. The manifold M, is
defined to be the union
M, =(M\E)UN,

where N* is identified with f~1(4*) by ¢ :=y,o¢,. Thus the elliptic curve E is
replaced by the Hopf surface S.

We remark that the logarithmic pair (M,, S) admits at most one holomorphic
logarithmic projective connection. Indeed, the difference of two such connections
defines an element of HO(M,, #1(S)). Since

HO(M,, F1{SY)c H'(M\S, F(SD)~HOM\E, F)~H (M, F)=0,

we see that any two holomorphic logarithmic projective connections coincide. On
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M\ E, we introduce systems of local coordinates that can be defined naturally by the
inhomogeneous coordinates on P* associated with the homogeneous coordinates
[z0:21:2,:2;3]. Then we see that the obstruction 1-cocycle which represents py, z with
respect to these systems of local coordinates vanishes. On N, we introduce systems of
local coordinates that can be defined naturally by the global coordinates (uy, u;, u3)
on V. Then the obstruction 1-cocycle which represents py{S)> with respect to these
systems of local coordinates vanishes. On the total space M,=(M\E)UN, we
consider the union of the systems of local coordinates on M\ E and N introduced
above. Now we shall calculate p, <(S)> with respect to these systems of local
coordinates. Consider the Mayer-Vietoris exact sequence of cohomology with
coefficient F1{S);

- —— H(M\S)® H°(N) — H°(N*)— H'(M,)
— H'(M,\S)® H'(N) — H'(N*) — H* (M) —> - - .
Note that
le\S<S>=pM,\S=O ’
pnS>=0,
and
HO(M,\S)~H°(M\E)=0.

Then we see by the exact sequence above, the obstruction class p,, {(S)>€ H!(M,) can
be represented by an element pe HO(N*).

LEMMA 4.1. p\ (S)>=0.

PrOOF. To prove the lemma, it is enough to show that p extends to an element
of H°(N). The element p can be calculated by the identification map . Consider the
inhomogeneous coordinates (z,/zq, Z5/Z¢, Z3/20) On P3. Put x,=2z,/zy, X3=2,/2,, and
x,=123/z,. We regard (x,, x,, x3) as a system of local coordinates on M\ E. Then the
inverse ¢ of Y can be written as

Xy =UslUz
X3 =u2u§'“
X3=u3z?.

Then the transition function ¢ of @(—logS) on (M\ E) U N is given by

u; 0 U Uy
¢=0 u3™* (l—a)uzu%“‘),
0 0 —aujz*

where {9/0x,, 0/0x,, 0/0x3} and {0/0u,, 0/0u,, u30/0us} are local frames. Put w, =du,,
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W, =du,, w3 =duz/us, 0, =0/0u,, 6,=0/0u,, and 03 =u;0/0u,. Then we have

W 0 w,+(1+au 0,
$“1d$=( 0 (l-aw; (1—adu,w;+(1—a)w, ) ,
0 0 —ad;

6:=%Trace($‘1d$)=%(l —a)w,,
0 0 i(l—a)w,
5:=(0 0 %(l—a)wz),

0 0 i(1-a)w,

where p=(6;0"), 6=6;w’. The element j which represents Pu,{S) is given by
@~ 'dp—p—6-1. Therefore j can be written as a tensor field defined on the whole N*
of the form:

P=3(1+a)w, ®w; ® 0, ++(1+d)w; @ w, @ 6,
+3(1-a)0, ® 0; ® 6, + 31 —d)w; @ W, ® 0,
+(1+2u,0; @ 03 ® 0, +(1—2)u,00; QW3 ® 0,— 03 ® w3 ® 05 .
This shows that 5 extends to an element of HO(N). [ ]

As we see by the construction, each M,, n>1, contains disjoint » Hopf surfaces
S1, ***, S, which are copies of S in M,, and every S;, 1<j<n, has a neighborhood
which is biholomorphic to N.

Since the connected sum operation preserves the flat projective structure on
M\ S, we have the following.

THEOREM 4.1. py, {(D)=0 for every n>1, where D= Uj=1S;
LEMMA 4.2. Each cycle represented by S;, 1<j<n, is homologous to zero in M,

Proor. By the proof of [K1, Theorem], we see that a non-singular rational
curve (called /ine in [K1]) which has a neighborhood biholomorphic to that of a

projective line in P3 in M,\ U;=1 S; generates H,(M,, Z). From this fact the lemma
follows immediately. n

CoroLLARY 4.1 [KY, Proposition 7]. All positive dimensional projective Weyl
classes of M, vanish. Namely,

e [M,]=2ciIM,]
and
cs[M,] =~ cilM,]=4(1—n)

Jfor every n>1.
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PrOOF. By Theorems 3.1 and 4.1, we have
P;M,, D)=0, 1<j<3. (85)
On the other hand, by the exact sequences of sheaves

0——>@Mn(—10gD) :@M" =ND >0,

and
0— Op,— Oy, ([D]) —> Np—0,
we have
ch(©y, (—1og D)) =ch(@ ) — ch(Op [D]) + ch(Oyy) ,

where D= U;=1 S;, and ch(#) indicates the Chern character of a sheaf #. Then the
formula

ch(@y,(—1og D)) =ch(O,,,)
follows from Lemma 4.2. Thus we obtain the corollary by (85). [

REMARK 4. For every n>1, M, does not admit holomorphic projective con-
nections. In fact, if M, admits a holomorphic projective connection, then it is in-
tegrable. Indeed, M, \ D admits one and only one holomorphic projective connection,
which is integrable. Therefore the projective Weyl curvature tensor of the holomorphic
projective connection vanishes on M, \ D and hence on the whole space by the identity

theorem. Thus any holomorphic projective connection on M, is integrable. Since M,

is simply connected, this implies that M, is biholomorphic to' P®, which is absurd.

REMARK 5. The construction of M and M, above can be generalized easily to a
higher dimensional case. In this case, M is an infinite cyclic compact quotient space of
P"\(L, v L,), where L, and L, are linear subspaces with dim L, +dim L, =n—1. Then
M has an elliptic fibre bundle structure on Pd%mLzx pdimli We construct M, by
replacing a fibre of M by an (n— 1)-dimensional Hopf manifold S. Then M, is a simply
connected compact complex manifold and the pair (M,, S) admits a holomorphic
logarithmic projective connection. Since M\ E admits no non trivial holomorphic
forms, all logarithmic Weyl forms on M, vanish by Corollary 3.2. Moreover S is
homologous to zero in M. Therefore we have the equality among (ordinary) Chern
classes;

n+1

k )((n+1)‘101[M1])", l<k<n.

alM,]1= (

Remark 4 applies also in this case. Note that, if =3 and dimL,=0, M, is the
Calabi-Eckmann structure on S3 x S3 (cf. [T]).
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