Tokyo J. MATH.
VoL. 16, No. 2, 1993

Modified Jacobi-Perron Algorithm and Generating
Markov Partitions for Special Hyperbolic
Toral Automorphisms

Shunji ITO and Makoto OHTSUKI

Tsuda College

0. Introduction.

The fact that the boundaries of Markov partitions of hyperbolic toral automor-
phism on T3 are not smooth was pointed out by Bowen [2]. Using the generating
method of fractal curves by Dekking [3], T. Bedford gave Markov partitions with
fractal boundaries on a suitable subclass of hyperbolic toral automorphism on 7T3.

THEOREM (T. Bedford). Let us assume that the 3 x 3 integral matrix B satisfies the
Sfollowing properties:
(1) B is non-negative and detB=1, ‘
(2) the maximum eigenvalue Ay of B is a Pisot number, that is, B has a single real
expanding eigen value 4., > 1 and double contracting eigenvalues 1, 1, (1> 4;|>0).
Then there exists a Markov partition of toral automorphism Ty on T3 with structure
matrix *'B. ‘

His main idea is to construct a bounded domain X and a partition {X;: i=1, 2, 3}
on the expanding invariant plane P with respect to a linear map Lz ! which induces
the Markov endomorphism on X with structure matrix B by using the generating method
of fractal curves. The purpose of this paper is to study more precisely the generating
method of these domains. For this purpose, we introduce the concept of tilings of P
by three kinds of parallelograms and the concept of the substitution £ on the
configurations of parallelograms. (See Figure 1.)

Using this idea, on the special class for B such that B=4,4," - - A,, where

a 01 alo
Aie{<1 0 0),(0 0 1); aeN},
010 100
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* ¢

FIGURE 1

we are able to study the generating method of the domain X and partition {X;: i=1, 2, 3}
which are not only the domains inducing the Markov endomorphism on P with structure
matrix B, but also inducing the domain exchange transformation W on X such that
Wx =x—me,; if xe X;, where =n is the projection to P along the contracting eigenvector.
And we see the domain exchange has a self-similarity in the following sense:

X — X

L | &
Ly(X) = Ly(X)

where W, means the induced automorphism on the set Lg(X) induced from W. You

will find the assertion is very close to Rauzy’s result [7], which is the existence of the
111
self-similar domain exchange trnasformation for the special matrix; (1 0 0). It is the

010
main purpose to integrate two works [1] and [7] by using the substitution X. Finally,

we claim that the multidimensional continued fraction algorithm called modified
Jacobi-Perron algorithm in this paper and its natural extension work well behind all
our results.

1. Definition of modified Jacobi-Perron algorithm.

Let us define an algorithm called modified Jacobi-Perron algorithm, which is
introduced by Podsypanin [6], as follows. Let X be the domain givenby X=[0, 1] x [0, 1)
and let us define the transformation 7 on X by

' (E i_[iD if (o, B)€Xo—{(0, 0)}

s
o o

o
(-1) T(a, )= ( __;_ _[ﬂ,%) if (@ peX,

[ (0,0) if (2, f)=(0,0),
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where X, ={(a, B) | a> B} and X, ={(«, B)|x<B}. By uSing the following integer valued
functions

[ﬂ if (o, e Xo—{(0, 0)}
a(e, =1 -
[?] if (o, peX,,
_fo if (a, BeX,
8(“”3)‘{1 if (o feX,

on X—{(0, 0)}, we define for each (a, f)e X—{(0, 0)} a sequence of digits ‘(a,, &,) by
(G &) :=(a(T"" (o, B)), &(T" (o, B)))  if T" (e, B)#(0,0).

The triple (X, T, (a(x, B), &(a, B))) is called modified Jacobi-Perron algorithm. And we
denote (a,, B,):= T"(c, B). For the modified Jacobi-Perron algorithm, we introduce a
transformation (X, T), which is called a natural extension of modified Jacobi-Perron
algorithm, as follows: let X=X x X and let us define the transformation T on X by

(B 1 5 1 . B
(:, ‘;_ab a1+y’ a1+y> if ((X, B)EXO {(O’ O)}

1-2) T(“’B’y’é):(‘,l;‘“l’%’a1+a’ay+5) if (0 peX,
1 1

1(0,0,7,9) if (x, $)=(0,0).

Then we know that the transformation T is bijective from (X—{(0,0)})xX to
X x (X—{(0, 0)}). We denote

s Bus ¥ 0 =T"(2, B, 7, ) -

Let us introduce the family of matrices as follows: for each integral vector *(a, &),
aeN, ee{0, 1},

a 01 al O
(1-3) Aga =<1 0 0> and Aga =<O 01].
) 010 @ 100
Then we see
0O 1 O 00 1
(1-4) At=l0 0 1 and Azi=(1 0 —a].
) 1 —a 0 @ 01 0

Using these matrices, we have the following proposition.

PROPOSITION 1.1. Assume that T*(a, B)#(0, 0),0<k<n—1. Then we have
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1 1 1

ty |=———— A@nAgr_ v A@h| a |,
<B,.> 00,0, &) G G ﬂ>

1

Y

1 1
n =—'A an 'A An -1 tA ay Y ’
5" ,1"1. - .r,n_l (8,. (6"—1) (81 6

0, =max(x, Bi) ,

n _{ak+7k—1 if (ox-1,Bi-1)€X,
k— .

a4+ 0y 4 if (-1, Br-1)EX; .
PROOF. From the definition of the algorithm (1-1), we have

1 1
<ZI>=%A(}O})<2> if (o, B)eX,—{(0,0)},
1

1 1 1
1 |=—Agad if (o, X;.
(g )5al;) o ne

Therefore, we have
1 1 1
<a1>=FA(_‘“1 a) if (d, ﬂ)#(oa O),
B “\B

where 6 =max{a, f}. On the other hand, from the natural extension (1-2) we know
1 1 1
= 'Aa, if (a, feX,—{(0,0)},
35,1 paarwnte () g (@, B)e X, —{(0, 0)}

1 1
1
P = 'Aann| 7 if (o, BeX,;.
<51> a; +9 (‘)<5> 1
Therefore we have
1 1 1
Y1 )J=— 'A(:, Y if (a, B)#(0,0),

_{am if (@ B)e X,
- a,+9d if (o, BeX,. (q.ed.)

where

where
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For each n, let us introduce a transformation ®(am) from R3 whose coordinate is
en

denoted by ‘(x,, y,, z,) to R whose coordinate is denoted by “(x,_;, V,— 1> Z,~1) as

follows:
Xn Xn—1 Xp—1
Vn =(p(—‘8'3) Yn-1 =A(—:'{) Yn-1 .
zn " Z"_ 1 " Zn— 1

Then we have the following lemma.

LEMMA 1.2. For each (a, B, v, 6) € X such that (a, B)# (0, 0), we have

()= E)AG) )

The proof is easy from the definition of P(an) and Proposition 1.1. Hereafter we

denotealso a,=(1, a,, B,), 7,='(1, 7,, 6,). For each («, B, 7, 6) € X such that (a, B) # (0, 0),
let us denote the plane which is orthogonal to y=(1, y, §) by

Py, 8)={x|(x, y)=0}
and let us define the domains P(y, §) and P'(y, 8) by
P(y,0)={x|(x,)>0}, Py 8)={x|(x,7)=0}.
Then from Lemma 1.2 we have

COROLLARY 1.3. For each (0t,_ 1, Brn—1>Vn-1>On—1)EX such that (0,_,, Bpo—1)#
(0, 0), we have

O@PGa-1s 8p- ) =P 3,),

@@y POn-15 n—1)) =Py 3,) -
For each n let us define the projection =, to P(y,, d,) along (1, a,, B,). Then we have
COROLLARY 1.4. The following commutative relation holds:

PEn) = Tn=1°P(ry -

2. Substitutions on stepped surfaces.

Let E,, E, and E, be unit squares spanned by {e,, e;}, {e;, e,} and {e,, e,}, that is,
E :={le,+pe; | 0<A, u<l1},
E,:={le;+pue, |0<A, u<l},
Ey:={le;+pue, | 0<i, u<l},
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)

For each (a, B, y, )€ X, let us define F(y, 8), which is a subset of Z> x {E,, E,, E,}, as
follows:

where

«5"(7,5):={(x,1‘)

Fe{E,, E,, E}},xeZ3 x+ FcP(y, 6)} _

and x—e;¢ P(y, 6) if F=E, ’

and let us define %(y, d) to be the family of all finite subsets of F(y, 8), that is,
$A< o0, (x5 F)e S0, 5),}

(x5, F)#(xyp, Fp) if A#4')°

where an element of 4(y, ) is denoted as a formal sum. We define %’ and ¢’ instead
of & and ¥ by using P’ instead of P, similarly. Then on the assumption that (1, y, §)
is rationally independent, that is, if /+my+né=0 for some |, m,ne Z then (I, m, n)=
(0, 0, 0), we know that

ys(ei,Ei)9 l=la 2a3s y'B(O’EI')’ l=1, 2’3

47, 6):={ Z (%2 F)

AeA

and ¥’ is obtained from ¥ by changing only the elements (e;, E;) of 4€% to (0, E,).
For each (o, B, y, )€ X, let us define a map Z(al) from %(y, 6) to ¥4(y,, 8,) as follows:
(0,E)) - (0,Ej)+ ) (e;—kes, Ey)

Y a . 1<k<a;
@ 0E) - E)
(0, E3) - (09 E2)

and

0, E) - (0,E)+ )Y (e,—key Ey)

. 1<k<a;
7 0,E) - 0Es)
©,E) — (0, E)

and for (x, F)e #(y, 6), we define
e n—1
Hepts =060+ 20, F)
and for ), _, (x;, F;)€9(y, 6), we define

Za; Z(x;,,FA) :=Z(2“l(xlaF).))s
@ R )

AeA

where y + (x, F) means (y+x, F). (See Figure 2.)
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FiGURE 2. Figure of substitutions ¥ l)(O, E),i=1,2,3
1

H
Then we can see by the following two lemmas that Z(al) is a map from %(y, J) to
Y(y1, 61)-
LemMmA 2.1. For each (x, F)e%(y, 9), Z(a,)(x, F) is an element of 9(y,, 9,).

PROOF. On the assumption that &, =0, we have the following 3 cases (i), (i) and (iii).
(i) The case that x+ E, = P(y, 6) and x—e, ¢ P(y, 9).
Remarking <p('ao})(x+E1) = P(y,, 8,), we see that

‘P(_“O})(x)ep(%a 04),
(P(_a()})(x‘*'ez): QD(_"O})(-’C) +e,—ae;eP(y,,9,) .
Therefore
40(7103)(36) +e,—jese P(yy, 6,) 0<j<ay).
Hence we have
Z(aox)(xa E)<cP(y,,9,) .
On the other hand, we see that
(1> @gay(x)—e3)=(y1, @@(x—ey)) (by (1-4))
) ()
=(y, x—e;) (by Lemma 1.2)

<0.
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Therefore, we see go(_ao})(x)—eg, ¢ P(y,, 6;) and so (p(‘ao,‘)(x)—ke3 ¢ P(y,, 0,) for 1 <k. This
means

Z(‘g)(xs E\)=Z(y:,96,).

(i) The case of x+ E, = P(y, 6) and x—e, ¢ P(y, 5).
It is sufficient to see that

(1, 9(af)(x)—€;,)<0.
We know from (y, x—e,)<0, Lemma 1.2 and (1-3) that
(1 @ @) *) —e) =1, 9(2))(X) — 0(afy(e2) — a1 0(at)(e1))
=n(y, x—e,—a,e,) (by Lemma 1.2)
=n((y, x—e3)—ay(y, €,))<0.

(iii) The case of x+ E; <= P(y, 6) and x—e5 ¢ P(, 9).
It is sufficient to see that (y,, (o(a,)(x) e,)<0. We know from (y, x—e;)<0 and
Lemma 1.2 and (1-5) that

(1, P (a)(*¥) —€2) =71, P}y (*) — <P(7§)(es))
=n(y, x—e3)<0.
‘The case of ¢, =1 is obtained analogously. (q.e:d.)
LemMma 2.2. If (x, F)#(x’', F'), then
2ey® D0z, F)=2.
PrOOF. (i) Suppose that
E(g)(x, E)n Z(ao,)(x’, EN#J (x#x"),
that is, suppose that there exist &, j, 1 <k, j<a,, k#j such that
<p(_%})(x) +e,—kes+E,= (p(‘%})(x’) +e,—jes+E, .
Then we have
oy x—x)=(k—)es=(k—pah(e) .
Therefore, we know
x—x'=(k—j)e, ,
that is,
x—e =x"+(k—j—1)e, e P(y, J)
or x'—e;=x+(j—k—1)e,eP(y, d).
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This contradicts
x—e,x' —e ¢P(y,9).
(i) Suppose that
2@y, E)N 2@y, B+ (x#£x),
that is, there exists j, 1 <j<a,, such that
(p(;o})(x) +e,—jes+E; = go(;o})(x’) +E,; .
Then from that
(p(';o})(x' —X)=e,—jes= (p(TzO})(ez) + a1(P(_a011)(e1) “‘j‘P(_"()ll)(e1) ,
we have :
x'—x=e,+(a;—j)es .

That is x'—e,=x+(a, —j)e; € P(y, 6). This contradicts x’ —e, ¢ P(y, 5). We see from
the definition of Z that

Z(%,)(x, E)n 2(‘8)(-", E))=¢
and
Z(aox)(x,_ E)n Z(ay(x's E)=0 if i=2,3and x#x’.
Therefore we have the conclusion in the case of ¢; =0. The case of ¢, =1 can be discussed
analogously. (q.e.d.)

By Lemma 2.1 and Lemma 2.2 we see that the map ~ (1) is well defined as a map
&1

from %(y, ) to %(y,, 6,). From now on, the map = ) is called the substitution associated
with modified Jacobi-Perron algorithm. *

LemMA 2.3. For any (x,, F\)e ¥(y,, 6,), there exists (x, F)e #(y, 8) such that
(x4, Fl)eZ(::)(x, F).
PROOF. Let us assume that &, =0. (1) Assume that (x,, E,)e &(y;, 8,), that is,
x;+E,cP(y,,6,) and x,—e,¢P(y,,9,).
Put x=<p(.3)(x1), then
@, X—e5)=(, P(a(¥1— ) =n"'(r;, x,— ;) <O0.
This means
(x1, E,) eZ‘(%l)(x, E,).
(2) Assume that (x,, E3)e #(y;, 8,), that is,
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x,+E;cP(y;,06,) and x;,—e3¢P(y;,0,).
Put x=(p(ao,)(x1), then
(79 x—el)'__(?s @ a (xl)_(p ay (eS)) =VI_1('Y1’ xl—e3)$0 .
(%) (%)
This means
(x4, E3)EZ(aO,)(x, E)).
(3) Assume that (x,, E,)e L(7,, 4,), that is,
x,+E cP(y,,6,) and x;—e ¢P(y,0,).
From (y,, x, —e,) <0, there exists k such that (y,, x, —e, + (k—1)e;) <0 and (y,, x, —
e, +ke;)>0 and k satisfies 1 <k <a, + 1. Because, from —1=—(y,, e,) and (y,, x;)>0
we know that 0>(x; —e,, v,)> — 1. Therefore we see 1 <k=[—(x;— e,,7,)/6;]1+1<
[1/6,]+1=a,;+1. In the case of 1<k<a,, we take (9(ar)(x1— €1 +kes), Ey), then
we see that ((p(,:)l)(x1 —e, +kes),y)=n"'(x;—e, +kes, y,)>0 and
(‘P(ﬂol)(x1 —e, +ke;)—e;, y)= (‘P(‘g)(-h —e, +ke3)— ‘P(aol)(ea)s 7)
=(‘P(“01)(x1 —e;+(k—1)e;), )
=n"'(x,—e; +(k—1)e;, y,)<0.
This means
(‘P(%x)(v‘& —e tke;), E))e9(,9) .
Therefore, we see from the definition of 2(.8) that
Z(“O!)((P(aot)(x1 —e, t+key), E)3(xy, Ey).
In the case of k=a, + 1, we take
(‘P(‘g)(xx —e,t+ke;)—e;+ey, E;).
Then we see that
((p(%,)(xl —e;+(a;+1)ez)—e +e,, y)
=(@(ay(¥1—e1+(ay +1)es) — @ar)(e3) + @ary(e1) — a9 (any(ea), 7)
= (@), V=", 7)) >0.
That is ((p(aol)(.vc1 —e,;+(a; + 1ey)—e, +e,, Ey)e F(y, 6). Therefore, we see that
E(‘g)(‘ﬂ('g)(xl —e;+(a;+1)e;)—e, +e,, E))=(xy, Ey) .

Also we have

(P(tg)(x1 —e;+(a, +1)e;)—e, +e2_e2=‘P(“ol)(x1—el +a,e3)¢ P(y, 9) .
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The case of ¢, =1 can be discussed analogously. (q.e.d.)

Let us define a geometrical realization map " from %(y, 8) to the family of compact
sets of R3 as follows:

A ((x, S):=x+S,
f( > (%3 S).))i":lUA(xz"f'SA) .

AeA

Let us denote

Sp.0:= U A 9)

(x,8)e L (7,9)

and call it the stepped surface of the plane orthogonal to y='(1, y, ). Then from Lemma
2.2 and Lemma 2.3 we have

PROPOSITION 2.4. For any (a, B, 7, 8) € X, («, B) #(0, 0), the stepped surface S(y, 5)
is invariant under the substitution E(al) in the following sense:
. &1

Souo)= U A (Ean 5.

(x,8)e F(y,8)

By the above discussion, it is easy to see that Lemmas 2.1, 2.2, 2.3 and Proposition
2.4 also hold on &' and ¥'.

At the end of this section, we will show that for each i=1,2,3, & (E(a,,
Z(::)(ei, E})) is a topological cell, in other words 7, (Z(g:)- . -Z(::)(e,-, E))is a s'lz'r'nply
connected domain in P(y,, 6,). To prove this proposition, we will prepare several
lemmas. Firstly let us introduce a set %, as follows:

€o={0, E\)+(—e,+e,, Ey), (0, E\)+(—e,+e3, E3), (0, E})+(ez, Ey),
(Os E1)+(e39 El)s (0’ E1)+(Oa E2)9 (09 E2)+(0’ E3), (0, E3)+(0’ El)}
and introduce a subset € of %(y, J): ,
¢={T.L| (o262 T,Le%(,0)},

where T, is a translation map given by

Tz( > (x5 Sa))= Y (x:+2,85).
ieA AeA
We say that a set 4 of ¥(y, 6) is €-covered if there exists a finite subset {{,|Ae A} of
€ satisfying the following properties:

(1) For any {;,{,e4, there exist {;e¥, i=1,2, ---,n, such that {;={;,{;n
L1 #D (i=1,2,---,n—1) and {,={,,

@) Usea® C=2().
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v e
PN
y_

Figure of €,

LEMMA 2.5. AssumethatAe %(y, 6) is €-covered. Then X (a,)(A) is also €-covered.

PrROOF. For each (€4, (€%, it is not difficult to see from the definition of Z(a1
and Lemma 2.2 that ¥ (a,)(C) is #-covered. (See Figure 3.) Therefore, we see that for any
#-covered set 4, X (al)(Al) is €-covered. (q.e.d.)

We give the following definition.

DEerFINITION 2.1. A @-covered set 4 is called a #-covered cell if its geometric
realization J¢'(4) is a topological cell.

PROPOSITION 2.6. If A€%(y, d) is a €-covered cell, then Z(a,)(A) is a €-covered cell.

PROOF. Suppose that ¢~ (Z(a,)(d)) is not a #-covered cell, that is, the set
H(S(yy,0.)—H (Z(al)(A)) has a bounded component D, and one unbounded
component D,. Then we are able to choose (x,, S,) and (x, S|)e%(y,, d,) such that
H (x4, S;)eD, and A (x}, S1)=D,. By Lemma 2.3, there exist (x, S) and (x’, S")e
%(y, 0) such that

Z(z:)(X, S)a(x;, Sy), Z(::)(x’, $Y)3(x}, S%) .

On the other hand, from the assumption that 4 is a topological cell, and from the fact
that (x, S) and (x’, ") do not belong to 4, there exists a chain {{; | {;e%(y, 6) and
(;€€,i=1,2,---,m} such that {,n(x,S)#, ((n{1#D, .0, S#D,
{in A=F. Therefore the sequence Z‘(g:)(c,.), i=1,2,---,m, satisfy the following
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Elements of €, Images by Z(g) and Z(«;)

" P =

FIGURE 3. Figure of Z(a)(C), (e,
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properties:

(1) ax)(C1)9(x1’ S,

@ E@yC) N Z@C )~ D,

B Z@yCma (i, 5D,

@ Z@)C) N Ee D=2
This means that D, and D, are connected by using pieces of €, which are in the outside
of X' (2 (g:)(A)). This is a contradiction. (q.e.d.)

COROLLARY 2.7. (1) Let us denote =3} ,_, , ,(e;, E;). Then the sets
Z(z: . Z(g:)% and Z(:: T -Z(z:)(e,-, El) , I= 1, 2, 3 5
are €-covered cells.
(2) Let us denote U'=Y ,_, , ;(0, E;). Then the sets
ey Eey? and ey 2en0.E), i=1,2,3,

are €-covered cells.

3. Domain exchange transformations.

In this section, we introduce transformations on the plane P(y, §) which we will
call domain exchange transformations and discuss the properties as dynamical systems.

From now on we assume that (a,, 8,)# (0, 0) for all n. For each integers n, k such that
0<k<n, let us introduce the column vectors

(9, 49, £$9)
by

(3-1) fe», f‘""’f"’"’) A(a )A(a,. 1 A(a,‘“ ,

en-1 En+1
(f(ln ")a f(zn ")s fg' n))= (els €;, e3)
and denote the domains on P(y,, é,) by
(3-2) D=k = ﬂnx‘(Z(a,. cee 2(ak+ 1)02[) .

i+ 1

k+1)(ev E, )) ’

k+1

Dgn,k):_—_nnx‘(z(an .2(
(nk) . __ P

DR =mt ey Zaer o)

D=0 =n,f(2(:n T (::: 11)(0, E)) .

Then we know from Lemmas 2.2 and 2.3 that

Do = 1U2 ; D® . int.D™P Aint. DY =05 (i#j),
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D™= ) DB int.D™R Aint. D= (i#)).

i=1,2,3
Lemma 3.1.
pml — prnk)

ProOOF. The proof is obtained by induction for k. In the case of k=n, the relation
D®" = D'™" ig trivial. We see D™k~ 1 = p'®k=1) op the assumption D™ =D'™"_ The
sets D™k~1 and D'™*=1 are decomposed by

D("’k— D= 7'[,‘.9{(2(&,) T Z(ak)(%))
= ﬂ:n.}i/(z(:n) e Z(ak+ 1)(021)) + 71,,3((2(1;1.) T 2—:(ak+ 1)(2(ak U—U)),

Elc+ 1 £k + 1 P

D'(n’k_1)=ﬂnf(2(g")' : 'Z(::+1)(%’))+n,,f(2(z,.)' : 'Z(ak+ 1)(2(ak %I'—%’)) .

€k + 1

By the definition of Z(‘;,’:) we find out
2@y U =T@ U =Y
Therefore by the assumption we have D™® =p’'™b_ (q.e.d.)
Let us define the transformation W™® on D™® as follows:
Webx =x —m, f™0 if xeD{™v .
From Lemma 3.1 we see that
DR g fmb) — prnk)

This means the transformations W™* are well defined. We call these transformations
the domain exchange transformations associated with modified Jacobi-Perron algorithm.
Let us denote the lattices L™® on P(y,, 8,) as follows:

(3-3) L = {s(n, f§P =1, f )+ U, f§0 =7 fOP) | 5, 1€ Z)
From the property that for all ne N
U ot @)+)=P@,,6,) and

le L(n,n)
int.(m, (%) +1) nint.(n, A (XU)+ 1)=& if 11,1 I'el®™,

we know from Lemmas 2.2 and 2.3 that for all ne N

(3-4) U @™P+1=P(,, 5, and

le L(mk)
int.D*+HNint(D™P+1=g  if I#l', LI'eL™.

Therefore we are able to identify D™® and 2-dimensional torus T?=P(y,, 6,)/L™".
Moreover the domain exchange W™¥® on D™® can be identified to the quasi-periodic
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motion (Weyl automorphism) Q™* on D™® such that
QHx=x—m f®¥  (mod L™V).
From the fact that
Z@¥=>%
we note that
D(n,k) c D(n,k— 1) and Dl(n,k) c Dl(n,k— 1) .

Now to show that the induced automorphism of W®™*~1 to the set D™® is equal

to W™  we introduce a second substitution o(e) on the set S*={1,2,3}*=
[e o] m &

U o [Tr=, {1, 2, 3}* as follows:

—~A—
o 1->11---12

0(3)' 2-3

31

and

—\
. 1-11---13

0(.1:). 2—-1

352

and for w=s,s, - -5, €S*
()W) =0(a)s)o(a)(s2) o (ay(si) -
Let f be the canonical homomorphism from S* to Z3, that is,
(3-5) f@):=e;,
k
Sw):=Y f(s) for w=s,---5,€S8*.
i=1

Then we have easily the following lemma.
LEMMA 3.1. The following commutative relation holds: for each ¢€{0, 1}

{0

S* » S*
s l l !
L,
73 ) 73
where L(a) is the linear map represented by A(a).

In general, under a recurrent transformation 7: X—X and a transformation
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T,: A—Aonasubset 4 of X, we say the transformation 7', is the induced transformation
of T to the set A if the following relation holds:
T,x=T"9x forany xeA,

where n(x)=min{n | T"xe 4, n>1}. We say the induced automorphism T, of the
transformation (X, 7T) to the set A(< X) has a substitution structure o:

1ossi- - s
o: 2-o5PsP-- 5P
3os@sP - - -5,

if there exist partitions {P,, P,, P3} of 4 and {X, X,, X3} of X satisfying the following
properties: there exist integers k;, k,, k5 such that

Tk_lpich;‘i) for ISkSkl, Tk_lP,-ﬂA=@ for ZSkSkl,
and TkiPi= TA(Pi) .

LEMMA 3.2. For each n the induced automorphism of W™"~V to the set D™ is
equal to W™", and the induced automorphism has O (aw-Structure.
En

PrROOF. It is enough to see the assertion when n=1. Assume ¢, =0, then we see
easily that

(WEOKDED) =D —fr, fEDeDEO 0<k<a,—1,
(WEO)(D0)=Dg,
(WOt H(DED) = EO(DG0) = DGO — 1, f0D =, H (O, Ey)=DEHD,

D(zl,l)CD(sl,O) ,

WENDED)=DYD —r, f§D =, (0, E)=D5"Y,
D(31,1)CD(11,0) ,

WOODE) = DY~y f4D =1, A (O, E) =D

This is nothing but the conclusion. (See Figure 4.)

LeMMA 3.3. For each n and k, 1 <k <n, the induced automorphism of W™*=1 o
the set D™ is equal to W™, and the induced automorphism has O (axy-Structure.
Ex

The proof is completely the same as the proof of Lemma 3.2. (See Figure 5.)

PROPOSITION 3.4. Let (o, B,7,8)eX and (x, f)#(0,0). For each n the induced
automorphism of W™ to D™ s equal to W™™, and the induced automorphism has
o) "O(an -structure.
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The poof is obtained by repeated applications of Lemma 3.3.

COROLLARY 3.5. Let (o, B,7, 8)eX and (a,, B,)#(0, 0). For each n, the cardinality
of {(x, E;)| (=, Ej)eZ'(a,,)~ . ~Z(al)(ei, E))} is equal to n{p, where A(a, .- -A(a,,)=(n§;9),
1<i,j<3. £n £y &1 &n

W(I.O)

—_

W

FIGURE 4. WY is induced from W0

W(B.l)

FIGURE 5. W®1 js induced from W& (g,=1,¢,=0,n=1,2, ---, 8)
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4. Renormalization.

From now on, we make the following assumption:

AssuMPTION P. For the point («, B, y, ) we assume that
(1) (a, B, 7, 6) is a periodic point of T with period k,
(2) the eigenvalue A=0"1671---6;1, of A(a1 . ‘A(ak) is a Pisot number, that is,
€1 : Ex

A>1 and O0<|i|<1,

where J; are the other eigenvalues of A(:: .- "A(:: .
For the simplicity, we put as follows:
D: =¢(g:)' ) 'd’(::: =A(glx e 'A(g:)=t(nij)1 <i,j<3>
U S5, ) =0, F7R0, f7e) =07,
P:=P(a, B, 7, 0) (the orthogonal plane to (1, y, 9)),
=T, (the projection to P along (1, y, 9)),
X=X (@) -2(.;: (the substitution on %(a, B, y, 8)),
TEOEN T
L:={mn(e,—e,)+nn(es—e,) | m,neZ},
L*:={nx | (x, S)e L(y, 8)} ,
D™ :=gr A (Z™U)(= D),
D™ :=nA (Z™(e;, E)))(=D{™?),
Wm) . — py(mk.0) (domain exchange on D™) .

Then we have that

1 1
4-1) o o =t o (by Prop. 1.1),
B 00, 6,_, 8
1 1 1
oy = |y (by Prop. 1.1),
o My* " "Mk-1 \ §
4-2) P is @-invariant (by Cor. 1.3)

and for all me Nu {0},
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(4-3) U @™+ mz)=P (by 3-4),

zel

int.(D™+ & "2) Nint.(D™ + P "z)=F (z#z'€l),

(4-4) U oMm+e m)=P,
(z,i):
(x,EDe £ (1,9)
int. (D™ + &~ "z) Nint. (D™ + b~ "2 )= (z#z'€L*).

4-5) the induced automorphism of W™ to the set D™~ 1) is equal to W™~V
and the induced automorphism W™ | pm-1n has a g-structure.

Let us introduce subsets of L* as follows:
L*(i’j) = {nx | (x, E]) € 2(8)‘) c ‘2(:1)(e,-, Ei)} .

Then we know from Cor. 3.5 that the cardinality of L*®J js equal to n;;. Therefore we
denote the element of L*®? by z{*?, 1 <k <n,;. Using this notation, we see that

DW= % Y (aX(0, E)+z{P).

ISi,jS3 ISkSRU

Moreover, generally we have

(4-6) D=3 3 nk (Z" 10, Ep)+ @™ Vz(d).
Now let us define the sets on P as follows:
%) X=lim o™n X (™)),

X,= lim @™nx' (E™e, E)) for i=1,2,3,

m— 0

Xi;=lim o™nx¢"(Z™0, E;)) for i=1,2,3,
where the limit is in the sense of Hausdorff metric on the family of compact subsets in
P. In the next section, we will see the existence of domains X, X;, i=1, 2, 3 with fractal
boundaries. On the assumption of the existence of domains X, X, X!, i=1, 2, 3, we have
the following theorem:

THEOREM 4.1. For each points (o, B, v, 8) € X satisfying the Assumption P, the sets
X and X, i=1, 2, 3 given by (4-7) have the following properties (see Figure 6):
(1) (Periodic space tiling)
U X+x)=P,

xeL

int.( X+x)nint.(X+x)= (x#x'eL).




MODIFIED JACOBI-PERRON ALGORITHM
(2) (Quasi-periodic space tiling)

Xi+mnx)=P,
(x,i): (x,Ei)e F(v,0)

int.(X}+nx) N int.(X}+nx") =& if (x,E)#(x',E))eZL(,9).

(3) The following domain exchange transformation W on X is well defined.:
Wx=x—me, if xelX;.
(4) (Self-similarity of automorphism W) Let X1 and XV, i=1, 2, 3, be subsets
of X given by

XV=¢pX=lim o™ g (Z™(U)),

m-> e

XV=dX,= lim &"* 1A (Z™(e, E.)) .

m— o
Let WX be the domain exchange transformation such that
WWy—x_nde, if xeX®V.

Then the induced transformation of W to the set XV is equal to W'V, that is, the following
commutative relation holds:

x X x

@ l lcp
x» ey ypay
Moreover the induced automorphism has o-structure, that is, denoting
1 = s - s
Oy o(@my: 2SS sk)
3 sPsP- s,
then we have the relations: for each i=1, 2, 3,
WEIX (D e X 0<k<k;,—1,
WD = WX D) (=X,

where k; is given by

(5) The following Markov endomorphism T on X with structure matrix D is well
defined: for xe XV

Tx=d 'x—z{) if & 'xezl+X;.
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PROOF.  For the relations of domains D™ and D{™ in (4-3)— (4-6), we operate the
renormalization operator #™ and take m to infinite, then we have the conclusions.

FIGURE 6-1. Tiling by X (a,=1, &,=0 for all n)

Wx(l)

FIGURE 6-2. Self-similarity of the automorphism W

COROLLARY 4.2 (Recurrence rule of the origin point by the domain exchange
W). Under the Assumption P, let us consider the decreasing sequence X™ of the
neighborhoods of the origin point by X™ =®™X, m=1,2, - - - . Put ¢, =n™ +n¢" +n{,
where ®™="(n{{"). Then the following recurrence rule holds:
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W O)¢X™  1<k<gn,
Wm(0)e X .

Proor. From ‘(1,a, f)e X (e,, E;), we know that Oenx (e, E,). From the
definition of substitution o, the head letter of o(1) is equal to 1, hence Z(e,, E,) 3(e;, E;).
This means that 0e D™ for all m, and so that 0 X;. By Theorem 4.1 (4), we already
know the recurrence rule of the set ®™X, to #™X by using induced automorphism of
W to the set ®™X. Therefore we have the conclusion. (q.e.d.)

COROLLARY 4.3 (A construction of Markov partitions). Under the Assumption P,
Let S be the automorphism on T? determined by ®. Put

Pi={x+y|xeX,yel}.

Then the set {P;|i=1,2,3} determines a partition of T? which is a Markov partition
with structure matrix '®.

ProoF. Putting P?={x+y|xenX (e, E;),yel;}, then the union D° (= PD)
of parallelepipeds P?, whose bottom is n¢ (e;, E;) and top is e;+ A" (0, E,), satisfies the
property

U (D°+2)=R3,

zeZ3
int.(D°+2)Nint.(D°+z) = (z#2'€Z3).
Therefore putting D=\ J;_, , ; P;, we see that
U, ezs @+2)=R>,

int.(D+z)nint.(D+z)= .

The image by @ of the contractive boundary e;+ {x—me; | x€ X;} of P;is included in
| Pe,+ {Ox—nde, | xe X;} c Pe;+ X .
On the other hand the image by ®~! of the expanding boundary of P, is included in
the union of boundaries
U . U (a+Pj+z§ci'j))
i=1,2,3 2" PeLr.d

by Theorem 4.1 (5), where 07 P; is the expanding boundary of P;. This means the
partition P is a Markov partition of T, with structure matrix '®. (P is a Markov
partition of Tg-: with structure matrix @.) (q.e.d.)
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5. Boundaries with fractal curves.

Instead of the proof for the existence of the limit set
X=lim ¢™n " (Z™%)),
m-* oo
we prove under Assumption P the existence of the limit set of boundaries

B=lim ®™ndx (X™(%))

n— o0

as a ‘generalized’ simply closed Jordan curve on P. For this purpose we introduce a
free group G and an endomorphism 7 of G as follows. Let I, i=1, 2, 3, be oriented
intervals generated by e,, e,, e,, that is,

I,Z={leiIOSASl}, i=l,2,3.
Let us introduce a free abelian group G generated by Z° x {1, I,, I}, that is,

z,€2®, Le{l,I,, L} ,}
meZ, #A<oo |

H= {Z;e,imi.(zb L)

For each (g, ¢), let us define an endomorphism 1(e) of G by
0,15) - L)
'7(3) : 0,5) - (,1)- Z (e, —kes, 1)

1<k<a

0,5) - (1),

(0’ 11) - (Oa IZ)
ﬂ(zll) : (Os 12) - (Oa 11)_ Z (el —ke2$ 12)

1<sk<a

) (09 13) - (09 Il) s
(a2, f;)= fP(_gl)(z) +1(a(0, I,)

'7(:)( );A my(2;, 1;.))= Z mz('l(z)(z;., L)) .

AeA

Let us define a map 0 from %(y, d) to G, called boundary map, as follows:
0(0, E;)=(0, I,)— (0, I3)—(es, L) +(e 1),
0(0, E;)=(0, I5)— (0, I,))— (e, I3) +(e3, 1)
0(0, E3)=(0, I))— (0, I)—(ez, 1) +(ey, 1)
o(x, E;))=T,0(0, E) for (x, E)e%(y,d),
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5( Z (%3 Ez)) = )'ZA o(x;, E;) for Z (x3, E))e%(y, 9) .

AeAd AeAd
Then we have the following proposition.

PROPOSITION 5.1. For each (a, B,7,8)eX, (a, B)#(0,0), the following diagram
commutes:

Z()
4(,0) —— %(y1,901)
P l l P
ne:
G — G,

that is,
11((11 °a=a°2(01 .

The proof is easy from the definitions of Z(al), 0 and n(a):
Let o be the geometrical realization map on G, that is,

A (x,I):=x+1;,

X( 2. my(x,, I;.))= U (x,+1).

ieA AeA,mu#0

Then we have the following property:

| HO@EN=0H () for [e%(y,9),
where the second d means the topological boundary of ' ({). Therefore we have the
following proposition.

PROPOSITION 5.2. For each («, B,7,0)eX, (a,B)#(0,0) the boundary of
X(E(gn)' : 'Z(::)%) is given by .%’(11(:..)' g ‘17(2:)6%).

We know a generating method of fractal curves by using endomorphisms of free
group with finite generators, called Dekking method [3]. Let G(1, 2, 3) be the free

group generated by {1, 2, 3}. The free group G<1, 2, 3) is mapped to G by a map F as
follows:

1-(0, ;) 1—1"’“(—31,11)
F: 2-0,1,) 2 '5—(—el,)
3—(0, I,) 3_1—’—'(_-33, I,)

and
wiwy W Fw)+(f(wy), Fwy))+ - - +(f(wy - - -ws_ 1), F(wy)) ,

where f: G(l1,2,3>>2Z3 is the canonical homomorphism given by (3-5). For an
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endomorphism 7 of G, if there exists an endomorphism 6 of G{1, 2, 3> such that
n(F(i)) = F6())

then we call the endomorphism 6 of G{1,2,3) a free representation of n. For the
endomorphisms () of G, free representations O(a) are given by
& &

1-3

O@)" 251371371, 371
352,
1-2
) 2-3
e(a) . a

1 re——
3»1271...271,
Let X" be a geometrical realization map from G{1, 2, 3> to the family of compact sets
of R3 given by
H(S)={Af(s) | 0<i<1} for se{1*1,2%1 3%1}

Howw)= U (Fvy- =W )+ )

Then we have that
H(EW)=H(W) for WeG{l,2,3).
Using this endomorphism 0(2), the boundaries of the domains
D‘”’°’=n,,.9f(2(¢;:)' . 'Z(‘é})(%))
and
Dﬁ”’°’=7t,,.)f(2(z:)~ . -Z(::)(e,-, E)))
are given by
OD"O =g (£ 4 %(0(::) . 0(‘;;)(21 ~13271137Y)),
oD "0 =g (fO +9t”(9(::) e B(z:)(jkj‘ &=1y)) (J=i+1,k=i+2(mod3)).
If (o, B, y, )€ X is a periodic point with period k, then using the notation
7:=0e P
the boundaries of D™ and D{™ are given by
OD™ =n(f{ + 4 (0™(2171327 1137 1)),
ODM=n(f{™ + A (O"(jkj~ k1)) .
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467

Therefore our goal is to see the existence of limit sets as a ‘generalized’ simply closed

Jordan curves

0X=lim @™n(f{"+4(0™(2171327137Y)),

m— oo

0X;= lim @™n(f™ + 4" (0™(kj~'k~1))).

. m—>o0

For each G(a) we introduce an endomorphism @(a), called a lifting of O(a), since our

endomorphisms 6 given by the composition of O(a)’s may have some cancellations.
. €

Let us consider a free group G(A,B, ---,K) of rank 11 and let us define a

homomorphism ¢ : G{A, B, - -+, K>—>G{1, 2, 3) as follows:

Y(A)=21""1 Y(F)=2
Y(B)=32"1 Y(G)=3

Y(C)=13"1 Y(H)=213"1

Y(D)=32 Y(@)=231"1

W(E)=23 Y(d)=321"1
Y(K)=312"1.

Let us introduce an endomorphism @(a) of G(A, B, - --,K) as follows:

@(8)(A)=CG_a - @(?)(A)=B
EG*~2C~! if a#1 A"F-@-2p-t
@(3)(13):{1 if a=1 ‘@(?)(B)={J-1
02O =B | ‘@(g)(C)=F“A
@(8)(D)=HG‘("‘” @(.;)(D)=A—1F—<“-1>G
@(8)(E)=CG“‘“‘”F @(.D(E)=’KF-<“*“
@(8)(F)=CG_(a—1) @(z{)(F)=‘G
@(8)(G)=F @(g)(G)=A_1F_(a_1)
{C(ET-(“-”E* if a#1,2
Oa\(H)=11" if a=2 O a(H)=DF* A
(o) At i a1 D
@(3)(I)=CG““‘1’B‘1 , O(ayH=KF~*
O(ay(J)=HG™* ' @(.lz)(J)=A'1F“"‘”B

A—IF—(a—-3)D— 1
O(ayK)=EG*~'C™! @(.;)(K)={.g1

if a#1
if a=1

if a#1,2
if a=2
if a=1
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Then from the definitions of @(a) and ¥ we have the following proposition.

ProOPOSITION 5.3. (1) The following commutative relation holds:

Oa
®
G{(A,B, ---,K> —5 G{A,B, ---,K>
wl l v
)

G<{1,2,3> — G<1,2,3).
(2) In particular, we have
Yo O"(ABC)=6"(21"132711371),
where © is given by @(.::)- . -@(z:) for 0(:: o '9(?: .
PROPOSITION 5.4. For each n, ®"(ABC) does not have a cancellation.
PROOF. Let us consider the following set # of G(A, B, - - -, K):

F ={AA,AB,AB !, A"'B,AC"!, A"!C"! AD, A~ 'D"!, AF,
AT'F1,AG,A"!G,A], A1) AK, AK !,
BB, BC, BC~!, B~!C, BD, B~'E, BF!, B~ 'F, BG, B~ 'G !,
BI"!,B~'I,B~!I"!,BJ,BJ"!,B"1J,
CC,CE~!,C™'E,CF,C"'F,CG"!,C"!G,C~'H,C 'H™ !,
CI~!,Cc™I,
DF,D"'F,D"!'G™!,
E"'FLEG,E"'G,E"'I!,
FF,F~!G,FH,FL,F~ 1", F~!J,F~!J"! FK~1, F K,
GG,GH™!,G"'H,G™'I,G™'1"!,GJ,G"1J" !, GK,
H 'Y, 11, JJ, JK} .

For each element UV e £, it is easy to see that @(a)(U)@(a)(V) does not have a
cancellation and @(a)(U V) is constructed by &, that is, if we put @(a)(U V)=8,8,"--

S, (S;e{A, ---,K}) then §;S;,, (1<i</—1) belong to &. Therefore, ®"(ABC) is
constructed by # for all n, and so ®"(ABC) does not have a cancellation. (q.e.d.)

We see easily that y/(U)y/(V) does not have a cancellation for all UV e &. Therefore,
we have rearranged the endomorphism 6 which may have a cancellation into the
endomorphism @ which does not have a cancellation. We call the endomorphism @ a
lifting of 6.

Therefore, by Theorem 1 of Dekking [3] or by Theorem 5.1 of Ito-Kimura [5],
we have the following theorem.
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THEOREM 5.1.  Under Assumption P, there exists a closed curve, which may have
double points,

B=lim &™rop (f{™+0m(21- 1321137 1))

m-—>
as the boundary of X, and its Hausdorff dimension is estimated by
log Ay
log Ag

dimyB<

where Ag(=(60," - -0,_,)"") is a positive eigenvalue of ® and Ay is the maximum positive
eigenvalue of N=(Ny;), where N; is the cardinality of j or j~! in ©(J), i, Jje{A,B, ---,K}.
The equality of the estimate holds in the case that ® has complex eigenvalues.

6. A generalization.

In this section, we leave the setting by modified Jacobi-Perron algorithm and try
to discuss a generalization in an algebraic framework.
Let #={4,|i=1, 2, 3, 4} be the following generators of SL(3, Z):

101 110 110 101
A;={100), 4,=(00 1), A,=[010), 4,=[01 0
010 100 00 1 001

and let us give the following definition.

DEFINITION. A matrix Be SL(3, Z) is said to be special hyperbolic if the following
conditions hold;

(1) B=>0 and there exists m such that B™>0.

(2) The maximum eigenvalue of B is a Pisot number.

(3) There exists a sequence (i, i,, * - *, i), i;e{l, 2, 3, 4} such that

B=Ai1Ai2 A 'Aik .

In this section we assume that the matrix B satisfies the special hyperbolicity. Let
us denote the column and row eigenvectors of B by (1, «, B), (1, y, 0) respectively. Let
us denote

&;'(x):=B x,
¢ '(x):=4;"'x,

NG

n be the projection to Py along (1, a, B),
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%y be the family of sets of tips of stepped surface of Py .

Let us introduce the substitution X;, i=1, 2, 3, 4 on ¥ as follows (see Figure 7):

0, E,) = (0, E3)+ (e, —e3, Ey)
2, 0,E;)) - (0, E))
(0’ E3) - (09 EZ) ’

0,E,) —> (0, E;)+(e,—ey, Ey)
2, [(Oa E;) - (0, Ej)

(03 E3) - (0’ El) s

(0’ El) d (09 E1)+(82—e1, EZ)
23 (O$ EZ) i (Os EZ)

(O’ E3) - (0, E3) ’

(09 El) g (03 E1)+(e3_e1’ E3)
24 (07 E2) g (09 E2)

(0, E3) - (09 E3) ’

Zi(x’ S)=¢l— l(x)+zi(03 S) s

Zi( Z (x3 S;)) : =12A (x5, S2)

Ae A

=20 2

-1 ty *

|
™M

D00 Q.
EREE
QQ o

FIGURE 7
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Let us introduce the substitution associated with X, as follows:

1-12 1-13
0,:=12-3 0,:=12 -1
31, 352,
1->1 1->1
g3:=12—->12 O4:=12->2
353, 3513

and define the substitution associated with X B bY
O'B=0'i10'i;' * 'O'ik .

Under the renormalization by @, we have the following theorem.

THEOREM 6.1. For the special hyperbolic matrix B the limit sets on Py are well
defined.

X:=lim &Znd (Z2(W)),

m—* oo

Xi = lim ¢§n%(2§(8i, E:)) s

m—

Xi:=lim oFnA (X350, E))

m— oo

and satisfies the same statements as in Theorem 4.1 (1)—(5).

Remarking that X; preserves #-coveredness, the proof is obtained by complete
analogy.

Note. The generator s is induced from the following decomposition properties:
Agy=45""4,,
A(g)=A'1‘ 14, .
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