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1. Introduction.

In this paper we shall study the problem whether the symbolic Rees algebras
occurring in Roberts’ new counterexamples [10] to the 14™ problem of Hilbert are
Noetherian rings or not, in the case where the characteristic of the ground field is positive.

For each prime ideal Q in a commutative Noetherian ring R we put R(Q)=
Ym0 Q™E™ and call it the symbolic Rees algebra of Q, where Q™ denotes the n™
symbolic power of Q and ¢ is an indeterminate over R. The determination of finite
generation in R(Q) is one of the central problems in both commutative algebra and
algebraic geometry (cf. [8], [7], [9], [10], [3], and [4]). It is generally a quite hard
problem but, according to the recent research [4], in the positive characteristic case
there might be more chances for R(Q) to be a Noetherian ring than in the case where
the characteristic is zero.

Originally this kind of question was raised in 1985 by Cowsik [3], asking if R,(Q)
are always Noetherian especially when the base ring R is regular (and local). However,
as is now well known, this is not true in general. Three counterexamples [9], [10], and
[4] are already known. In this paper we are particularly interested in the second example
[10] due to Roberts, so we would like to cite here his examples explicitly.

Let F be a field and R, = F[x, y, z] be a polynomial ring with three indeterminates
over F. R=R,[S, T, U, V] and R,[W] denote polynomial rings over R,. For each
positive integer ¢ let @ : R— Ry[W] be the homomorphism of R,-algebras defined by
P(S)=x""1W, o(T)=y'* ' W, p(U)=2"*'W and ¢(V)=(xyz)' W. We put Q =Ker(p). Let
Ry =Ry*S+Ry*T+Ry*U+R,*V be a free Ry-module and let ¢ : R, - R, be an R,-
linear map such that ¢(S)=x"*1, ¢(T)=y'"*, ¢(U)=z'** and ¢(V)=(xyz)'. We denote
by M the kernel of ¢ and put S(M)=R,[M] (< R). Let S(M) be the ideal-transform of
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S(M) with respect to the ideal (x, y, z)R,, that is S(M)={feR | (x, y, 2)" f =S(M) for
some m>0}. L

Then it is not hard to check that S(M) is a homomorphic image of R(Q) and that
S(M)=R n K, where K is the quotient field of S(M). Roberts proved the following
epochmaking theorem:

THEOREM 1.1 ([10]). Suppose ch(F)=0 and t>2. Then S(M) is not a Noetherian
ring so that R(Q) can not be a finitely generated R-algebra.

Hence S(M) and R,(Q) are counterexamples to the 14® problem of Hilbert and
Cowsik’s question, respectively.

In our paper we want to know what happens on Roberts’ examples R(Q) if ch(F)>0,
for there are still no counterexample to Cowsik’s question in the positive characteristic
case. But, as we noted before, if ch(F)>0 there are more possibilities for R(Q) to be
Noetherian rings (see, €.g., exploration in [4]). In this context it is quite challenging to
explore Roberts’ example in the case where ch(F) >0, asking whether R(Q) are Noetherian
rings or not. The whole paper is devoted to studying this question and our results will
actually claim that R(Q) are finitely generated R-algebras if ch(F)>0 and #>2 (see
Theorem 2.1). Therefore S(M) is a Noetherian ring too in that case. We shall show also
that S(M) is Noetherian for =1, whatever ch(F) is. Thus we conclude that Roberts’
counterexamples are in this sense the best possible ones, and to the author’s slight
disappointment, Cowsik’s question remains open in the positive characteristic case.

Let us now turn to the organization of this paper. Our method in studying the
finite generation of symbolic Rees algebras is based on the following result, whose proof
shall be given in different paper [5].

LEMMA 1.2 (Theorem 3.3 in [5]). Let Ry be a Noetherian integral domain con-
taining a field. Let t,, t,, t3 and y be elements in R, and assume that t,, t,, t; forms
an R-regular sequence. Let R=R,[S, T, U, V] and R,[W] be polynomial rings over R,
and @ : R— Ro[W] denotes the homomorphism of R,-algebras defined by o(S)=t, W,
o(T)=t, W, o(U)=t3W and p(V)=yW. Put Q =Ker(p). Then R(Q) is a finitely generated
R-algebra if for some 1> 1 the symbolic power Q® contains a polynomial which is monic
in V and of degree .

Let a, B>1 be integers and, in the same situation as in Roberts’ theorem [10], let
@ : R— Ry[W] be the homomorphism of Ry-algebras such that ¢(S)=x*W, o(T)=y*W,
o(U)=z"W and ¢(V)=(xyz)’ W. We put Q=Ker(p). Then x*, y*, z* obviously forms
an R,-regular sequence. In section 2, assuming ch(F)=p>0, we shall give (in terms of
o, p and p) a necessary and sufficient condition (Theorem 2.1) for the existence of
integers />1 for which Q® contains a polynomial satisfying the requirements stated in
Lemma 1.2. Then it will directly follow from the criterion that Roberts’ examples R(Q)
in Theorem 1.1 are always finitely generated R-algebras if ch(F)>0 and t>2, that is
the case f=a+1>3 in our notation. Hence S(M) is a Noetherian ring too in that case.
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However, the above method does not work if a=1 and B=2 (except for the case of
ch(F)=2). Therefore, to see the Noetherian property of S(M) for =1, we need a series
of direct computation, which we shall perform in section 3.

Throughout this paper, we shall maintain the same notation as is given in this
section unless otherwise specified. We assume that all rings are commutative Noetherian
and with 1. The author thanks the referee for several advices.

2. When does S/(M) contain a monic polynomial?

The aim of this section is to give a necessary and sufficient condition for the
existence of a monic polynomial satisfying the requirements stated in Lemma 1.2.

Let F be a field. Now we think R=),_ (R,=F[Xx, y,z, S, T, U, V] the graded ring
with deg x=degy=degz=0, degS=deg T=deg U=deg V'=1. As usual we denote by
L; the homogeneous component of L in degree i for a graded R-module L. Let « and
B be positive integers and let ¢ : R=F[x, y,z, S, T, U, V] F[x, y, z, W] be the ring
homomorphism of polynomial rings over F defined by ¢(S)=x*W, o(T)=)*W,
o(U)=z*W and @(V)=(xyz)’W. Then Q=Ker(p) is a homogeneous prime ideal of R
of height 3. Consider the symbolic Rees algebra R(Q)=Y, . ,0™¢" = R[], where ¢ is
an indeterminate.

Our goal in this section is the following theorem:

THEOREM 2.1. Suppose that the characteristic of F is p>0. Then there exists a
positive integer | for which Q" contains a monic polynomial in V of degree I if and only
if Bla=(2p—1)/3p (resp. B/a>2/3) is satisfied in the case of p=2 (3) (resp. p#2 (3)).

Therefore, when this is the case, R(Q) is Noetherian.

First of all, we note that

REMARK 2.2. If B>a, then Q contains ¥ — xf ~%)*z%S over any field F. Conversely
suppose f<a. Then it is easily checked that Q contains no monic polynomial in ¥ of
degree 1 over an arbitrary field F.

Next assume that the characteristic of F is zero. If there exists a positive integer /
for which Q contains a monic polynomial in ¥ of degree /, then it is well known that
Q itself contains a monic polynomial in V of degree 1 (see, e.g., Remark 2.7 in [5D.
Therefore, in the case of ch(F) =0, there exists / for which Q contains a monic polynomial
in V of degree / if and only if §>a.

Hence we assume B<a in the rest of this sdction.

Let ¢ : R; > R, be the Ry-linear map of R,-free modules defined by S+ x*, T+—> %,
U—z%, Vi—>(xyz)’. Then M=Ker(¢) is an R,-submodule of R, and the following set
minimally generates M as an R,-module:

{y*S—x*T, 2°T—y*U, x*U—2°S, x* BV — yb75S, VPV —xP2PT, 22~ PV — xPyP U} .
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We denote by S(M) the graded subring of R generated by R, and M. S{(M) de-
notes the homogeneous component of S(M) in degree /. Furthermore we put

SM)={feR, | x"f,y"f, z"f € S{M) for a sufficiently large m} .

Then S(M)=@,, ,S'(M) is also a graded subring of R.
Before proving Theorem 2.1, we make two remarks (which are not used in this
paper).

REMARK 2.3. Put m=(x, y, z)R,.

1. S'M)=Sym!M)/H?(Sym'(M)) for any />0.

2. Sym(M)# S(M). (In the case of f>a, we have Sym(M)~ S(M).)

3. S{M)=(S'(M))** =(Sym‘(M))** for any />0.
(Sym(M) (resp. Sym!(M)) is the symmetric algebra (resp. the /-th symmetric module)
of M. H%(Sym'(M)) is the 0-th local cohomology group of Sym!(M). (—)* means R,-
dual, i.e., (—)*=Homg,(—, Ry).)

REMARK 2.4. Inthesame way asin [10], we can prove that S(M) is not Noetherian
if F is a field of characteristic 0 and 1> f/a>2/3 is satisfied.

Let us return to the proof of Theorem 2.1.
Put P=QnF[x,y,z S, T, U]. Since x*, y*, z* forms an R,-regular sequence, we have

ren(5 1 5)

where I,(*) means the ideal generated by all the 2 x 2-minors. Then it is well known
that P'=P® for any positive integer / (e.g., see [1]).

We think F[x,y,z, S, T, U] a graded subring of R and put N=P,=R,(*S—
x*T)+ Ro(z*T— y*U) + Ro(x*U — 2°S). We define S(N) and S'(N) similarly .to S(M) and
S(M), respectively. Precisely speaking, S(N)=& ,S(N) is the graded subring of
F[x,y,z 8, T, U] generated by R, and N, and we define

S{NY={fe(F[x, y, 2z, S, T, U}, | x™f, y™f, z"f € S(N) for a sufficiently large m} .

REMARK 2.5. Since P'=P®, [P¥],=[P'],=SN)=S{(N) holds.

Similarly we have [Q"],=S"(M) and [Q"],=S'(M) for any / because OR,, OR, and
OR, are complete intersections.

When there exists / for which Q® contains a monic polynomial in V of degree /,
we may assume that it is homogeneous of degree / because Q® is a homogeneous ideal.
Hence Q™ contains a monic polynomial in ¥ of degree / if and only if S{M) contains
a monic polynomial in V. '

By virtue of the previous remark we have only to explore when SY(M) contains a
monic polynomial in ¥ for each /.




SYMBOLIC REES ALGEBRAS 477
Let
6: F[x,y,2,8, T,U}->F[x,y,2 S,T, U]
and
y: F[x,y,2,8, T, U, V]->F[x,y,2, 8, T,U, V']

be the ring homomorphisms of polynomial rings over F defined by S+ x*S', T+—T' + y*S',
U U +2°S', Vie V' +(xyz)’S’.

The next lemma characterizes the symbolic powers P® and Q® as kernels of ring
homomorphisms.

LEMMA 2.6. For any positive integer I, we have
PO ={feF[x,y,28, T, U] | 8(f)e(T’, UYF[x,y,2, 8, T, U1},
Q¥={feR | y(f)e(T, U, V')F[x,y,2 S, T, U, V1}.
In particular, since [0®],=SYM) and [P?],=S(N)=SYN), we get
(V) =5'()
={fe(F[x, y,2 S, T, Ul), | S’ does not appear in 5(f)} ,
S M)={feR, | S does not appear in y(f)} ,
SYN) =S{M)F[x, y,2,8, T, U]
for any 1.

PrOOF. Let 0: F[x,y,2, 8, T,U]1—-F[x,x"',y,z 8, T, U] be the ring homo-
morphism defined by localization. Then the composite map 6oy is also the map given
by localization. Since 8- p(Q) coincides with (T", U’, V')F[x, y,z, S, T', U, V'], we have

Q¥ =(T", U, V'yF[x,y,2, 8, T, U, V]1nF[x,y,2S,T,U,V].
Other statements will be easily proved in the same way. Q.E.D.

To prove Theorem 2.1, we assume ch(F)=p >0 and a> f in the rest of this section.
It is necessary for us to prove several lemmas before proving Theorem 2.1.

LEMMA 2.7. If there exists I>0 for which S'(M) contains a monic polynomial in V,
then there exists n>0 such that so does S?"(M).

PrROOF. Let h=V'+g, V' 14 - - +g,(g1, "> 1€ F[x, 3,28, T, U]) be a monic
polynomial contained in S'(M). Then S’ does not appear in

YR =p(V) +3g)y(V) ™+ - - - +(g)
=(V'+(xyzy’S) +8(g WV +(xy2)’SY ™1 + - - - +(g)
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by Lemma 2.6. Looking at the coefficient of S’ V''=1 we see that I(xyz)? is contained
in (x% y% z*)R,. Therefore ! is divisible by p.

We put /=p"t, where p and ¢ are relatively prime. Note that, as we have already
seen, n must be a positive integer. When t=1, we have nothing to prove.

When ¢1>2, put

K=tV"+g, VP '+ ... +g,.€R,..

Then it is easy to check that S’ does not appear in (') since it does not in y(h). Therefore

we get b € S”'(M) as required. Q.E.D.
We denote the Koszul relations on x?, y*, z° by
A=y*S—x*T,
B=z*S—x"U,
C=zT—y*U.

Then we have S(N)=S(N)=FI[x, y, z, A, B, Cl=F[x, y,z, 8, T, U] .
LEmMMA 28. If :9""_(1\4_) contains an element of the form
h=V? +g,V?" "' + (lower degree terms in V)
such that 0<i<p" and g,€ F[x, y, 2, S, T, U), then g, is contained in S{(N).
PROOF. Since S’ does not appear in
YR =(V'+(xyzf SV + (g NV’ + (xyz)! Sy~ - - -,

it does not in d(g,) too. As g; is a homogeneous element of degree 1, we obtain g; e S{(N).
Q.E.D.

We think R, and R the Z3-graded ring with degzsx=(1,0,0), degz:y=(0, 1, 0),
degz:z=(0, 0, 1), deg,:S=(a, 0, 0), degz: T=(0, , 0), deg,:U=(0,0, «) and degz: V=
(B, B, B). Then R, is a Z3-graded R,-module for each I>0. Furthermore S'(M) and S{(M)
are Z>-graded R,-submodules of R, For a Z 3-homogeneous element f with
degzsf =(a, b, ¢), we denote the total degree of fbytdegz:f=a+b+c.

LEMMA 2.9. Suppose Bja<2/3. Let heS”(M) be a Z3-homogeneous monic
polynomial in V. Then h— V™" is contained in F[x, »zS,T,U]

PrROOF. By assumption we have deg,:h=(8p", fp", fp"). Put
h=V?" +g,V?"~i+ (lower degree terms in V)

with 0#g;e F[x, y,2, S, T, U] and O0<i<p". Then g: is contained in SY(N) by Lemma
2.8. Since t.degysA=t.deg,:B=t.deg,sC=2a, we have t.degzsg; >2ia. Therefore we
obtain
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3Bp"=t.degzsg; VP~ =2ia+3p(p"—i).
But it contradicts f/a <2/3. Q.E.D.

LeMMA 2.10. Suppose Bla.<1/2. Then, for any positive integer I, SY(M) contains no
monic polynomial in V.

PROOF. Assume the contrary, i.e., there exists a positive integer / for which ?(Ti)
contains a monic polynomial 4 in ¥. We may put /=p" by virtue of Lemma 2.7 and
may assume that 4 is Z3-homogeneous. Then n must be a positive integer by Remark
2.2 and g=h—V?" is contained in F[x, y, z, S, T, U] by Lemma 2.9.

Since x*~#V —yPz8S is contained in M, x©@~AP"yP" — yFP"ZPPSP" ig in SP(M). Fur-
thermore, since x*~PP"VP" 4 x@=Ar"gr" is contained in S?(M), we have x@~ AP gr" 4
yBr"ZBP"SP" < S (M) N F[x, y, 2, S, T, U]=S?"(N) (see Lemma 2.6).

That is to say, there exists a Z3-homogeneous element f € SP"(N) such that degzs f
is equal to (xp”, Bp", Bp") and f—y#P"zPP"SP" is divisible by x*~#?". Since fe S”"(N) and
degzsf=(ap", D", Bp"), we may suppose

f= Z di 'kxap"—a(i+j)yﬁp”—a(i +k)Zﬁp"—a(j+k)AiBjck ,
i+j+k=pn J .
a(i+k)<ppn
a(j +k)<Bp"
where d;;’s are elements of F. Since the term yPP" " gp” actually appears in f, we can
find i, j satisfying i+j=p" and d;;o0#0. Then we obtain «i<Bp" and p"—i)<pp". It

contradicts B/a<1/2. Q.E.D.

LemMMA 2.11. Let I be a positive integer. Then, for a fixed base field F, whether
SM) contains a monic polynomial in V or not depends only on the rational number f/o.

Proor. Let R,=F[x,y,z] be a polynomial ring over F. Regard R; as an
R,-algebra by means of the ring homomorphism R, — Rp defined by x+—x'!, yy'*
and z—z". Put R=R®,Ro=F[x,y,7,S,T,U, V] and R} =R, ®g, o=Ro* S+
R,-T+Ry-U+Rj,- V. Let M’ be the kernel of the Ry-linear map R} — R}, defined by
Si»x'", Ty Ursz'™ and Vi (x'y'Z’)*. Then we have M'=M ®g,Ro,. Denote by
S(M')= (—B,ZOS'(M ') the graded subring of R’ generated by R, and M'. Furthermore
define S(M’) in the same way as in the case of S(M), i.e.,

S{M)={feR,=R,®x,Ro | X™f, y'™f, z"fe S{(M’) for a sufficiently large m} .

Then we have S(M’)=S'(M)®g, R, and S(M = S(M)®g,Ro=R;. By definition,
S (M) ®, R, =S(M’). On the other hand, since x is a non zero d1v1sor of R,/S(M), x'
is that of R /S’(M’) Therefore we get S(M')= S'(M)® roRo- Hence SY(M) contains a
monic polynomial in V if and only if so does SYM').
Thus, for a fixed base field F, whether S{(M) contains a monic polynomial in V
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or not depends only on the rational number f/a. Q.E.D.

LEMMA 2.12. Suppose B'/o’ <B/a<1 and fix a base field F. If S{M) contains a
monic polynomial in V in the case of «’/B', then so does S (M) in the case of «/P.

PROOF. We may assume o'=a+1, /=8 by Lemma 2.11. We denote by M’ the
kernel of the Ro-linear map R, —» R, defined by Srsx**1, T—y**1 Urz**! and
Vi (xyz)!. ¥ denotes the graded ring homomorphism R— R defined by S—>xS,
T—yT, U—zU and Vi V. Then we have

T(ya+ls_xa+lT)=xya+ls_xa+1yT___xy(yas_xa'T)eM ,
P(x*+ 1PV — yP2PS)=x** 1PV — 78S = x(x* BV — yP2PS)e M .

Therefore we obtain ¥(M’)s M and, hence, P(S'(M")) =S'(M). Then it is easy to see
Y(S'(M’))=S(M). The assertion immediately follows from the fact that ¥ maps
monic polynomials in ¥ to monic polynomials. Q.E.D.

REMARK 2.13. With the same situation as in the proof of Lemma 2.12, if
S'(M") contains V'+g for some ge F[x, y,z, S, T, Ul, (V' +g)=V"'+¥(g) is in S{M)
with Y(g)e F[x, y,z2, S, T, U].

At first we investigate the case of ch(F)=2.

PROPOSITION 2.14. Suppose ch(F)=2. Then there exists a positive integer | for
which SYM) contains a monic polynomial in V if and only if Bla>1/2.

ProOF. If B/a<1/2, then Lemma 2.10 implies that S'(M) contains no monic
polynomial in V for any />0.

Therefore we have only to prove that S%(M) contains a monic polynomial in V
when a=2 and f=1 (cf. Lemma 2.11 and Lemma 2.12). _

Since xV —yzSe M, x*V*—y?z28? is contained in S%(M). Furthermore we have

AB=(y2S — x2T)z%S — x2U) = y?22§?2 —x?y?SU —x222ST + x*TU e S¥(M)
and hence,
(xV —yzS8)> + AB=x2V?2 —x?y?SU —x222ST+ x*TU e S¥(M) .

Thus we obtain V2 —y>SU —22ST + x2TU e SA(M). Q.E.D.

Next we would like to prove Theorem 2.1 in the case of p=1(6).

PROPOSITION 2.15. Suppose ch(F)=p=1(6). Then there exists a positive integer |
Jor which SM) contains a monic polynomial in V if and only if Bla>2/3.

In order to prove the previous proposition, by virtue of Lemma 2.7, Lemma 2.9,
Lemma 2.11, Lemma 2.12 and Ramark 2.13, it is sufficient to show the following
two lemmas:
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LEMMA 2.16. Suppose ch(F)=p=1(6), a=3 and f=2. Then SP(M) contains a
monic polynomial in V.

LEMMA 2.17. Suppose ch(F)=p=1(6) and B/a=2/3. Then V?'+g is not con-
tained in SP"(M) for any n>0 and for any ge F[x, y,z, S, T, U].

ProOOF OF LEMMA 2.16. At first we would like to prove that SP(N) contains a
Z3-homogeneous element of the form

y3Pz2p5P 4 fJ-S"_j + (lower degree terms in S)
which satisfies f;e F[x, y, z, T, U] and j>(p—1)/3. Since
AP+ DIZBP=1I2 = 3+ /2,30~ 1/2gP 4 (lower degree terms in S)e SP(N)

and 2p>3(p+1)/2, SP(N) actually contains a Z3>-homogeneous element of the form
y2Pz2PSP 4+ f,SP~ i+ (lower degree terms in S). Choose the largest i such that SP(N)
contains a Z3-homogeneous element of the form y2?z2PSP+f,S? '+ (lower degree
terms in S). Assume i<(p—1)/3. (Since (p—1)/3<p, we have 0#f;€F[x,y, 2T, U]
and note that (p—1)/3 is even.) Let & be a Z3-homogeneous element of the form

h=y?Pz2PSP 4 £,SP~i 4 (lower degree terms in S)e SP(N) .
In the same way as in the proof of Lemma 2.8, we recognize that there exists de
F[x, y, z] such that f;=dC'. Since deg,:C'S?~'=(3p—3i, 3i, 3i) and degz,y?*?z?PSP=
(3p, 2p, 2p), there exists ge F* such that f,=gx3'y?P =322~ 3iCi, (Note 2p—3i>0 since
i<(p—1)/3). Therefore we have
h=y?Pz2PSP 4 gx3iy2p~3iz2p=3iCigr—i 4 (Jower degree terms in S)e SP(N) .

Here assume that i is odd. Then p—i is even and we have 2p—3i>3(p—i)/2. When
this is the case, we obtain

C'AP~D12B(P=1I2 — )3 =D/2,3(p=DI2CigP~i 4 (Jower degree terms in S)e SP(N) .

Then we can find a larger integer than i satisfying the requirement. It contradicts the
maximality of i.

Next assume that i is even. Then p—i is odd and we have 2p—3i=>3(p—i+1)/2.
Similarly to the case where ¢ is even, since

CiAP-i+V/2gp—i-1)/2
=y3@-i+ 12,3k -i-12Cigr—i 4 (Jower degree terms in S)e SP(N),
we can also find a larger integer than i satisfying the requirement. It is a con-
tradiction.

Therefore, for t=(p—1)/3, SP(N) contains a Z>-homogeneous element of the
form
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h=y*Pz2PSP 4 gx3ty2P~3122P=31CIgP~t 4 (lower degree terms in S)

such that g F. Since h— y?Pz2PSP — gx3'y?P 31727~ 3!C!SP~ js a polynomial in S of degree
at most p—t—1, it is divisible by x3¢*V=xP*2 (We will know ¢#0 in Lemma 2.17.
But we do not need this fact here.)

Put

k=C'A'B(xV — y?22S)
=C'(y*S—x3T)'(z3S — x3U)(xV — y?z2S)
=xy3z3C'SHYV — y3+ 273+ 20520+ 1 4 x3(terms of degree at most 1 in V).
By definition, & is contained in SP(M). Note 3¢+ 1=p and 3t+2=2p— 3t. Then we have
gx? " tk=qxPy3'z3C'S?*'V — gx3'y?P = 31z2p - Cigp -t
+ x?*2(terms of degree at most 1 in V)
and thus,
h+gx?~ k+(xV — y?z2S)?
=xPV?+gxPy3'z3'C'S?'V + xP* 2(terms of degree at most 1 in V)
is contained in SP(M). Therefore S?(M) contains a monic polynomial in V. Q.E.D.

PROOF OF LEMMA 2.17. Put t=(p"—1)/3. Note that 7 is an even integer. We shall
prove this lemma in two steps.

Step 1. In this part, we show that S”"(N) contains a Z>-homogeneous element
of the form

Yy PP SP" 4 gxtyfrt ~#zfP" ISP + (terms of degree less than p"—tin §)

such that ge F*. Here note fp"—at>0.
Fori=0,1,---,t—1, we put

Hi (l) = x* yﬂp" —a(di+)Bp —alei +i) 4di BeiCt

such that d;,=(p"—i+1)/2, e;=d,—1 (resp. d;=e;=(p"—i)/2) when i is even (resp. odd).
Note fp" —a(d; +i)=>0 and fp"—afe;+i)=0 for i=0, 1, - - -, t — 1. Obviously H(i)e S”"(N)
is Z3-homogeneous with deg,: H(i)=(ap", fp", Bp"). We put

[a, b]= xa(p"—a)yﬁp"—abzﬁp" SeTh
Then we have

H(l) — xaiyﬂp" —a(d; + i)zﬂp" —a(e; + i)(yaS _ xa T)dg(zas _ xa U)e‘(ZaT _ yaU)i

& ( d;
= ;0(—1)'( ; )[d,-—j+e,~, i+/1+U( ).
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Here note d;—j+e;=p"—i—j.
Once we can find ¢, - * *, ¢, € F such that

t—1
H=_;00iH(i)=[p", 01+qlp"—t, a1+ Y ailp"—L 11+ U( - )

1>t
with ge F* and q,,,, - - - € F, then we have
H = )PP zBr"SP" 4 gx=tyBp" —atz8p"~atCtgp" 1 4t (lower degree terms in S).

Therefore we have only to find ¢, - - -, ¢, € F as above.

Put

& [ d,
H()=Y. (—1)1(j‘)[p"—i—j, i+j].

j=0

We would like to find ¢, - * -, ¢, ; € F satisfying

T aHO=[7" 00+ alr' 1. A+ T alr'~1 1

with ge F* and ¢,,,, - €F.
If we put

t—1

pn
X aH@)= % kip"=L1],

i=0

then we have the following equations:

S I A ) e
o) 6 ’ '
G (%)
s : ‘ °
g ()
W) \en(P) con(E) er(l) o H5)) e

Therefore it is sufficient to show that the 7 x t-submatrix of the above (¢ + 1) x t-matrix
consisting of the 2nd row, the 3rd row, - - -, the (¢t + 1)th row is regular. By multiplying
—1 to all the even rows and all the odd columns of this ¢ x t-matrix, we have
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() () o o
1 0
(3) (%) (%)
2 1 0
L= | : ; ; 0
: : (d,_,)
: ; : 0
(%) (&) (&) - (%)
\ ¢ t—1 t—2 1 /)
Note that
pn+2 p"—l
= =t.
di-1 3 0 3

By definition, d;—d; . , is equal to 0 or 1. Therefore we get det(L,)=det(L,) by a succes-
sion of elementary transforms, where

()(5) o 0
e e
L ®)
() (5) () - (%),

Then Giambelli’s identity ([6]) implies that det(L,)=dim, Sym'G=(d"lJ:t_l )

where C is the field of complex numbers, G is a C-vector space of dimension d,_, and
Sym*G is the t-th symmetric module of G.

Since d,_, +t—1=2t, we have only to prove that ( ?;t> is not divisible by p.
In order to prove it, since

(2t)= E+1)t+2)---2t

t 1.2+t

and 2t<p", it is sufficient to show that, for I=1,2, - - -, n—1, the number of multiples
of p'in {1, 2, - - -, t} coincides with the number of that in {t+1,242,---,2t}. Butitis
easy to calculate. (In fact, since t=(p"—1)/3#0 (p), we can find an integer s such that
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sp' <t<(s+1)p'. Then we have t —sp' = (p' — 1)/3, because ¢ is equal to (p" — p')/3 + (p' — 1)/
3. Then we obtain 2sp' <2t < (2s+1)p')
Step 2. We return to the proof of Lemma 2.17. Suppose that there exists
geF[x,y,z S, T, U] such that ¥'?"+g is Z>-homogeneous and contained in S?"(M).
Since x* PV —yPzfSe M, we get x@~PPyr_,Br"2B2"SP" & SP(M). Furthermore,
since x*~APYP" 4 x(~BP"g is contained in SP"(M), we have

yﬂp"zﬂpnsp" + x(a_p)p"g € SPH(M) N F[x9 Y, 2, S: Ts U:l = Sp"(N) .

As we have already seen in Step 1, SP"(N) contains a Z3-homogeneous element of
the form

YPPmZPPTSPT 4 gxotyPrnmatfpt —at CigPm~t 4 (terms of degree at most p"—t¢ in S)
with ge F* and therefore,
G=x"Brg _ gx=ypp—atpp"-arCrge"~t 4 (terms of degree at most p"—¢ in S)

is contained in SP°(N). Since (a— B)p">at, the degree of g in S is less than p"—rt.
Therefore G#0 is a Z*-homogeneous element with deg,: G=(ap”", fp", Bp"). Hence we
may suppose
G= Y dxP" et ybpn-ali+h)Bpn-ali+k) gigiCk
i+j+k=pn ¢

a(i+k)<ppn
a(j +k)<pp"

where d;;, e F.

Here we may assume that, for each k, the number of pairs (i, ) such that d;;, #0
is at most one. (We shall prove this by induction on k. For k>0, suppose d;,jx#0 and
d;,j;#0. Then i, +j, +k=i,+j,+k=p", ai,+k)<Pp", ali,+k)<Ppp", o(j,+k)<pp"
and «(j,+k)<Pp” are satisfied. Suppose 0<i,;<i, (j,>j,=0) and set iy=i,+1,
Ja=ji1—1. Note iy +js+k=p", a(iy+k)<Pp" and «(j,+ k)< Bp". Multiplying A**B>C*
to z%4—y*B+x*C=0, we obtain z*AB/*Ck—y*A"*B/1C*+ x*A"'B*C*¥*1 =0, here
2*APBPCK, y*A"B'C* and x*A"B*C**! are Z3-homogeneous elements of degree
(o(i3 +73), a(iz + k), o j, +k)). Since ofiy +j3) <op”, a(i; + k) < Bp” and o(j, + k)< Bp", we
may replace G by

G+ diljlkxap" —a(is +j3)yﬂp" —a(is +k) B —a(ji + k)(ZaAisBjsck — yaAixB.th + x“Ai‘Bj3C" + 1) .

Then we may assume d; ;,,=0. We have only to repeat this process.)
The above argument enables us to assume that the number of pairs (i, j) such that
d;5#0 is at most one for each k. Put

ky =min{k>0 | there exists (i, j) such that d;; #0} .

(Since G#0, k, is well-defined.) Suppose d;,;;, #0. Then the degree of G in S is equal
to i; +j;. Therefore we have i, +j, =p"—t and, hence, k,=t. Since p"—t is an odd
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integer, either i, or j, is at least (p"—t+ 1)/2. Suppose i, >(p"~t+1)/2. Then we have
i +t=>(p"+t+1)/2 and, therefore,
pp" —a(i, +1)<0
is satisfied. It contradicts the choice of k;. Q.E.D.
We have completed the proof of Proposition 2.15.

Next consider the case of p=S5 (6).

PROPOSITION 2.18. Suppose ch(F)=p=S5 (6). Then there exists >0 for which S'(M)
contains a monic polynomial in V if and only if f/a>(2p—1)/3p.

PROOF. At first we prove that SP(M) contains a monic polynomial in ¥V when
1> B/a>(2p—1)/3p. It is sufficient to show that SP(M) contains a monic polynomial in
Vif B/a=(2p—1)/3p by Lemma 2.11 and Lemma 2.12.

Put t=(p+1)/3. Note that ¢ is even.

In the same way as in the proof of Lemma 2.16, we can prove that SP(N) contains
a Z3-homogeneous element of the form

h=yPPzPPSP 4 gxtyPP—atzfr—aCigr=t 4 (lower degree terms in S)

with geF.
Since x* fV —yBzBSe M,

(xa—ﬁ V— yﬂzﬁS)p +h=x@e—Pryr qxatyﬂp—atzﬂp—atctsp—t
+(terms in F[x, y, z, S, T, U] of degree at most p—t¢ in S)

is contained in SP(M). Since it is Z3-homogeneous, (x* #V — yP28S)P + h— x@—PryPr g
divisible by x*. Therefore SP(M) contains a monic polynomial in ¥V since at =(a— f)p.

In the rest of this proof, we shall prove that there exists no />0 for which S{M)
contains a monic polynomial in V if f/a <(2p—1)/3p. Assume the contrary, i.e., there
exist n>2, a and B such that B/a is less than (2p—1)/3p and SP"(M) contains a
Z3-homogeneous element V?"+g with ge F[x, y,z, S, T, U]. (By virtue of Lemma 2.7
and Lemma 2.9, for « and g which satisfy B/ <(2p—1)/3p, once we can find a monic
polynomial contained in S'(M) for some /, we may assume that there exists n>2 such
that S?"(M) contains a monic polynomial of the form V?"+g with ge F[x, y, z, S, T, U].)
Since

3 3p 3p" 3p"

2 _2p—1 2p"—p" ' 2p"—pii—
S2p—l _2"—p"  2p"—p 3

b

we may suppose

2p—1 >£> 2p"—p"~1-_3
3p o 3p"
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by Lemma 2.11 and Lemma 2.12 and Remark 2.13. Put ¢ =(p" —2p"~ ! —3)/3. Note that
t' is even and we have 0 <t’ <p" since n>2. .

Next, in the same way as in Step 1 in Lemma 2.17, we prove that S?"(N) contains
a Z*-homogeneous element of the form

VPP ZPPTSP" 4 gx* yPPT ot PP et CY gPT -t 4 (Jower degree terms in S)

with ge F*. (By definition of a, f and ¢, fp" —at’ >0 is satisfied.)
Fori=0,1,---,¢'—1, put

H(i) = x®yPp" —adi+ i ppm—alei+i) gdige:Ci |

where d;=(p"—i+1)/2 and e;=d;— 1 (resp. d;=e;=(p" —i)/2) when i is even (resp. odd).
We repeat the same argument as in Step 1 of Lemma 2.17. Note that, for i=0, 1, - - -,
t'—1, pp"—o(d;+i)=>0 and fp"—a(e;+i)>0 are satisfied. Since

p"+p" 143

dt’—1= 3

>t,

we have only to prove that the ¢ x t-matrix

() (%) o 0
() () (%) 0
S (*)
() (=) (B) o (%)

dy_y

is regular as in Step 1 in Lemma 2.17. Then det(L)=< d""+t,_1) holds by Giambelli’s
tl

identity. Put

n

e=d,'_1+t’-—l=2p p3 3 .

We have only to show that (:) is not divisible by p. Since e=(2p"—p"~ ! —3)/3<p", it

is sufficient to prove that the number of multiples of pi in {1, 2, - - -, t'} coincides with
the number of that in {e—r'+1,e—¢t'+2,---,e} for I=1,2,---,n—1. It is obvious
because

_ pn+pn—1
3

e—t

=0 (" ).
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Now we return to the proof of Proposition 2.18.

Since x* #V—yPzfSeM, we have x@ PP"yP"_ yBrmBr gr" e SPY(M). Therefore
yPPZPPmSP" 4+ x@~PP"g e SP'(N) holds. As we have already seen, SP"(N) contains a
Z3-homogeneous element of the form

VAP ZPPTSP" 4 gx* yfP" et fPPm et CYSPm ' | (lower degree terms in S)
with ge F*. Hence, there exists
G=x"Prg_ gxt ybr"—at' zhp"—at’ CYGP" V' | (terms of degree at most p"—t’ in S)

contained in SP"(N). Since («— f)p">at’, the degree of g in S is less than p"—¢ and,

therefore, we have G#0. As G is a Z>-homogeneous element with deg,, G =(ap”, fp",
pp"), we may suppose
G= Y  dxer" -ty —ali+k) Bpn—ali+k) 4igick
i+j+k=pn ’

a(i+k) < ppn
a(j+k)<Bpm

with d;; € F. In the same way as in Sfep 2 in Lemma 2.17, we may assume that the
number of pairs (i, j) such that d,; #0 is at most one for each k. Put
k;=min{k>0 | there exists (i, /) such that d,; %0} .

(Since G#0, k, is well-defined.) Suppose d; ;,,, #0. Then the degree of G in S is equal
to iy +j,. Therefore i; +j, =p"—t' and k, =t' hold. Since p"—t’ is odd, either i, or j, is
at least (p"—t'+1)/2. But, if we suppose i, >(p"—t'+1)/2, it is easy to see

ﬂp"—a(il + t’) <0 .
It is a contradiction. Q.E.D.

Next consider the case of p=3.

PROPOSITION 2.19. Suppose ch(F)=3. Then there exists I>0 for which S{(M)
contains a monic polynomial in V if and only if Bja>2/3.

PROOF. At first, we would like to prove that S(M) contains a monic polynomial
in V for some />0 when /o >2/3. By virtue of Lemma 2.11 and Lemma 2.12, we have
only to prove it when a=3 and f=2. When this is the case, we have

(xV —y?228)* +2°A’B=x>V3 + x*(terms in F[x, y, 2,8, T, UJ).

Therefore S*(M) surely contains a monic polynomial in V.

Next we shall prove the opposite implication.

Suppose that there exist n>2, « and f satisfying f/a <2/3 such that $3"(M) contains
a Z>-homogeneous element V3"+g with ge F[x, ¥z, S, T, U]. By means of Lemma
2.11 and Lemma 2.12, we may assume




SYMBOLIC REES ALGEBRAS

2 B 2.3l
—_—>—>
3 o 3"

Put t=3""'—1 and note that ¢ is even. (Since n>2, we have ¢>0.)

In the same way as in Step 1 of Lemma 2.17, we want to show that S3"N) con-
tains a Z3-homogeneous element of the form

yP3 2B S3" 4 gxtyP3" —wpB3n—atCrg3n 1 4 (lower degree terms in S)

with ge F*. (Note that, by definition of «, f and ¢, we have p3"—at>0.)
Fori=0,1,---,t—1, we put
H(i)=xaiyﬂS"—a(di+i)Zﬁ3"—a(e.-+i)Ad,-Beici ,
where d;=(3"—i+1)/2 and ¢;=d,— 1 (resp. d;=e;=(3"—i)/2) when i is even (resp. odd).
We repeat the same argument as in Step 1 in Lemma 2.17. Note 3" —a(d; +)>0 and
d,—1=3""!'+1>t. We have only to show that the following t x t-matrix is regular:

(dr—l
1

) (
) (

d—y
0
iy

)
) (

0

0

(dt—l
2 1

dl—-l)
0

(d,_l) (d,_l) (d,-l)
t t—1 t—2
We get det(L)=<d"":t_1) by Giambelli’s identity. Put

e=d,_,+t—1=2-3""1_1,

It is sufficient to show that (f) is not divisible by 3.

_ Since e < 3", it suffices to show that the number of multiples of 3' in {1,2, -, t}
is equal to the number of that in {e—t+1,e—t+2,---, e} for I=1,2,---,n—1. But
it follows from

e—t=3""1

immediately.
Now we return to the proof of Proposition 2.19.
Since x* 7PV —yPPSe M, x*~P3"Y3"_ yB3"283"§3" s contained in S*'(M). Fur-
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thermore, since the Z3-homogeneous element V3"4g is contained in S37(M),
yP37z83"83"  x=~ P37 € §3"(N) is satisfied. As we have already seen, S*"(N) contains a
Z3-homogeneous element of the form

yPInZBI"S3" 4 gxotyB3"—wzB3" -t CIG3" 1 | (terms of degree at most 3"—¢ in S)
with ge F*. Hence S3"(N) contains
G=x"P3"g _ gxyb3"-atzB3" = 13" =1 4 (terms of degree at most 3"—¢ in S).

Here, the degree of g in S is less than 3" —7 since (x— f)3" > at. Therefore we have G #0.
Furthermore since G is a Z3-homogeneous element with degz: G=(a3", §3", f3"), we
may suppose

G= Z di _kan"—a(i+j)yﬁ3"—a(i+k)zﬁ3"—a(j+k)AiBjck
i+jtk=3n
a(i+k)<p3n
a(j+k)<p3n
with d;; € F. In the same way as in Step 1 in Lemma 2.17, we may suppose that the

number of pairs (i, ) such that d;; #0 is at most one for each k. Put
k,=min{k>0 | there exists (i, /) such that d,; 0} .

(k is well-defined since G #0.) Suppose d;, i, #0. Then the degree of G in S is equal to
i; +j,. Hence we have i, +j, =3"—t and, therefore, k, =1 is satisfied. Since 3" — is odd,
either i; or j, is at least (3" — ¢+ 1)/2. But, if we suppose i, >(3"—t+ 1)/2, then it is easy
to see

B3"—a(i; +1)<0.
It is a contradiction. Q.E.D.

Now Theorem 2.1 is an immediate consequence of Proposition 2.14, Proposition
2.15, Proposition 2.18 and Proposition 2.19.

3. The case of a=2 and f=1.

In the case of a=2 and =1 (i.e., the case of =1 in Roberts’ notation [10]), we
have already seen that S(M) is Noetherian in Propositions 2.14 when ch(F)=2, for S(M)
is a homomorphic image of R(Q) as we noted in section 1. On the other hand, when
ch(F)#2, we can not apply results in [5] to this case and Roberts’ method in [10] does
not work even if ch(F)=0.

In this section, we would like to show that S(M) is Noetherian for a=2 and =1
whatever ch(F) is, i.e.,

ProposITION 3.1. Suppose a=2 and B=1. Then S(M) is Noetherian over any field F.
We prove this proposition in the rest of this paper.
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We have already proved in Proposition 2.14 that S(M) is Noetherian when ch(F) =2
and, therefore, assume ch(F)#2 in the rest of this section. We put

A=y>S—x’T
B =z2S—x%U
C=z2T—y*U
D=xV—yzS
E=yV—xzT
F=zV—-—xyU
G=xV?=-2yzSV+xz2ST+xy*SU —x3TU
H=yV?-2xzTV+yz’ST—y3SU+x*yTU
I =zV2=2xyUV—23ST+y*2SU+ x*zTU .
In order to prove the Noetherian property of S(M), we claim that
S(M)=Ry[A4,B,C,D,E, F,G,H,I].
First of all, note that, since

xG=D*>—AB

yH=E?>+ AC

zI =F?>—-BC,

we get G, H, I € S%(M). Therefore we have S(M)=2R,[4, B, C, D, E, F, G, H, I].
We would like to prove the opposite containment.
The next lemma will play an essential role in proving the finite generation of S(M).

LEMMA 3.2. Let q and t be integers such that q=>t>0. If K(VI+ K, V' 14+
K, e SYM) is a Z3-homogeneous element such that Ky, -+, K,eF[x,y,2 8, T, U], then we
have

K0= Z dijkAiBjCk
i+j+k=q—1t

with d;z € Ry such that t.degysd;; > [(t+1)/2] for any i, j, k.

PROOF. Suppose that K V'+K, V' '+---+K,is a Z 3—homogeheous element
contained in S M) such that g>t>0and K,, - - -, K,e F[x, y, 2, S, T, U]. Then §’ does
not appear in

WKV +K VT4 + K) =Ky (V) + (K (V) ™1+ - - - +5(K,)
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by Lemma 2.6 and, therefore, it does not in 6(K,) too. Thus we get K,eS? *(N) and,
hence, we may put Ko=Y,,,,,.,_diuA'B/C* with d,; € R,

When t=0, the assertion is obvious because [(t+1)/2] =0.

Assume the contrary and choose the minimal ¢> 0 such that, for some gq>t, there
exists a Z3-homogeneous element

KoVi+K,V'"14+ ... + K, e S(M)
with
Ko = 2 dijkAiBjCk
i+j+k=q—1t

satisfying t.degzsd,; <[(t+1)/2] for any i, j, k.

At first, suppose that ¢ is even and put =2/ (I>1). In this case, [(t+ 1)/2] is equal
to /. By our assumption, for some g >2I, there exists a Z3-homogeneous element

21
L, :=K,V*+ Y K, V¥ ieSYM)
i=1

With Ko, ST, KZIEF[)C, Y, Z, S, T, U] and K0=Zi+j+k=q—21dijkAiBjCk¢0 SllCh that
dij € Ro=F[x, y, z] satisfies t.degzsd;; =/—1 for each i, j, k. Since

Y. dyu(G,H,1)A'B'C*e S~ (M),

i+j+k=q—-2I
we obtain

L, :=( Y  duG H, I)A‘BfC")G=xK0V2'+ .- eSYM).

i+j+k=q-21

21 S
Ly:=xL,=xK,V¥+ Y xK,V* e SYM).
i=1

Suppose L, #L; and let a be the degree of L;—L, in V. Here note 0 <a<?2l. On the
other hand, t.degzs(L;—L,) is equal to 49—I. Furthermore the coefficient of V* in
L;—L, is contained in S~ %N). Then we get

49—1>[(a+1)/2]+4g—a)+3a

by the minimality of ¢ and, therefore, we have a>2I—1. It is a contradiction. Hence
we get L,=L,. In particular, L, is divisible by x. Therefore Y ,, j+k=q- 2% (G, H,
I)A'B’C* is divisible by x. As we have already seen in Step 2 of Lemma 2.17, we may
suppose

K, =x‘:(mAi°Bj°C"° +x(- - ),
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where iy +j,+ko=g—2l and m=by™z™ (be F*, E+m;+m,=1—1). Since G* is not
divisible by x,

anuImzAiijoCko + G( . o )
have to be divisible by x. But the constant term (in V) of the above polynomial is equal to
b(yz2ST— y3SU)Y™(—z3ST + y*zSU)™(y2S)'°(z2Sy(z> T — y>* U)* mod(x)

and it is not divisible by x. It is a contradiction.
Next suppose ¢ is odd and put t=2I+ 1 (/>0). In this case, we have [(t+1)/2] =1+1.
By our assumption, for some integer g >2[+ 1, there exists a Z>-homogeneous element

21+1
Ly:=K V¥4 3 KV 1 e SYM)
i=1

|14

With Ko, Tty K21+1 EF[X, Y, 2, S, T, U] al’ld Ko=Zi+j+k=q—2[—ldl'jkA’iBjCk¢0 Such that
dii€ Ro=F[x,y, z] satisfies t.degzsd;; =1. Put

Ls:= Y di;(G, H, I)A'B'C*

itjt+k=q—21-1

21 —
=KoV¥+ ) KiV¥ 'est™ (M),
=

where K;e F[x, y, z, S, T, U], and
L6 . =(XV—— yZS)Ls
21
=xK VH*1 4+ ) xKjyA+ri-i_ yzS( > di3(G, H, I)A‘BfC")eS"(M).
i=1 i+j+k=qg—21—1

Furthermore put

2i+1

Ly :=xL,=xK,V¥*1+ Y xKV**1~ieSq(M).
i=1

Then we have

21+1 21
L,—Lg= Y, xK,V#+1-i_ % xKjy2+i-iy yzS( d;(G, H,I)A"BfC").
' i=1 i=1 i+j+rk=q—21—-1

Here the degree of L, —Lg in V is at most 21.
If Lg is equal to L,, Ly is divisible by x. As in the case where ¢ is even, we may sup-
pose
Ko=x*(mA°BoC*+x(---)),

where iy +j,+ko=g—2l—1 and m=by™z™ (be F*, E+m,+m,=I). Since G* is not
divisible by x,
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bH™I™24°BioC*o 4 G(- - -)
have to be divisible by x. But the constant term (in V) of the above polynomial is equal to
b(yz>ST— y*SUY™(—z3ST+ y2zSUY"*(y*S)o(z2Syo(z2 T — y> U)o mod(x)

and it is not divisible by x. It is a contradiction.

Hence, suppose L, — L #0 and let a, be the degree of L, — L in V. Note 0 <a, <2,
t.degzs(L; — Lg)=4q—1 and the coefficient of V! in L,— L is an element of S97%(N).
Then we obtain

4q9—1=>[(a, +1)/2]+4g—a,)+ 3a,

by the minimality of 7. Then a, is equal to 2! since a, <2I. Put
21
L,—Lg= ), JV¥ ieS(M),
i=0

where J;e F[x, y, z, S, T, U]. Since J,#0, we may suppose

Jo= > epA'B'C* e ST2(N),

i+j+k=q—21

where e;;, € Ro=F[x, y, z] and t.deg,s e;.=1. Furthermore, put

Ls = Z e,-jk(G, H, I)AlBJCk

i+j+k=q-21
=JoV? + (lower degree terms in V)e SY(M).

Then the degree of L, —Lg—Lg in V is less than 21.

Suppose L,—L¢—Lg#0 and let a, be the degree of L,—Ls—Lg in V. Then
0<a, <2l is satisfied. On the other hand, we have

49—1=[(a, +1)/2]+4g—a,)+3a,

by the minimality of 7 and, therefore, a, > 2I—1 is satisfied. It is a contradiction. Hence
we obtain L, —Lg=Lg. In particular, if we denote

Ly:= yzS( > d;#(G, H, I)A"B"C") ,
i+j+k=q—21—1

we have Lg =Ly mod(x).
As in the case where ¢ is even, we may put

Ko=x%(mABioCko 4 x(---)),

where i, +jo+ko=g—2l—1 and m=by™z™ (be F*, { + m; + m,=1). Furthermore we
may suppose
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Jo=x'(nA"BIC* +x(- - ),

where i, +j, +k; =q—2l and n=cy™z" (ce F*,{+n, +n,=I).

If r< & or r>21—¢, the coefficient of V" in L, is divisible by x. In the case of £ <],
it is easy to see that the coefficients of V¢ and V!¢ are never divisible by x.

- If r<{ or r>21-¢, the coefficient of V" in Lg is divisible by x. In the case of { <l,

it is easy to see that the coefficients of V¢ and V?'~¢ are never divisible by x.

Since Lg# Ly mod(x), it is easy to see {={.

Suppose ¢=I. Then we have K,=bx'A"B°C* and J,=cx'A"B/'C*, where
b,ceF*, iy+j,+ko=q—2l—1 and i, +j, +k, =q—2I. Then we obtain

Lo =byzSG'AloBioCko

=byzS(—2yzSV)(y28)°(z2Sy(z2 T — y>U)*e mod(x) ,
Ly =cG'ABi\Cx

=c(—2yzSV)(y*S)1(z28Y*(z2 T— y*U)* mod(x) .

Hence Lg# L, mod(x). It is a contradiction.
Next suppose ¢ <I. The coefficient of V?'7¢in L, is

(yzSY —2yzS)*by™z™2(y2S)(22SY°(z2 T — y*U)*° mod(x)
and that in Lg is
(—2yzS)scy™z"(y2S) (z2Sy (22 T— y* U mod(x) .
On the other hand, the coefficient of V* in L, is
(yzSX — 2yzS)°by™(— z)"(z2 ST — y2SUY™ *™2(y28)io(z2SYo(z2 T— y*U)re  mod(x)
and that in Lg is
(—2yz8)ecy™(— 2)"(z2ST — y*SU)" "2 (y2S)1(z2Sy (22 T— y* U)** mod(x) .

(Note ch(F)#2.) Hence we have k,=k,. Since my +m,=n; +n,, we have

byl +my +2iozl +my+ 2jo ___cym +2ilzn2+2j1

and
(_ l)mzbyl +m +2iozl +may+ 2jo =(_ l)nzcym +2i;zn2+21'1 .

It is easy to see that two equations as above are not satisfied at the same time.
Q.E.D.

We now return to the proof of Proposition 3.1.
We have already seen S(M)=R,[A4,B,C,D,E, F,G,H,I].
Let ¢ and ¢ be non-negative integers such that g>¢>0. For any integers i, j and



496 KAZUHIKO KURANO

k such that i+j+k=g—t and for any monomial m of degree [(t+1)/2] in x, y and z,
Ro[A,B,C,D, E, F, G, H, I] contains an element of the form

mA'B/C*V' + (lower degree terms in V).
Then
S(M)=Ry[A,B,C,D,E, F,G,H,1I]

is an immediate consequence of Lemma 3.2.
We have completed the proof of Proposition 3.1.
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