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\S 1. Affect-free equations.

What is the simplest affect-free equation (\S 5) of given degree $n$ ? Although many
affect-free equations are known, simple examples are rare (cf. [5], [6]). Perhaps one of
the simplest examples is the equation

(1.1) $x^{n}-x-1=0$ ,

which is affect-free for every $n>1$ ([4], Theorem 4). Another possible answer to our
question is the equation

(1.2) $x^{n}+2x+2=0$ ,

which is also affect-free for every $n>1$ (\S 4).

The equation (1.2) is much different from (1.1). For example, it is obvious that
the left-hand side of (1.2) is irreducible; it is not at all obvious that the left-hand side
of (1.1) is irreducible (Selmer [7]). Let $\alpha$ denote a root of (1.2), and let $\beta$ denote a root
of (1.1). Then the prime number 2 is completely ramified (\S 5) in $Q(\alpha)$ , whereas no prime
numbers are completely ramified in $Q(\beta)$ if $n>2$ . The discriminant of $Q(\beta)$ is square-free
([4], Theorem 3), whereas the discriminant of $Q(\alpha)$ is not square-free. Therefore,
Theorem 1 of our previous paper [4] is not applicable to the equation (1.2).

The main purpose of the present paper is to prove the following theorem.

THEOREM 1. Let $a_{0},$ $a_{1},$ $\cdots,$ $a_{n-1}(n>1)$ be integers such that

$f(x)=x^{n}+a_{n-1}x^{n-1}+\cdots+a_{1}x+a_{0}$

is irreducible over Q. Let $\alpha$ be a root off$(x)=0$ , and let $K=Q(\alpha),$ $\delta=f^{\prime}(\alpha),$ $ D=norm\delta$

(in $K$). Let $x_{0},$ $x_{1},$ $\cdots,$ $x_{n-1}$ be integers such that

$D/\delta=x_{0}+x_{1}\alpha+\cdots+x_{n-1}\alpha^{n-1}$

Suppose that the following three conditions are satisfied.
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1. $(D, x_{0}, x_{1}, \cdots, x_{n-1})$ is a power of 2.
2. The prime number 2 is completely ramified in $K$.
3. $D$ is not divisible by $2^{n+1}$ .

Then the equation $f(x)=0$ is affect-free.

\S 2. Lemmas.

To prove our theorem, we require the following lemma.
LEMMA 1. Let $d$ denote the discriminant of an algebraic numberfield of degree $n_{\{}$

1. If $n\geq 3$ , then $|d|>2^{n}$ .
2. If $n\geq 2$ , then $|d|>2^{n-1}$

$PR\infty F$ . It is well-known ([1], \S 18) that

$|d|>(\frac{\pi}{4})^{n}(\frac{n^{n}}{n!})^{2}$

By Stirling’s formula, we see that

$\frac{n^{n}}{n!}>\frac{e^{n}}{\sqrt{2\pi n}}e^{-1/12n}$

Henoe we obtain

(2.1) $|d|>(\frac{\pi}{4})^{n}\frac{e^{2n-1/6n}}{2\pi n}$ .

Now let $(x>0)$

(2.2) $g(x)=x\log\frac{\pi}{4}+(2x-\frac{1}{6x})-\log(2\pi x)-x$ log 2.

Then

$g^{\prime}(x)=\log\frac{\pi}{4}+2+\frac{1}{6x^{2}}-\frac{1}{x}-\log 2=(\log\pi-\log 8+2)-\frac{1}{x}+\frac{1}{6x^{2}}$ .

Sinoe

log $\pi-\log 8+2>1$ ,

we see that $g^{\prime}(x)>0$ for every $x\geq 1$ .
On the other hand,

$g(3)>0.1>0$ .
Hence $g(n)>0$ for every $n\geq 3$ . From (2.1) and (2.2) we obtain $|d|>2^{n}$ for every $n\geq 3$ .
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The second assertion is now obvious, since $|d|\geq 3$ for $n=2$ .

We also require the following result (van der Waerden [8]).

LEMMA 2. Letf$(x)$ be an irreduciblepolynomial ofdegree $n$ with rational coefficients,
and let $\alpha$ be a root of$f(x)=0$ . Let $G$ denote the Galois group of$f(x)=0$ over Q. $G$ is
a transitive permutation group on $\{1, 2, \cdots, n\}$ . If there exists a prime number $p$ such
that the discriminant $d$ of $\alpha\alpha$) is exactly divisible by $p$ $(i.e. p|d,p^{2},)^{\prime}d)$ , then $G$ contains
a transposition.

\S 3. Proof of Theorem 1.

Now we prove Theorem 1. We may suppose that $n\geq 3$ . Let $d$ denote the discriminant
of $K$. Then by the conditions 2 and 3, we see that $d$ is exactly divisible by $2^{n-1}$ or $2^{n}$ ,
since $D$ is divisible by $d$. If $p$ is an odd prime factor of $d$, then $D$ is divisible by $p$ , and
so $p,\}^{\prime}x_{i}$ for some $i$; this implies that $d$ is exactly divisible by $p$ ([2], Theorem 1). Hence
$|d|$ is of the form

(3.1) $|d|=2^{n-1}b$ or $2^{n}b$ ,

where $b$ is a square-free odd integer. Clearly $b\neq 1$ (Lemma 1). Hence there exists an
odd prime $p$ such that $d$ is exactly divisible by $p$ . The Galois group $G$ of$f(x)=0$ over
$Q$ is a transitive permutation group on $\{1, 2, \cdots, n\}$ . It follows from Lemma 2 that $G$

contains a transposition.
Now we show that $G$ is primitive. Suppose that $K$ has a subfield $F$ such that

$Q\subset F\subset K$ , $F\neq Q$ , $F\neq K$ .
Let $[F:Q]=k,$ $[K:F]=m$ . Then

(3.2) $k\geq 2$ , $m\geq 2$ , $n=km$ .

Let $d_{F}$ denote the discriminant of $F$. Then $d$ is divisible by $d_{F}^{m}$ ([1], Satz 39).
Hence, by (3.1) and (3.2), we see that $|d_{F}|$ ia a power of 2. Since the prime number

2 is completely ramified in $K$, it is also completely ramified in $F$. If $k$ is odd, then
$|d_{F}|=2^{k-1}$ . This is impossible (Lemma 1), since $k\geq 2$ . Hence $k$ is even. Let $\mathfrak{D}_{F},$ $\mathfrak{D}_{K},$ $\mathfrak{D}_{K/F}$

denote the differents of $F,$ $K,$ $K/F$, respectively. Let $p$ (resp. $\mathfrak{P}$) denote the prime ideal
in $F$ (resp. $K$) such that

$2=\mathfrak{p}^{k}$ , $\mathfrak{p}=\mathfrak{P}^{m}$

Then $\mathfrak{D}_{F}$ is divisible by $p^{k}$ , since $k$ is even; $\mathfrak{D}_{K/F}$ is divisible by $\mathfrak{P}^{m-1}$ . Since

$\mathfrak{D}_{K}=\mathfrak{D}_{F}\mathfrak{D}_{K/F}$ ,

$\mathfrak{D}_{K}$ is divisible by

$P^{k}\mathfrak{P}^{m-1}=\mathfrak{P}^{mk+m-1}=\mathfrak{P}^{n+m-1}$
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Hence $d$ is divisible by $2^{n+m-1}$ . This is a contradiction, since

$n+m-1\geq n+2-1=n+1$ .
Hence $G$ is primitive ([9], Theorem 7.4).

We have already proved that $G$ contains a transposition. Hence $G=S_{n}$ ([9], Theorem
13.3).

\S 4. Examples.

THEOREM 2. Let $n,$ $a,$
$b$ be integers which satisfy the following conditions:

(i) $n>1$ ;
(ii) $(a, n)=1$ ;
(iii) $b$ is odd, $(b, n-1)=1,$ $(a, b)=1$ .
Then the equation

$x^{n}+2ax+2b=0$

is affect-free.
$PR\infty F$ . Let $\alpha$ be a root of

$f(x)=x^{n}+2ax+2b=0$ ,

and let $K=Q(\alpha)$ . Since $b$ is odd, $f(x)$ is irreducible. It is easily seen that 2 is completel
ramified in $K$ ([3], Lemma 4). Now let

$\delta=f^{\prime}(\alpha)$ , $ D=norm\delta$ , $D/\delta=x_{0}+x_{1}\alpha+\cdots+x_{n-1}\alpha^{n-1}$

Then ([2], Theorem 2)

(4.1) $D=(-1)^{n-1}(n-1)^{n-1}(2a)^{n}+n^{n}(2b)^{n-1}=2^{n-1}D_{0}$ ,

where

$D_{0}=(-1)^{n-1}2(n-1)^{n-1}a^{n}+n^{n}b^{n-1}$

If $n$ is odd, $D_{0}$ is odd; if $n$ is even, $D_{0}/2$ is odd. Hence $D$ is not divisible by $2^{n+1}.$ Not
let $p$ be a prime factor of $(D, x_{0}, \cdots, x_{n-1})$ . Then $p|x_{0}$ , and so $p|2(n-1)a$ ([2], Theorem
2). Since $p|D$ , by (4.1) we see that $p|2nb$ . Hence $p=2$ . Therefore $(D, x_{0}, \cdots, x_{n-1})i$

a power of 2. Hence the result follows from Theorem 1.

THEOREM 3. The following equations are all affect-free for every $n>1$ :
$x^{n}+2x+2=0$ , $x^{n}+2x-2=0$ ,

$x^{n}-2x+2=0$ , $x^{n}-2x-2=0$ .
$PR\infty F$ . The result follows immediately from Theorem 2.
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\S 5. Notation and terminology.

As usual, $Q$ denotes the field of rational numbers. An affect-free equation means
an equation $f(x)=0$ with the following properties: (i) $f(x)$ is an irreducible polynomial
ofdegree $n$ with rational coefficients; (ii) the Galois group of$f(x)=0$ over $Q$ is isomorphic
to the symmetric group $S_{n}$ . An integer always means a rational integer. A prime number
$p$ is said to be completely ramified in an algebraic number field $K$ of degree $n$ , if $p=\mathfrak{p}^{n}$

with a prime ideal $\mathfrak{p}$ in $K$.
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