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1. Introduction.

The study of moduli spaces of stable rank 2 vector bundles over smooth complex
algebraic surfaces has contributed to the study of differentiable structures on their
underlying smooth 4-manifolds through Donaldson’s result in [Dol]: the moduli space
of irreducible Hermitian-Einstein connections on a $U(2)$-bundle $P$ coincides with the
moduli space of stable holomorphic structures on $P$ . By Friedman, Morgan, Okonek,
Van de Ven and others, a lot of work on moduli spaces of stable bundles over certain
algebraic surfaces (for example, Dolgachev surfaces) has been done ([Fri], $[FrM1]$ ,
[LO], [OV]), and they showed that their underlying topological 4-manifolds admit
distinct differentiable structures. The bundles which they considered have trivial first
Chem classes and moduli spaces of nonzero dimension. In [Kot] Kotschick studied
the O-dimensional moduli space of stable bundles $d$ with $c_{1}(\ovalbox{\tt\small REJECT})=K_{B}$ and $c_{2}(\ovalbox{\tt\small REJECT})=1$ over
the Barlow surface $B$, and he showed that the Barlow surface $B$ is homeomorphic but
not diffeomorphic to $CP^{2}f8\overline{CP^{2}}$ . Here, $K_{B}$ is the canonical divisor of $B$ .

In this paper, we consider O-dimensional moduli spaces of stable bundles with
nontrivial first Chem classes. Our target surfaces are certain generic regular elliptic
surfaces $S$, that is, $S$ is a compact complex surface with a certain type of holomorphic
map $\pi:S\rightarrow CP^{1}$ called an elliptic fibration and with a section. We show that for a
certain ample divisor $L$ , the moduli space of L-stable rank 2 bundles over $S$ with
$c_{1}=\Sigma-K_{S}$ and $c_{2}=1$ consists of exactly one point. Here $\Sigma$ is a section of $\pi$ . Moreover,
by using a result about the effect of surgery on the simple invariants obtained by Gompf
and Mrowka $[GoM]$ , we show the following, which was announced by Friedman and
Morgan in $[FrM2]$ :

THEOREM. Let $S$ be a minimal elliptic surface with strictly positive geometric genus.
Then the underlying topological 4-manifold of $S$ admits infinitely many differentiable
structures.
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Smooth 4-manifolds obtained from elliptic surfaces with at most two multiple fibers
by twisted constructions give such exotic differentiable structures on $S$. In $[FrM2]$ ,
Friedman and Morgan considered the diffeomorphism types of elliptic surfaces by using
the Donaldson’s polynomial invariant, but we use the simple invariant. The dif-
feomorphism types of elliptic surfaces with $p_{g}=0$ , i.e., Dolgachev surfaoes, are con-
sidered in $[FrM1]$ , [LO] and [OV].

ACKNOWLEDGMENTS. The authors would like to thank Professor M. Ue for help-
ful conversations.

2. Moduli spaces of stable bundles.

We begin with some definitions. Let $X$ be a smooth complex algebraic surface and
let $\gamma$ be a holomorphic rank 2 vector bundle over $X$. We fix an ample divisor $L$ on $X$.
A rank 2 bundle if over $X$ is L-stable (resp. L-semistable) if and only if for all sub-line
bundles $\varphi:\mathscr{F}\rightarrow\gamma$ we have

$c_{1}(F)\cdot L<*c_{1}(\gamma)\cdot L$ (resp. $\leq*c_{1}(\gamma)\cdot L$).

For an ample divisor $L$ on $X$, let $\ovalbox{\tt\small REJECT}_{X}(c_{1}, c_{2};L)$ be the moduli space of L-stable
holomorphic rank 2 vector bundles $\gamma$ with $c_{1}(\gamma)=c_{1}$ and $c_{2}(\gamma)=c_{2}$ over $X$.

We want to study $\ovalbox{\tt\small REJECT}_{S}(c_{1}, c_{2};L)$ of formal dimension $0$ on a regular elliptic surface
$S$. A regular elliptic surface $S$ is a compact complex surface admitting the following
type of onto holomorphic map $\pi:S\rightarrow CP^{1}$ called an elliptic fibration. The map $\pi$ has
only finitely many critical values, and away from these values it is smoothly a bundle
projection whose fibers are nonsingular elliptic curves. These fibers are called the general
fibers of $\pi$, and the preimage of each critical value is called a singular fibers and has
ordinary double points as singularities. In particular, we call $S$ generic if all fibers of $\pi$

are irreducible. We will always assume that $S$ is relatively minimal, i.e., no fiber in $S$

contains an exceptional curve of the first kind. Since an elliptic surface $S$ has $c_{1}(S)^{2}=0$ ,
the‘Noether’s formula implies that its Euler characteristic $\chi(S)$ is divided by 12. For
elliptic surfaces, we may smoothly change $\pi$ so that all singular fibers of $\pi$ are cusp
fibers or multiplefibers. A cusp fibers is a rational curve with one cusp, i.e., a 2-sphere
with one singular point which is locally a cone on a right-handed trefoil knot. In a
general fiber $F$ near a cusp fiber $\pi^{-1}(p)$ , we can take two essential circles $C_{1}$ and $C_{2}$

called vanishing cycles. The cusp fiber is obtained from $F$by collapsing $C_{1}\cup C_{2}$ to a point.
We fix an integer $k$ . Let $\pi:S_{k}\rightarrow CP^{1}$ be the elliptic fibration of a regular elliptic

surface $S_{k}$ with $\chi(S_{k})=12k$ and with a section. Throughout this section, we assume that
$S_{k}$ is generic and $S_{k}$ does not have multiplefibers and $k\geq 1$ . Let $f$ be a general fiber and
let $\Sigma$ be a section of $\pi$ . By the canonical bundle formula for elliptic fibrations [BPV],
$K_{S_{k}}=(k-2)f$ Our guide to study the moduli spaces is a method by Qin [Qi]. He has
studied the moduli spaces of stable rank 2 bundles over $S_{2}$ , that is $K3$ surface with
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generic elliptic fibration. We begin with a criterion ofampleness ofa class ofdivisors.

LEMMA 2.1. (1) $f\cdot f=0,$ $f\cdot\Sigma=1$ and $\Sigma\cdot\Sigma=-k$ .
(2) For an integer $r$ , we put $L_{r}=\Sigma+rf.$ A divisor $L_{r}$ is ample if and only if $r>k$ .
$PR\infty F$ . (1). Since the genus of $\Sigma$ is $0$ , the adjunction formula implies that

$\Sigma\cdot\Sigma=-k$ . (2). If $L_{r}$ is ample, then $0<L_{r}\cdot\Sigma=-k+r$ by the Nakai-Moishezon
criterion for ample divisors. Hence $r>k$ . Suppose that $r>k$ . Then $L_{r}^{2}=(\Sigma+rf)^{2}=$

$-k+2r>0$ . Let $C$ be any irreducible curve on $S$. If $ C=\Sigma$ , then $L,$ $\cdot C=L,$ $\cdot\Sigma=$

$r-k>0$ . Next we consider the case where $C$ is different from $\Sigma$ . Since $C,$ $f$ and $\Sigma$

are irreducible curves and $f^{2}=0$ , we have $\Sigma\cdot C\geq 0$ and $f\cdot C\geq 0$ . If $f\cdot C>0$ , then
$L_{r}\cdot C=\Sigma\cdot C+rf\cdot C>0$ . If $f\cdot C=0$ , then $f^{\prime}\cdot C=0$ for any general fiber $f^{\prime}$ . Hence,
$\pi(C)$ consists of finite points in $CP^{1}$ . Then Supp$(C)$ consists of fibers of $\pi$ . Because of
the irreducibility of $C,$ $C$ is a fiber of $\pi$ and so $\Sigma\cdot C=1$ . Thus $L_{r}\cdot C=1$ . Therefore,
$L_{r}$ is ample by the Nakai-Moishezon criterion. q.e. $d$ .

Now we study the moduli space of stable holomorphic rank 2 bundles $\gamma$ with
$c_{1}(\gamma)=\Sigma-(k-2)f$ and $c_{2}(\gamma)=1$ over a regular elliptic surface. If $Z$ is a O-dimensional
subscheme of an algebraic surface $X$ and $J_{Z}$ is its ideal sheaf, then we have

$c_{1}(f_{Z})=0$ and $c_{2}(J_{Z})=l(Z)$ , the length of $Z$ ,

where by definition $l(Z)=\dim H^{0}(\mathcal{O}_{Z})=\dim H^{0}(\mathcal{O}_{X}/J_{Z})$ . We can describe an $L_{2k+1}$ -stable
bundle as an extension of sheaves of rank 1 as follows.

PROPOSITION 2.2. If a bundle $\gamma$ is $L_{2k+1}$ -stable, then there exists an extension as
$\mathcal{O}$-modules of the form,

$0\rightarrow \mathcal{O}(f)\rightarrow\gamma_{\rightarrow}\mathcal{O}(\Sigma-(k-1)f)\rightarrow 0$ . (2.1)

$PR\infty F$ . Since $c_{1}(\det\gamma)=c_{1}(\gamma)=\Sigma-(k-2)f$ and the irregularity $q(S)=0$ , there
is a canonical isomorphism $\gamma*\cong\gamma\otimes(\det\gamma)^{*}\cong\gamma\otimes \mathcal{O}(-\Sigma+(k-2)f)$ , where $\gamma*$

denotes the dual of $\gamma$ . So, by the Serre duality we have $ h^{2}(\gamma\otimes \mathcal{O}(-f))=h_{0}((\gamma\otimes$

$\mathcal{O}(-f))^{*}\otimes \mathcal{O}((k-2)f))=h^{0}(\gamma\otimes \mathcal{O}(-\Sigma(2k-3)f))$ . On the other hand, from the
Riemann-Roch formula we obtain

$h^{0}(\gamma\otimes \mathcal{O}(-f))-h^{1}(\gamma\otimes \mathcal{O}(-f))+h^{2}(\gamma\otimes \mathcal{O}(-f))$

$=\deg(ch(\gamma\otimes \mathcal{O}(-f))\cdot tod(\mathcal{T}_{S_{k}}))_{2}=1>0$ .
Hence we have either $h^{0}(\gamma\otimes \mathcal{O}(-f))>0$ or $ h^{0}(\gamma\otimes \mathcal{O}(-\Sigma+(2k-3)f))=h^{2}(\gamma\otimes$

$\mathcal{O}(-f))>0$ .
Case (A). $h^{0}(\gamma\otimes \mathcal{O}(-f))>0$ . Then, there is a sub-line bundle

$\varphi:\mathcal{O}(f)\rightarrow\gamma$ .
Possibly $\varphi$ does not have torsion-free cokemel. If we note that det $r=\mathcal{O}(\Sigma-(k-2)f)$
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and use Schwarzenberger’s argument ([Sc], $[FrM1]$), that is, we enlarge the divisor $f$

by an effective divisor $E$ on $S$ so that $\varphi$ has a torsion-free cokemel and $\gamma\otimes \mathcal{O}(E)haf$

a section with a O-dimensional subscheme $Z$ of zeroes, then we see that $\gamma$ is given af
an extension

$0\rightarrow \mathscr{O}(f+E)\gamma\underline{\hat{\varphi}}\rightarrow^{\psi}\mathcal{O}(\Sigma-(k-1)f-E)\otimes f_{Z}\rightarrow 0$ . $(2.2^{\backslash }$,

By the $L_{2k+1}$ -stability of $\gamma$ it satisfies that $(f+E)\cdot L_{2k+1}<(1/2)c_{1}(\gamma)\cdot L_{2k+1}=3/2$

and so $E\cdot L_{2k+1}<1/2$ . Since $E$ is effective, $E\cdot L_{2k+1}=0$, and so $E=0$ . Furthermore.
the exact sequence (2.2) gives

$ch(\eta=ch(\mathcal{O}(f))+ch(\mathcal{O}(\Sigma-(k-1)f)\otimes J_{Z})$

$=ch(\mathscr{O}\omega)+ch(\mathscr{O}(\Sigma-(k-1)f))ch(J_{Z})$ ,

and so
$t(Z)=c_{2}(J_{Z})=c_{2}(\gamma)+f^{2}-f\cdot c_{1}(\gamma)=0$ .

Hence, an $L_{2k+1}$ -stable bundle $\gamma$ is described as
$0\rightarrow \mathscr{O}(J)\rightarrow\gamma_{\rightarrow}\mathscr{O}(\Sigma-(k-1)f)\rightarrow 0$ .

Case (B). $h^{0}(\gamma\otimes \mathscr{O}(-\Sigma+(2k-3)f))>0$ . There is a sub-line bundle $\varphi:\mathscr{O}(\Sigma-$

$(2k-3)f)\rightarrow\sqrt{}^{\prime}$ . In the same manner as Case (A), we have an exact sequence
$0\rightarrow \mathscr{O}(\Sigma-(2k-3)f+E)\rightarrow\gamma\rightarrow \mathscr{O}((k-1)f-E)\otimes f_{Z}\rightarrow 0$ , (2.3)

where $J_{Z}$ is the ideal sheafofa O-dimensional subscheme $Z$. Because ofthe $L_{2k+1}$ -stability
of $\gamma$ it must satisfy that $(\Sigma-(2k-3)f+E)\cdot L_{2k+1}<3/2$ , and so we have

$4-k+E\cdot L_{k+1}+kE\cdot f<3/2$ . (2.4)

Since $L_{k+1}$ is ample, we have $E\cdot L_{k+1}\geq 0$, and so $E\cdot f<1-5/(2k)$ . This implies $E\cdot f\leq 0$ .
Since $E$ is effective and $f\cdot f=0,$ $Supp(E)$ consists of fibers of $\pi$ . So by the irreducibility
of fibers we can write $E=mf$ for some integer $m\geq 0$ . Then the inequality (2.4) gives

$4-k+m<3/2$ . (2.5)

On the other hand, the length $t(Z)$ of $Z$ in the exact sequenoe (2.3) is given by

$t(Z)=c_{2}(\gamma)+(\Sigma-(2k-3)f+E)^{2}-(\Sigma-(2k-3)f+E)\cdot(\Sigma-(k-2)f)$

$=2-k+m$ .
Thus, from the inequality (2.5) we obtain $t(Z)=2-k+m<-1/2<0$, inducing a
contradiction. Therefore, Case (B) dose not occur for any integer $k\geq 1$ . This completes
the proof. q.e. $d$ .

PROPOSmON 2.3. There exist locally free extensions of the form
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$0\rightarrow \mathcal{O}(f)\rightarrow r\rightarrow \mathcal{O}(\Sigma-(k-1)f)\rightarrow 0$ , (2.1)

and the set ofall isomorphism classes ofsuch extensions consists oftwopoints essentially.
$PR\infty F$ . The set of all extensions of $\mathcal{O}(\Sigma-(k-1)f)$ by $\mathcal{O}(f)$ is classified by

$Ext^{1}(\mathcal{O}(\Sigma-(k-1)f), \mathcal{O}(f))$ [$GrH$ , p. 725]. From the Serre duality, we obtain a canonical
isomorphism

$Ext^{1}(\mathcal{O}(\Sigma-(k-1)f), \mathcal{O}(f))\cong H^{1}(\mathcal{O}(-\Sigma+kf))$ .
For an ample divisor $L_{s},$ $(-\Sigma+kf)\cdot L_{s}=2k-s$ . If $s>2k$, then $(-\Sigma+kf)\cdot L_{s}<0$ and
$-\Sigma+kf$ is not effective. Hence $H^{0}(\mathcal{O}(-\Sigma+kf))=0$ . Again, from the Serre duality we
obtain an isomorphism $H^{2}(\mathcal{O}(-\Sigma+kf))\cong H^{0}(\mathcal{O}(\Sigma-2f))$ . Since $(\Sigma-2f)\cdot L_{k+1}=-1<0$

for the ample divisor $L_{k+1},$ $H^{0}(\mathcal{O}(\Sigma-2f))=0$ . From the Riemann-Roch formula, we
obtain

$-h^{1}(\mathcal{O}(-\Sigma+kf))=h^{0}(\mathcal{O}(-\Sigma+kf))-h^{1}(\mathcal{O}(-\Sigma+kf))+h^{2}(\mathcal{O}(-\Sigma+kf))$

$=\chi(\mathcal{O}(-\Sigma+kf))=-1$ .
Hence $h^{1}(\mathscr{O}(-\Sigma+kf))=1$ . Therefore, $Ext^{1}(\mathcal{O}(\Sigma-(k-1)f), \mathcal{O}(f))\cong C$ and a nonzero
class of $Ext^{1}(\mathscr{O}(\Sigma-(k-1)f), \mathcal{O}(f))$ defines a locally free extension. Furthermore, the
corresponding $exte\iota tsion$ class is unique mod $C^{*}$ . q.e.d.

PROPOSITION 2.4. Let $\gamma$ be a rank 2 vector bundle over $S$ given by an exact
sequence of type (2.1). Then one of the followings holds:

(1) $\gamma$ is $L_{2k+1}$ -stable, $or$

(2) We have a canonical isomorphism $\gamma\cong \mathcal{O}(f)\oplus \mathcal{O}(\Sigma-(k-1)f)$ and $\gamma^{\sim}is$ not
$L_{2k+1}$ -semistable.

$PR\infty F$ . Note that the bundle $\gamma$ corresponds to either a nonzero class of
$Ext^{1}(\mathscr{O}(\Sigma-(k-1)f), \mathcal{O}(f))$ or the zero class. We consider the case where $\gamma$ corresponds
to a nonzero class, that is, the exact sequence giving $\gamma$

$0\rightarrow \mathcal{O}\omega\rightarrow^{\varphi}\gamma\rightarrow^{\psi}\mathcal{O}(\Sigma-(k-1)f)\rightarrow 0$ ,

does not split. Suppose that there is a destabilizing sub-line bundle $\mathscr{F}\rightarrow\nu^{\prime}$ with
$c_{1}(F)\cdot L_{2k+1}\geq(1/2)c_{1}(\gamma)\cdot L_{2k+1}$ . Ifwe tensor the exact sequence (2.1) by the dual sheaf
$\mathscr{F}^{*}$ , then we obtain the exact sequence

$0\rightarrow \mathcal{O}(f)\otimes \mathscr{F}^{*}\rightarrow\gamma\otimes \mathscr{F}^{*}\rightarrow \mathcal{O}(\Sigma-(k-1)f)\otimes \mathscr{F}^{*}\rightarrow 0$ ,

and this yields the exact sequence
$ 0\rightarrow H^{0}(\mathcal{O}(f)\otimes \mathscr{F}^{*})\rightarrow H^{0}(\gamma\otimes \mathscr{F}^{*})\rightarrow H^{0}(\mathcal{O}(\Sigma-(k-1)f)\otimes \mathscr{F}^{*})\rightarrow\cdots$

Since $H^{0}(\gamma\otimes \mathscr{F}^{*})\neq 0$ , we have either (a) $H^{0}(\mathcal{O}(f)\otimes \mathscr{F}^{*})\neq 0$ or (b) $H^{0}(\mathscr{O}(\Sigma-$
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$(k-1)f)\otimes \mathscr{F}^{*})\neq 0$ . We consider the case (a). Then the line bundle $\mathcal{O}\omega\otimes \mathscr{F}^{*}$ is given
by an effective divisor and so $(f-c_{1}(F))\cdot L_{2k+q}\geq 0$ . Hence $1=f\cdot L_{2k+1}\geq c_{1}(F)$ .
$L_{2k+1}\geq(1/2)c_{1}(\gamma)\cdot L_{2k+1}=3/2$ . It is impossible. Next we consider the case (b). There
is a nonzero section $\sigma$ of $\mathcal{O}(\Sigma-(k-1)f)\otimes \mathscr{F}^{*}$ . If the zero set of $\sigma,$

$\sigma^{-1}(0)$ , is empty,
then the section $\sigma$ gives an isomorphism $\sigma_{*}:$ $\mathcal{O}(\Sigma-(k-1)f)\rightarrow \mathscr{F}$ . Composing $\sigma_{*}$ with
the destabilizing map, we have a nonzero map

$\tau:\mathcal{O}(\Sigma-(k-1)f)\rightarrow\gamma$ .
Since $H^{0}(\ovalbox{\tt\small REJECT}_{\theta\ovalbox{\tt\small REJECT} t}(\mathcal{O}(\Sigma-(k-1)f), \mathscr{O}(\Sigma-(k-1)f)))\cong H^{0}(\mathcal{O})\cong C$, the composite $\psi\circ\tau$ is $\alpha ia$

for some $\alpha\in C$. Then $\alpha$ is not $0$ . In fact, if $\alpha=0$ , i.e., $\psi\circ\tau$ were the zero map, there
would be $\rho.:\mathcal{O}(\Sigma-(k-1)f)\rightarrow \mathcal{O}(f)$ so that $\varphi\circ\rho=\tau$ . However, since $(kf-\Sigma)\cdot L_{2k+1}=$

$-1<0$ , we have $H^{0}(\ovalbox{\tt\small REJECT}_{\theta\ovalbox{\tt\small REJECT} t}(\mathcal{O}(\Sigma-(k-1)f), \mathcal{O}(f)))\cong H^{O}(\mathscr{O}(kf-\Sigma))=0$ and there is not
such a map $\rho$ . Thus we may assume that $\psi\circ\tau$ is the identity on $\mathcal{O}(\Sigma-(k-1)f)$ by
normalizing it suitably, and so the exact sequence

$0\rightarrow \mathscr{O}(f)\rightarrow^{\varphi}\gamma\rightarrow^{\psi}\mathcal{O}(\Sigma-(k-1)f)\rightarrow 0$

must split, inducing a contradiction. If $\sigma^{-1}(0)$ is not empty, then the line bundle
$\mathcal{O}(\Sigma-(k-1)f)\otimes \mathscr{F}^{*}$ is given by a nonzero effective divisor, and so we have
$\{(\Sigma-(k-1)f)-c_{1}(F)\}\cdot L_{2k+1}>0$ . Thus $3/2\leq c_{1}(F)\cdot L_{2k+1}<2$ . But there is no integer
$c_{1}(F)\cdot L_{2k+1}$ satisfying these inequalities, inducing a contradiction. Therefore, there is
not a destabilizing sub-line bundle and $\gamma$ is $L_{2k+1}$ -stable.

We consider the case where $\gamma$ corresponds to the zero class. Then $\gamma$ is isomorphic
to $\mathcal{O}(f)\oplus \mathcal{O}(\Sigma-(k-1)f)$ , and so we have the inclusion $\iota;\mathcal{O}(\Sigma-(k-1)f)\rightarrow\gamma$ . Since
$(\Sigma-(k-1)f)\cdot L_{2k+1}=2>3/2,$ $\gamma$ is not $L_{2k+1}$ -semistable. q.e. $d$ .

REMARK. Let $\mathscr{F}\rightarrow \mathcal{U}$ be a sub-line bundle and $L$ an ample divisor with odd
$c_{1}(U)\cdot L$ . If $c_{1}(F)\cdot L\leq(1/2)c_{1}(U)\cdot L$, then it must satisfy that $c_{1}(F)\cdot L<(1/2)c_{1}(U)\cdot L$ .
Hence, there is no $L_{2k+1}$ -semistable but not $L_{2k+1}$ -stable rank 2 bundle $U$ with
$c_{1}(U)=\Sigma-(k-2)f$ .

The following is a consequence of Propositions 2.2, 2.3 and 2.4.
THEOREM 2.5. Let $\mathscr{M}_{S_{k}}(\Sigma-K_{S_{k}}, 1;L_{2k+1})$ be the moduli space on a regular elliptic

surface which has no multiplefiber and the Euler characteristic $12k$ . Then for any integer
$k\geq 1,$ $y_{S_{1c}}(\Sigma-K_{S_{k}}, 1;L_{2k+1})$ consists of exactly one point.

We now show the smoothness of the one point for $k=1,2$ , though we do not need
it here.

DEFINITION 2.6. When $E$ is a holomorphic vector bundle over an algebraic surface
$X$, we let $d_{it}d\ovalbox{\tt\small REJECT}$ be the sheaf of endomorphisms of $E:\ell_{tt}d\ovalbox{\tt\small REJECT}=f\otimes\ovalbox{\tt\small REJECT}^{*}$ . Let $ade$ be the
sheaf defined by the exact sequence
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$Tr$

$0\rightarrow ad\mathscr{E}\rightarrow \mathscr{E}nd\mathscr{E}\rightarrow \mathcal{O}_{X}-0$ ,

where $Tr$ is the naturally defined trace map. We call a bundle $E$ good if $H^{2}(\dot{a}di)=0$ .
It is known that if a point $e$ in a moduli space $\mathscr{M}$ is represented by a bundle $E$

and $E$ is good, then $\mathscr{M}$ is smooth and reduced at the point $e$ .
PROPOSITION 2.7. Let $k=1$ or 2. Then, the onepoint in $\mathscr{M}_{L_{2lc+1}}(\Sigma-K_{S}, 1)$ is smooth.
$PR\infty F$ . First we consider the case of $k=1$ . Then, we have $K_{S}=-f$ and

$\Sigma-K_{S}-f=\Sigma$ , and so the $L_{3}$-stable bundle $V$ is given by an exact sequence
$0\rightarrow \mathcal{O}_{S}(f)\rightarrow\gamma_{\rightarrow \mathcal{O}_{S}(\Sigma)\rightarrow 0}$ .

Tensoring this sequence by $\mathscr{V}\otimes \mathcal{O}_{S}(-2f-\Sigma)$ , we obtain the exact sequence

$0\rightarrow\gamma\otimes \mathcal{O}_{S}(-f-\Sigma)\rightarrow\gamma^{-}\otimes\gamma\otimes \mathcal{O}_{S}(-2f-\Sigma)\rightarrow\gamma\otimes \mathcal{O}_{S}(-2f)\rightarrow 0$ .
We consider the cohomology exact sequence given by this sequence,

$0\rightarrow H^{0}(\gamma\otimes \mathcal{O}_{S}(-f-\Sigma))\rightarrow H^{0}(\gamma\otimes\gamma\otimes \mathcal{O}_{S}(-2f-\Sigma))$

$\rightarrow H^{O}(\gamma\otimes \mathcal{O}_{S}(-2f))\rightarrow H^{1}(\gamma\otimes \mathcal{O}_{S}(-f-\Sigma))\rightarrow\cdots$

Suppose that there is a nonzero section $\mathcal{O}_{S}(f+\Sigma)\rightarrow\gamma$ . Then we have that
$(f+\Sigma)\cdot L_{3}=3>3/2=(1/2)c_{1}(V)\cdot L_{3}$ , contradicting the $L_{3}$ -stability of $V$. Thus,
$H^{0}(\gamma\otimes \mathcal{O}_{S}(-f-\Sigma))=0$ . In the same manner, the $L_{3}$-stability of $V$ gives
$H^{0}(\gamma\otimes \mathcal{O}_{S}(-2f))=0$ . Hence, $H^{2}(dnd\gamma)\cong H^{O}(\gamma\otimes\gamma\otimes \mathcal{O}_{S}(-2f-\Sigma))=0$ , where the
first isomorphism comes from the Serre duality. Noting that the irregularity $q$ and the
geometric genus $p_{g}$ are $0$ , the exact sequence defining $ ad\gamma$ yields the isomorphism
$H^{2}(ad\gamma)\cong H^{2}(\ovalbox{\tt\small REJECT} nd\gamma)$ . Therefore, $V$ is good.

Next we consider the case of $k=2$ , i.e. a $K3$-surface. In general, for any vector
bundle $V$ over a $K3$-surface $S$, we have $H^{2}(ad\gamma)\cong H^{0}(ad\gamma)$ from the Serre duality,
because $ ad\gamma$ is self-dual and $K_{S}=0$ . It is known [OSS, p. 172] that $H^{0}(ad\gamma)=0$ if
$V$ is stable with respect to an ample divisor. Therefore if the moduli space $\mathscr{M}$ on a
$K3$-surface with respect to an ample divisor is not empty, then every point in $\mathscr{M}$ is
smooth. q.e. $d$ .

3. An application to the differentiable topology of eUiptic surfaces.

We first recall a simple invariant $\gamma$ defined from the moduli spaces of anti-self-dual
(ASD) connections on certain principal bundles by Donaldson [Do2], [$DoK$, Chapter
9]. Let $X$ be an oriented closed smooth 4-manifold with the following properties:

Al. $\pi_{1}(X)$ is cyclic of odd order.
A2. $b_{+}^{2}(X)\geq 3$ and $b_{+}^{2}(X)$ is odd,
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where $b_{+}^{2}$ denotes the dimension of the maximal positive subspace for the form on $H^{2}$ .
Recall that there is a well defined lift of mod 2 cup square called the Pontrjagin square
$H^{2}(X;Z_{2})\rightarrow H^{4}(X;Z_{4})$ . Composing this map with evaluation on the fundamental class
defines a quadratic map $\mathfrak{p}:H^{2}(X;Z_{2})\rightarrow Z_{4}$ .

Let $E\rightarrow X$ be a principal $SO(3)$-bundle with $ w_{2}(E)=\eta$ and $p_{1}(E)=l$. These
characteristic classes satisfy $w_{2}(E)^{2}\equiv p_{1}(E)(mod 4)$ . A theorem of Dold and Whitney
[OW] tells us that $SO(3)$-bundles over a 4-manifold are classified completely by their
second Stiefel-Whitney classes $w_{2}$ and first Pontrjagin classes $p_{1}$ . For a Riemannian
metric $g$ on $X$, let $\ovalbox{\tt\small REJECT}_{X}(\eta, l;g)$ denote the moduli space of ASD connections on $E$. Then
the Atiyah-Singer index theorem [AHS] gives the formal dimension of $\mathscr{M}_{X}(\eta, l;g)$ ,

$\dim \mathscr{M}_{X}(\eta, l;g)=-2l-3(1+b_{+}^{2}(X))$ .
Throughout this section we choose $l$ so that $\dim \mathscr{M}_{X}(\eta, l;g)=0$ . Now we define $q_{X}$ to
be the set of $\eta\in H^{2}(X;Z_{2})$ satisfying the following conditions:

(1) $\mathfrak{p}(\eta)\equiv l(mod 4)$ , and
(2) $\eta\neq 0$ .

Let $\eta\in\wp_{X}$ . Then for a generic metric $g$ on $X$ we have the following properties $([DoK]$ ,
$[FrU])$ :

(1) The moduli space $\mathscr{M}_{X}(\eta, l;g)$ contains only irreducible connections.
(2) $\mathscr{M}_{X}(\eta, l;g)$ is a O-dimensional smooth manifold and a finite set of points.
(3) Once an orientation of $H_{+}^{2}(X)$ and an integral lift $c$ of $\eta$ are chosen, they

induce an orientation on $\ovalbox{\tt\small REJECT}_{X}(\eta, l;g)$ .
Thus by counting the signed number of points in moduli spaces, we define a function
$\gamma_{X}$ : $\mathscr{C}_{X}\rightarrow Z$.

THEOREM I (Donaldson [Do2], $[DoK]$). Thisfunction $\gamma_{X}$ is independent $ofa$ choice
of generic metrics, that is, $\gamma_{X}$ satisfies the following: If $\phi:X\rightarrow X^{\prime}$ is an orientation
preserving diffeomorphism, then

$\gamma_{X}(\phi^{*}(\eta))=\epsilon(\phi)\gamma_{X^{\prime}}(\eta)$ for any $\eta\in\wp_{X^{\prime}}$ .
Here $\epsilon(\phi)$ is $-1$ if either $\phi^{*}$ is an orientation reversing map from $H_{+}^{2}(X^{\prime})$ onto

$H_{+}^{2}(X)$ or $((c-\phi^{*}(c^{\prime}))/2)^{2}\equiv 1(mod 2)$ and is 1 otherwise. (Here $c^{\prime}$ denotes the integral
lift $of\eta$ and $c$ is the integral lift of $\phi^{*}(\eta)$ used in orienting their respective moduli spaces.)

We assume that $X$ is a simply-connected complex algebraic surface and $L$ an ample
divisor on $X$. We take the Hodge metric $g_{L}$ defined by $L$ . Let $E\rightarrow X$ be an $SO(3)$-bundle
with $w_{2}(E)$ nonzero. Then any integral lift $c$ of $w_{2}(E)$ defines a lifting of $E$ to a
$U(2)$-bundle $P$ with $c_{1}(P)$ and $c_{2}(P)$ related by

$c_{1}(P)=c$ , and

$c_{1}(P)^{2}-4c_{2}(P)=p_{1}(E)$ .
Donaldson showed in [Dol] that the moduli space of irreducible Hermitian-Einstein
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(HE) connections on $P$ coincides with the moduli space of stable holomorphic rank 2
bundles $\gamma$ with $c_{1}(\gamma)=c_{1}(P)$ and $c_{2}(\gamma)=c_{2}(P)$ . Since $X$ is simply-connected, any ASD
connection on $E$ can be lifted uniquely to an HE connection on $E$ [Kot]. Thus, ASD
connections on $E$ and stable holomorphic structures on $P$ are related as follows:

THEOREM II (Donaldson). There exists a natural one-to-one correspondence
between the moduli space $\ovalbox{\tt\small REJECT}_{X}^{*}(w_{2}(E),p_{1}(E);g_{L})$ of irreducible ASD connections on $E$ and
the moduli space $\ovalbox{\tt\small REJECT}_{X}(c_{1}(P), c_{2}(P);L)$ of L-stable rank 2 bundles over X. Furthermore,
each reducible ASD connection on $E$ corresponds to an L-semistable but not L-stable rank
2 bundle $U$ over $X$ with $c_{1}(U)=c_{1}(P)$ and $c_{2}(U)=c_{2}(P)$ .

Hence, if a metric $g_{L}$ is generic, then in order to evaluate $\gamma_{X}(w_{2}(E))$ it is sufficient
to determine $\ovalbox{\tt\small REJECT}_{X}(c_{1}(P), c_{2}(P);g_{L})$ . Sinoe moduli spaces of stable bundles are defined as
complex spaces, they have natural orientations. This fact implies that the signs at
different points agree and there is no cancellation. Therefore if $g_{L}$ is generic, then

$|\gamma_{X}(w_{2}(E))|=\#\ovalbox{\tt\small REJECT}_{X}(c_{1}(P), c_{2}(P);L)$ ,

where $\# A$ denotes the cardinal number of a set $A$ . If $g_{L}$ is not generic, then the moduli
space $\ovalbox{\tt\small REJECT}_{X}(c_{1}(P), c_{2}(P);L)$ is not reduced. However, if $\ovalbox{\tt\small REJECT}_{X}(c_{1}(P), c_{2}(P);L)$ consists of
finite points, then

$|\gamma_{X}(w_{2}(E))|\geq\#y_{X}(c_{1}(P), c_{2}(P);L)$ .
We can translate Theorem 2.5 in terms of ASD connections as follows:

COROLLARY 3.1. Let $PD_{2}[\Sigma]$ denote the Poincar\’e dual of $[\Sigma]\in H_{2}(S_{k};Z)$ . Then,
we have

$\gamma_{S_{k}}(PD_{2}[\Sigma])\neq 0$ $\iota fk$ is even ,
$\gamma_{S_{1c}}(PD_{2}([\Sigma]+[f]))\neq 0$ if $k$ is odd.

REMARK. The first author proved that the value of $\gamma_{S_{k}}(PD_{2}[\Sigma])$ ($k$ is even) and
$\gamma_{S_{k}}(PD_{2}([\Sigma]+[f]))$ ($k$ is odd) are both 1 differential-geometrically [Ka].

Now we discuss relevant aspects of the topology of elliptic surfaces. We deform
the elliptic fibration $S_{k}$ so that its singular fibers consists of exactly $6k$ cusp fibers. Then
the section $\Sigma$ deform to an embedded $CP^{1}$ , which we also denote by $\Sigma$ . By $S_{k}(p, q)$ we
denote the resultant 4-manifold obtained from an elliptic surface $S_{k}$ by logarithmic
transforms of multiplicities $p$ and $q$ . Note that $S_{k}(1,1)$ is fiber preserving diffeomorphic
to the original $S_{k}$ . Since $S_{k}$ has a section diffeomorphic to 2-sphere, the fundamental
group $\pi_{1}(S_{k}(p, q))$ is isomorphic to the cyclic group of order $gcd(p, q)$ .

From now on, we assume $k\geq 2$ . Then, up to fiber preserving diffeomorphism we
can reinterpret this surface as a fiber sum [Mo] as follows: Given $S_{1}$ and $S_{k-1}$ , identify
a tubular neighborhood of a general fiber in each with $T^{2}\times D^{2}$ so that the fibrations
correspond to projection onto $D^{2}$ . Remove the interiors of tubular neighborhoods from
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$S_{1}$ and $S_{k-1}$ , and glue the two remaining manifolds together by the map $\varphi=id_{T^{2}}\times\rho$

on the boundary 3-torus $T^{2}\times S^{1}$ . Here, $\rho:S^{1}\rightarrow S^{1}$ is a complex conjugation, and so
we can give the resultant 4-manifold the orientation inherited from ones of $S_{1}$ and $S_{k-1}$ .
Then the resultant manifold is independent of our choices of identification of fibers
with $T^{2}$ , because of the monodromy associated to a cusp fiber in $S_{1}$ or $S_{k-1}$ . The
fibration fit together into a fibration $\pi:S_{k}\rightarrow CP^{1}$ . In this section, however, we take a
different construction of $S_{k}$ as follows: As before, we start with $S_{1}$ and $S_{k-1}$ and identify
a tubular neighborhood of a general fiber in each with $T^{2}\times D^{2}$ . Then we choose our
general fiber to be near a cusp fiber in each and identify it with $T^{2}=S^{1}\times S^{1}$ so thal
the vanishing cycles correspond to $S^{1}\times\{1\}$ and $\{1\}\times S^{1}$ . We remove each $T^{2}\times intD^{2}$

and we let $L_{1}$ and $L_{k-1}$ be the remaining manifolds. We write $\partial L_{1}$ as $S^{1}\times S^{1}\times S^{1}$ and
we let $\sigma$ be a cyclic permutation of the three factors. For the fiber preserving map $\varphi$ ,
we compose $\varphi$ with $\sigma$ and glue the boundaries of $L_{1}$ and $L_{k-1}$ by the composition $\varphi\circ\sigma$ .
We denote the resultant manifold by $S_{k}^{*}$ . Then $S_{k}^{*}$ is diffeomorphic to $S_{k}$ . In fact, a
tubular neighborhood of a cusp fiber $F$ is obtained from a tubular neighborhood of a
nearby general fiber by ambiently adding two 2-handles along two vanishing cycles with
framing $-1$ . Let $Q\subset L_{1}$ be a collar of $\partial L_{1}$ . Let $h_{1}$ and $h_{2}$ be 2-handles in $L_{1}$ attached
to the inner boundary of $Q$ along the two vanishing cycles with framing $-1$ . There
is also a (-l)-framing 2-handle $h_{3}$ attached to $Q$ along $\{1\}\times\{1\}\times S^{1}$ , which is deter-
mined by the section $\Sigma_{1}$ , restricted to $L_{1}$ . Set $Q^{\prime}=Q\cup h_{1}uh_{2}\cup h_{3}$ . Then the given diffeo-
morphism $\sigma$ of $\partial L_{1}$ extends over $Q^{\prime}$ by cyclically permuting the handles. The inner
boundary of $Q^{\prime}$ is a Poincar\’e homology sphere, and so any self-diffeomorphism of
this boundary is isotopic to the identity [BO]. Thus we can extend the given diffeo-
morphism of $Q^{\prime}$ over $L_{1}$ and we also denote it by $\sigma$ . Now we have a diffeomorphism $\Phi_{k}=$

$id_{L_{k-1}}u\sigma^{-1}$ : $S_{k}\rightarrow S_{k}^{*}$ .
We take two general fibers $F_{1}$ and $F_{2}$ in $L_{1}$ of $S_{k}^{*}$ so that

$\Phi_{k}(\Sigma)\cap F_{1}=\emptyset$ and $\Phi_{k}(\Sigma)\cap F_{2}=\emptyset$ .
Logarithmic transforms of multiplicities $p$ and $q$ on a pair of $F_{1}$ and $F_{2}$ yield a new
manifold $S_{k}^{*}(p, q)$ and multiple fibers $f_{p},$ $f_{q}$ in $S_{k}^{*}(p, q)$ of multiplicities $p$ and $q$ . These
multiple fibers satisfy

$\Phi_{k}(\Sigma)\cap f_{p}=\emptyset$ and $\Phi_{k}(\Sigma)\cap f_{q}=\emptyset$ . (3.1)

Moreover, we take a general fiber $f$ in $L_{k-1}$ of $S_{k}^{*}$ . Then

$\Phi_{k}(\Sigma uf)\cap f_{p}=\emptyset$ and $\Phi_{k}(\Sigma uf)\cap f_{q}=\emptyset$ . (3.2)

Note that $S_{k}^{*}(1,1)$ is diffeomorphic to $S_{k}$ and $S_{k}^{*}(p, q)$ is homeomorphic to an elliptic
surface $S_{k}(p, q)$ .

REMARK. The twisted manifold $S_{2}^{*}(p, q)$ is diffeomorphic to $S_{2}(p, q)$ because a
permutation $\sigma$ on $S^{1}\times S^{1}\times S^{1}$ extends over another piece $L_{1}$ without multiple fibers.
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Ue shows in [Ue] that if $k$ is odd, then $S_{k}^{*}(p, q)$ is not always diffeomorphic to $S_{k}(p, q)$ .

Now we use the results obtained by Gompf and Mrowka $[GoM]$ . They defined
the simple invariant over 4-manifolds with cylindrical end $ T^{3}\times[0, \infty$ ) and obtained a
gluing formula with the solid torus $T^{2}\times D^{2}$ .

PROPOSITION 3.2. Put $Y^{*}=S_{k}^{*}(p, q)-intN(f_{p})$ , where $N(f_{p})$ is a tubular neigh-
borhood of $f_{p}$ . $Letj^{*}:$ $H^{2}(S_{k}^{*}(p, q);Z_{2})\rightarrow H^{2}(Y^{*};Z_{2})$ be a homomorphism inducedfrom
the inclusion $j:Y^{*}\rightarrow S_{k}^{*}(p, q)$ . Let $\eta$ be an element of $\mathscr{C}_{S_{k}\langle p,q)}*$ .

(a) If $p$ is odd and $\langle\eta, f_{p}\rangle\neq 0$ , then $|\gamma*(\eta)|=|\gamma_{S_{k}\langle 1,q)}*(\eta)|$ .
(b) If $\langle\eta, f_{p}\rangle=0andj^{*}(\eta)\neq 0$ , then $|\gamma_{S_{k}^{l}\langle p,q)}(\eta)|=p|\gamma*(\eta)|$ .

We can prove the above theorem in the same manner as [$GoM$ , Theorem IV. 0.6].
We have only to notice that Proposition IV. 1.3 in $[GoM]$ also remain true for $k\geq 3$ .

Now we can find infinitely differentiable structures of $S_{k}$ in $S_{k}^{*}(p, q)$ , since for odd
pair $(p, q)$ with $gcd(p, q)=1$ , all 4-manifolds $S_{k}^{*}(p, q)$ are homotopy equivalent to each
other, and the set $\mathscr{C}_{S_{k}\langle p,q)}*$ is finite.

In the following, we shall distinguish the diffeomorphism type $S_{k}^{*}(p, q)$ more
precisely. Note that for $S_{k}^{*}(p, q)$ the set $\mathscr{C}_{S*(p,q)}$ is dePned by

$\mathscr{C}_{S_{k}^{*}\langle p,q)}=\{\eta\in H^{2}(S_{k}^{*}(p, q);Z_{2})|\eta\neq 0, p(\eta)\equiv-3k(mod 4)\}$ .
If $q$ is odd, then $PD_{2}f_{p}$ is a nonzero element in $H^{2}(S_{k}^{*}(p, q);Z_{2})$ . In addition, if $k\equiv 0$

$(mod 4)$ , then $0=PD_{2}f_{p}\cdot PDJ_{p}\equiv-3k$ $(mod 4)$ and so $PD_{2}f_{p}\in \mathscr{C}_{S_{k}^{*}\langle p,q)}$ . Then
$\langle PD_{2}f_{p}, f_{p}\rangle=0$ but $j^{*}(PDJ_{p})=0$ . Hence $j^{*}(PD_{2}f_{p})\not\in \mathscr{C}_{Y^{*}}$ and we can not estimate
$\gamma_{S_{k}^{*}(p,q)}(PD_{2}f_{p})$ by a value of $\gamma_{S_{k}^{*}\langle 1,q)}$ from Proposition 3.2 (c). However we have the
following, which is easily seen from the exact sequence

$\rightarrow H^{2}(S_{k}^{*}(p, q),$ $Y^{*};Z_{2}$) $\rightarrow H^{2}(S_{k}^{*}(p, q);Z_{2})\rightarrow^{j^{*}}H^{2}(Y^{*};Z_{2})\rightarrow\cdots$

LEMMA 3.3.

Kerj* $=\left\{\begin{array}{ll}Z_{2}, whichisgeneratedbyPD_{2}f_{p}, & \iota f qis odd\\0, & if q is even.\end{array}\right.$

If $k\not\equiv O(mod 4)$ , then $PD_{2}f_{p}\not\in \mathscr{C}_{S_{k}\langle p,q)}*$ and so when $k\not\equiv O(mod 4)$ , it follows from
Proposition 3.2 (c) that if $\eta\in \mathscr{C}_{S_{k}\langle p,q)}*$ satisfies $\langle\eta, f_{p}\rangle=0$ then $|\gamma_{S_{k}^{*}\langle p,q)}(\eta)|=p|\gamma_{S_{k}^{k}\langle 1,q)}(\eta^{\prime})|$

for some $\eta\in \mathscr{C}_{S_{k}\langle 1,q)}*$ . From Proposition 3.2 and Lemma 3.3 we have the following.

THEOREM 3.4. Let $k$ be an integer with $k\not\equiv O(mod 4)$ and $k\geq 2$ . Suppose that $p,$ $q$

and $p^{\prime},$ $q^{\prime}$ are odd. If $S_{k}^{*}(p, q)$ is $d\iota ffeomorphic$ to $S_{k}^{*}(p^{\prime}, q^{\prime})$ , then there exist positive
integers $n,$

$n^{\prime}\geq 1$ and nonnegative integers $a,$
$a^{\prime},$ $b$ and $b^{\prime}$ such that

$(pq)^{n}=(p^{\prime}q^{\prime})^{n^{\prime}}$
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In particular, if two products $pq$ andp’q’ do not have a common primefactor, then $S_{k}^{*}(p, q)$

is not $d\iota ffeomorphic$ to $S_{k}^{*}(p^{\prime}, q^{\prime})$ .
$PR\infty F$ . Recall that the fundamental group of $S_{k}^{*}(p, q)$ is isomorphic to the cyclic

group of order $gcd(p, q)$ . Let $\mathcal{D}_{S_{k}\langle p,q)}$ be the set of $\eta\in\wp_{S_{k}\{p.q)}$ so that $\gamma_{S_{k}(p.q)}(\eta)\neq 0$ . Let
$n(p, q)$ denote the number of $\eta\in \mathcal{D}_{S_{k}(p.q)}$ so that $\langle\eta, f_{p}\rangle=0$ and $\langle\eta, f_{q}\rangle=0$ . By Theorem
I, $\mathcal{D}_{S_{k}^{*}(p,q)}$ is a diffeomorphism invariant set. Moreover it is non-empty and $n(p, q)$ is
non-zero, since, by Proposition 3.2,

$|\gamma*(PD_{2}(\Phi_{k}.([\Sigma])))|=pq|\gamma_{S_{k}}(PD_{2}[\Sigma])|\neq 0$ if $k$ is even,
$|\gamma_{S_{k}(p.q)}(PD_{2}(\Phi_{k}.([\Sigma]+U])))|=pq|\gamma_{S_{k}}(PD_{2}([\Sigma]+[f]))|\neq 0$ if $k$ is odd.

We put $\mathcal{D}_{S_{k}(p,q)}=\{\eta_{1}, \cdots, \eta_{l(p.q)}\}$ and $\mathscr{D}_{S_{k}(p^{\prime}.q’)}=\{\eta_{1}^{\prime}, \cdots, \eta_{l\langle p^{\prime}.q^{\prime})}^{\prime}\}$ for $S_{k}^{*}(p, q)$ and
$S_{k}^{*}(p^{\prime}, q^{\prime})$ respectively. Then from Proposition 3.2 we have

$|\gamma_{S_{k}\langle p,q)}(\eta_{1})\cdots\gamma_{S_{k}\langle p,q)}(\eta_{l\langle p,q)})|$

$=(pq)^{n(p,q)}|\gamma_{S_{k}(1,1)}(\eta_{1})\cdots\gamma_{S_{k}\langle 1,1)}(\eta_{l\langle p.q)})|$ ,

$|\gamma_{S_{k}^{*}(p’.q’)}(\eta_{1}^{\prime})\cdots\gamma_{S_{lc}\langle p’.q’)}(\eta_{l(p^{\prime},q’)}^{\prime})|$

$=(p^{\prime}q^{\prime})^{n\langle p^{\prime}.q^{\prime})}|\gamma_{S_{k}^{r}(1.1)}(\eta_{1}^{\prime})\cdots\gamma_{S_{k}^{r}\langle 1,1)}(\eta_{l\{p^{\prime},q’)}^{\prime})|$ .
Assume that there is a diffeomorphism $\phi:S_{k}^{*}(p, q)\rightarrow S_{k}^{*}(p^{\prime}, q^{\prime})$ . (Since the signature of
$S_{k}^{*}(p, q)is-8k$ and nonzero, $\phi$ is orientation-preserving.) Then we have $l(p, q)=l(p^{\prime}, q^{\prime})$

and we may write $\phi^{*}(\eta_{i}^{\prime})=\eta_{\sigma\langle i)}(1\leq i\leq l(p, q))$ . Here $\sigma$ is a permutation of $l(p, q)$ elements.
Then from Theorem I we have

$|\gamma_{S_{lc}\langle p.q)}(\eta_{1})\cdots\gamma_{S_{\dot{k}}\{p,q)}(\eta_{l\langle p,q)})|=|\gamma_{S_{k}\langle p}(\eta_{1}^{\prime})\cdots\gamma_{S_{k}\langle p^{\prime}.q’)}(\eta_{l\langle p^{\prime}.q’)}^{\prime})|$ .
This implies that $(pq)^{n\langle p,q)}=(p^{\prime}q^{\prime})^{n(p^{\prime},q’)}$ . q.e.d.

Now we have the following as a consequence of Theorem 3.4.
COROLLARY 3.5. Let $k$ be an integer with $k\not\equiv O(mod 4)$ and $k\geq 2$ . For any odd

integer $r\geq 1$ , we can find infinitely many homeomorphic, but not diffeomorphic closed
smooth 4-manifolds with $\pi_{1}$ isomorphic to the cyclic group of order $r,$ $Z_{r}$ concretely.

$PR\infty F$ . For example, we consider the family $\mathscr{A}$ ,

$\mathscr{A}=$ { $S_{k}^{*}(1,$ $p)|p$ is 1 or any odd prime integer}.
Then it follows from [Fre] that all manifolds in $d$ are homeomorphic to $S_{k}$ . But, by
Theorem 3.4, any two manifolds in $\mathscr{A}$ are not diffeomorphic.

For any odd integer $r\geq 1$ , we consider the family $d_{r}^{*}$ ,

$\mathscr{A}_{r}^{*}=$ { $S_{k}^{*}(r,$ $rp)|p$ is 1 or any odd prime integer with $gcd(r,$ $p)=1$ }.
From [HK] it follows that all manifolds in $\mathscr{A}_{r}^{*}$ have $\pi_{1}$ isomorphic to $Z_{r}$ and are
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homeomorphic. By Theorem 3.4, however, any two manifolds in $d^{*}$ are not dif-
feomorphic. q.e. $d$ .

REMARKS. (1) In the case $k=1$ , the diffeomorphism types ofDolgachev surfaces,
$S_{1}(p, q)$ , are investigated by using the Donaldson’s $\Gamma$-invariant ($[FrM1]$ , [LO], [OV]).

(2) In the case $k\geq 2$ , Friedman and Morgan considered the diffeomorphism types
of elliptic surfaces, $S_{k}(p, q)$ , by using the Donaldson’s polynomial invariant and stated
that the product $pq$ is a diffeomorphism invariant $[FrM2]$ .

Next we extend our result slightly. First we choose disjoint tubular neighborhoods
of $(k-1)$ general fibers in $S_{1}$ and identify them with $\square _{i=1}^{k-1}(T^{2}\times D^{2})_{i}$ so that the fibration
corresponds to projection onto $D^{2}$ . Remove the interior of tubular neighborhoods from
$S_{1}$ and denote the remaining manifold by $L_{1}^{\prime}$ . We write $\partial L_{1}^{\prime}$ as $\coprod_{i=1}^{k-1}(S^{1}\times S^{1}\times S^{1})_{i}$ .
Then to the boundary of $L_{1}^{\prime}$ we attach the boundaries of $(k-1)$ copies of $L_{1}$ as above,
$L_{1}^{\langle 1)},$

$\cdots,$
$L_{1}^{\langle k-1)}$ by the composition $\varphi\circ\sigma$ as before. We denote the resultant manifold

by $S_{k}^{**}$ , which is diffeomorphic to $S_{k}$ . Now we take two general fibers $F_{1}^{\langle i)},$ $F_{2}^{(i)}$ in $L_{1}^{\langle i)}$

of $S_{k}^{**}(i=1, \cdots, k-1)$ . Logarithmic transforms of multiplicities $p_{i}$ and $q_{i}$ on a pair of
$F_{1}^{\langle i)}$ and $F_{2}^{(i)}$ for each $i$ yield a new manifold $S_{k}^{**}(p_{1}, q_{1};\cdots;p_{k-1}, q_{k-1})$ . Note that
$S_{k}^{**}(p, q;1,1;\cdots;1,1),$ $\cdots,$ $S_{k}^{**}(1,1;\cdots;1,1;p, q)$ are diffeomorphic to $S_{k}^{*}(p, q)$ .
It is easy to see that if each pair $\{p_{j}, q_{j}\}$ $(j=1, \cdots, i-1, i+1, \cdots , k-1)$ except for
one pair $\{p_{i}, q_{i}\}$ is relatively prime, then the fundamental group of $S_{k}^{**}(p_{1},$ $ q_{1};\cdots$ ;
$p_{k-1},$ $q_{k-1}$ ) is isomorphic to the cyclic group of order $gcd(p_{i}, q_{i})$ . Then by noting (3.1)
and (3.2), we can prove the following in the same manner as the proofofTheorem 3.4.

THEOREM 3.6. Let $k$ be an integer with $k\not\equiv O(mod 4)$ $andk\geq 2$ . Suppose that $\{p_{l}, q_{l}\}$

$(l=1, \cdots, i-1, i+1, \cdots, k-1)$ and $\{p_{l}^{\prime}, q_{l}^{\prime}\}(l=1, \cdots,j-1,j+1, \cdots, k-1)$ are rela-
tively prime. Suppose th\"at $p_{i},$ $q_{i}$ and $p_{j}^{\prime},$ $q_{j}^{\prime}$ are odd. If $S_{k}^{**}(p_{1}, q_{1};\cdots ; p_{k-1}, q_{k-1})$ is
diffeomorphic to $S_{k}^{**}(p_{1}^{\prime}, q_{1}^{\prime}; \cdots;p_{k-1}^{\prime}, q_{k-1}^{\prime})$ , then there exist nonnegative integers $n_{l}$ ,
n\’i, $a_{l},$

$a_{l}^{\prime},$ $b_{l}$ and $b_{l}^{\prime}(l=1, \cdots, k-1)$ such that

$\prod_{l=1}^{k-1}(p_{l}q_{l})^{n_{l}}=\prod_{l=1}^{k-1}(p_{l}^{\prime}q_{l}^{\prime})^{n_{l}}$ .

In particular, $lf$ two products $p_{1}q_{1}\cdots p_{k-1}q_{k-1}$ and $p_{1}^{\prime}q_{1}^{\prime}\cdots p_{k-1}^{\prime}q_{k-1}^{\prime}$ do not have a
common prime factor, then $S_{k}^{**}(p_{1}, q_{1}; \cdots;p_{k-1}, q_{k-1})$ is not diffeomorphic to
$S_{k}^{**}(p_{1}^{\prime}, q_{1}^{\prime}; \cdots;p_{k-1}^{\prime}, q_{k-1}^{\prime})$ .

REMARK. Noting the number of hyperbolic summands of the intersection form,
we can take maximally $2k-1$ (resp. $2(k-1)$) nuclei in $S_{k}$ [Go] and insert $4k-2$ (resp.
$4(k-1))$ multiple fibers into $S_{k}$ if $k$ is even (resp. odd) so that we can derive the same
result as Theorem 3.6.

In the same manner, Theorem 3.4 and Theorem 3.6 hold for the resultant
4-manifolds obtained from $S_{k}^{*}(p, q)$ and $S_{k}^{**}(p_{1}, q_{1};\cdots;p_{k-1}, q_{k-1})$ by connected sums
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with $\overline{CP^{2}}s$ .
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