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Introduction.

The research on the spaces of harmonic maps of compact Riemann surfaces is one
of important areas in harmonic map theory. Recently the connectedness of the spaces
of harmonic 2-spheres in specific Reimannian manifolds has been investigated by several
mathematicians. Kotani [Ko] showed that the space of harmonic 2-spheres in the
n-dimensional standard sphere S* with fixed energy is path-connected if n>3. In case
n=4, this result was previously proved by Loo [Lo] and Verdier [Ve]. Furthermore
Guest and Ohnita [GO] investigated group actions on harmonic maps into symmetric
spaces and used Morse-Bott theoretic deformations for harmonic maps to show some
results on the connectedness of the space of harmonic 2-spheres in the unitary group,
the sphere and the complex projective space. Moreover the fundamental group of the
space of harmonic 2-spheres in the n-sphere was determined by [FGKO]. It is natural
to study the connectedness of the space of harmonic 2-spheres in the quaternionic
projective space. '

Let HP" be an n-dimensional quaternionic projective space. It is known that there
are two natural twistor spaces 7, and CP?"*! over HP" (see Section 1). A harmonic
map ¢: X—HP" is strongly isotropic if and only if ¢ can be lifted to a horizontal
holomorphic map into 7, (see [G1]). According to [BED-W], ¢: Z— HP" is called a
quaternionic mixed pair if ¢ can be lifted to a horizontal holomorphic map into Cp3n*1,

Denote by ¢ the maximum of the sectional curvatures of HP". Let ¢: Z— HP"(c)
be a harmonic map of a compact Riemann surface. If ¢ is strongly isotropic or a
quaternionic mixed pair, then ¢ has energy 4nd/c, for some nonnegative integer d (see
Section 2).

The purpose of this paper is to prove the following theorem, by virtue of the
method of [GO] applied to the twistor spaces J;, and CP2"*1,

THEOREM A. The space of harmonic 2-spheres in HP"(c) with fixed energy 4nd|c
Received March 19, 1993




242 MARIKO MUKAI

which are strongly isotropic or quaternionic mixed pairs is path-connected for all n>1
and de Z.

We can also restate it as Theorem B. Let ¢ : £—Gr,(C") be a harmonic map of a
Riemann surface. In [BW], the d’-Gauss bundle G'(¢) of ¢ is defined as a complex
subbundle of ¢* generated by the image of the d’-second fundamental form A=

7m0 : ¢—>¢*. Then G'(p) corresponds to a harmonic map Z—-Gr,/(C"). ¢ is called

0’-irreducible if the rank of G'(¢) is equal to the rank of ¢, and d’-reducible otherwise.
We say that ¢ has infinite isotropy order or is strongly isotropic if, for all i>1, GP(¢)
is orthogonal to ¢ with respect to the Hermitian inner product, and finite isotropy order
otherwise.

We shall regard HP" as a totally geodesic submanifold of Gr,(C>"*1). According
to the classification theory of [BED-W], there are four classes of harmonic 2-spheres
in HP" as follows; (I) strongly isotropic and ¢’-reducible, (II) strongly isotropic and
d’-irreducible, (III) finite isotropy order and d’-reducible, (IV) finite isotropy order and
0'-irreducible.

Bahy-El-Dien and Wood [ BED-W] showed that if a harmonic map ¢ : S2—HP"is
of class (III), then ¢ is a quaternionic mixed pair. If a harmonic map ¢ : S2—>HP" is
of class (IV), then ¢ can be lifted to a horizontal holomorphic map into neither
nor CP?*"*! However they showed that ¢ of class (IV) can be transformed to a map
of class (IIT) after a finite number of forward and backward replacements.

Then Theorem A implies the following theorem. :

THEOREM B. The space of harmonic 2-spheres in HP"(c) with fixed energy 4nd/c
which are of class (I), (II) or (I11) is path-connected for all n>1 and de Z.
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K. Tsukada for valuable discussions and useful suggestion and Miss H. Sakagawa for
constant encouragement.

1. Twistor spaces over HP" and harmonic 2-spheres.

We denote by Gr,(C*"*1) the complex Grassmann manifold of all complex
2-dimensional subspaces of C?®*1) with the standard Kihler structure. Let HP" be the
set of all quaternionic 1-dimensional subspaces of H"*!, namely, an n-dimensional
quaternionic projective space. We define the conjugate linear map J: C2+V, C2¢+ 1)
as follows:

(1'1) J(le T Zpy15Zn+2s T 22n+2)=(—2n+2a T, _z_2n+2’ 2.19 Tt En+1) .

Since we have an identification HP"={V € Gr,(C***Y) | ¥=JV}, we can regard HP"
as a totally geodesic submanifold of Gr,(C?"*1),
FOI‘ U=(v1, Tty Uz(”+ 1)), W=(W1, RN WZ(n+ 1))EC2(n+1), we deﬁne the standard
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Hermitian inner product <, > as <(v,w)=Y’"*Vpw, where — denotes complex

conjugation. Set (v, w)*= v, Jw), then (, )? is an antisymmetric bilinear form.

DerFINITION.  We call a space E J-isotropic if (v, w)*=0 for v, we E, namely, E 1 JE
relative to { , ).

Now we introduce two twistor spaces J, and CP?"*! over HP" (cf. [G1], [Br2]).
Let G and G denote the symplectic group and its complexification, namely,

(1.2) G=Sp(n+1)
={4€GL2n+2,C) | A"*J4=J},

(1.3) G =Sp(n+1, C)
={4eGL@2n+2,C) | A*JA=J} |
={4eGLQ2n+2, C) | (Av, Aw)*=(v, w)* for v, we C2*+ D}

Note that HP"=Sp(n+ 1)/(Sp(1) x Sp(n)).
First, we define the twistor space J, as

(1.9 I,={EeGr,(C*"*1) | E is J-isotropic} .

The group G acts transitively on 7, and then we have J, = Sp(n+ 1)/(Sp(1) x U(n)).
The complex dimension of 7, is n(n+ 5)/2. We define the projection 7, : 7,3 E— (E®
JE): € HP". Here @ denotes a Hermitian orthogonal direct sum with respect to { , ).
We define three tautological complex vector bundles &, J& and # over 7, for
Ee J, as follows; &y=FE, (J&)g=JE and #;= W, where C>*"*V=FE®JE® W. From

a natural inclusion map 7, —, Gr,(C*®* V), we have the holomorphic tangent bundle of
T

(TT)"°=Hom(&, J&)° @ Hom(&, ),

where Hom(&, J&)*={Se Hom(&, J&) | (Sv, v)*=0 for ve &} corresponds to the vertical
subspaces of m; and we remark that Hom(&, #") corresponds to the horizontal sub-
spaces of mn;. The map f:2—7, is said to be a horizontal holomorphic map if
df(TZ"°)cHom(&, #°). The holomorphicity and horizontality conditions are wrltten

respectively as
(1.5) "C(f &) =C>(f"16),
(1.6) OC(f &) LC(f~1(J&)).
We know that if a map ¢: X— HP" is of the form ¢=mx, o f, where f: 27, is
a horizontal holomorphic map, then ¢ is harmonic. The group G¢=Sp(n+ 1, C) acts

transitively on 7, in the natural way; for 4eG€ and EeJ,, A(E)eJ,. Then the
following facts hold. §
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LemMA 1.1. (1) This action of G on 7, preserves the complex structure of 7,
and the horizontal subspaces with respect to n,: 9,—HP".

(2) Let AcG®and f: X— T, be a horizontal holomorphic map. Then A- [ : % -7,
is a horizontal holomoprhic map.

PrOOF. (1) Let AeG€ and TeHom(&, #). For any sections s, s' € C®(&), then

" we have

(AT)s, Js"> =((AT)s, s"Y' =(A(T(4™ 's)), 5)"
=(T(471s), A" 15")=0,

because T(4 's)e#’, and 4~ 's'e&. Since (AT)s LJs’ and Js'eJ&, we obtain
ATeHom(&, ).

(2) For any sections s, s’ e C®(f ~18), A(s) is a section of (4o f)~'&. Note that
(A° )"1¢=A(f"'1&). From (1.5) and (1.6), we have

0"A(s)=A(0"s)e AC®(f &) =C>(4- f)~18).
Hence 4 o f is holomorphic. Also we have
" A(s), JA(S")> = (0" A(s), A(s))"=(A(D's), A(s))*
=(0’s,5')'=(0’s, Js')
€(0'C>(f~1&), C°(f~1(J&))=0.
Hence A - f is horizontal. []

Secondly let us consider another twistor space CP2"*!, The space CP?"*1 is a set
of complex 1-dimensional subspaces of C2®* Y. The group G = Sp(n+ 1) acts transitively
on CP?"*!, and then we have CP>"*!=Sp(n+ 1)/(Sp(n) x U(1)). We define the pro-
jection n,: CP?"*! 5L+ L@ JLe HP". We define three tautological complex vector
bundles over CP?"*! for Le CP?"** as follows; £, = L, (J#),=JL and ¥; =V, where
C*¢r* D= L @ JL@ V. The holomorphic tangent bundle of CP2"*1 s given by

(TCP?"*1)-°=Hom(¥, J¥)® Hom(¥Z, ¥).

Here Hom(%, J¥") corresponds to the vertical subspaces of m, and Hom(%, ¥")
corresponds to the horizontal subspaces of m,. The map g: E—CP?"*! is said to be
a horizontal holomorphic map if dg(TZ'°)cHom(Z, ¥"). The holomorphicity and
horizontality conditions are written respectively as

1.7) 0"C=(g~'L)=C>@g '),
(1.8) 0C*(g *'P)LC>g '(V®)).
The following facts hold.
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LEMMA 1.2. (1) This action of G€ on CP*"** preserves the complex structure of
CP?"*! and the horizontal subspaces with respect to m,: CP*"*' - HP",

(2) Let AecG® and g: Z—>CP**! be a horizontal holomorphic map. Then
Aog: X—-CP?*"*! is a horizontal holomoprhic map.

DEFINITION. A map ¢: X—HP" is a quaternionic mixed pair if and only if there
exists a horizontal holomoprhic map g: X—CP?"*+! such that ¢ =7, 0g.

Now we mention the relation between the classification of harmonic maps ~— HP"
and the lift to the twistor space J, over HP".

ProrosiTioN 1.3 ([G1], [BED-W]). Let ¢: X—HP" be a harmonic map. ¢ is
strongly isotropic if and only if there exists a horizontal holomoprhic map f: X -,
such that o =mn, o f.

REMARK. (1) ¢: S2-CP"<=HP" is a holomorphic map if and only if ¢ is both
strongly isotropic and a quaternionic mixed pair, namely, (p can be lifted to horizontal
holomorphic maps into both 4, and CP?"*1,

(2 If ¢: S*>HP! is harmonic, then ¢ is strongly isotropic or a quaternionic
mixed pair.

2. Energy of the harmonic 2-spheres into HP"(c).

It is known that an isotropic harmonic map of a compact Riemann surface into
the n-dimensional unit standard sphere has the energy 4nd for a nonnegative integer d
([Ba]).

Let HP"(c) be the quaternionic projective space with the maximum c of the sectional
curvatures. We now consider the energy of harmonic 2-spheres into HP™(c) which
are strongly isotropic or quaternionic mixed pairs.

PROPOSITION 2.1. Let ¢: X— HP"(c) be a harmonic map of a compact Riemann
surface. If ¢ is strongly isotropic or a quaternionic mixed pair, then the energy &(¢) is
4nd/c for some nonnegagive integer d.

PROOF. Case 1. Suppose that ¢ is strongly isotropic. There is a natural inclusion
Iy <> Gr,(C*"* V). We denote by %, a tautological bundle over Gr,(C*"*V). Let g¢._
be the the Kihler metric induced from the standard Hermitian inner product ¢ , )
through TGr,(C*** )10~ Hom(%,, % }). Set wg (X, Y)=gs (JX, Y). We note that the
inclusion map HP'(c) —, HP"(c) is totally geodesic and quaternionic. Then the Kihler
metric g, induces a Kéhler metric on ;. We also denote by wg_ the Kihler form
induced on 7.

We remark 7, = Sp(2)/(Sp(1) x U(1)) = CP? and Gr,(C*)=CP3, hence we have an
identification J; = Gr,(C*). Let %, be the tautological bundle over ;. It is known
that the first Chern class of %, is given by
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2.1 cl(%)=[-*% wc,]-

Suppose that the twistor fibration y : J,— HP" is a Riemannian submersion, and
the maximum of sectional curvature of HP" is ¢’. In particular, that of HP! is the same
value ¢’ as the maximum of sectional curvature of CP3. Then it is known that the first

‘Chern class of %, is

2.2) cl(%)=[—7";—w,,] ,

where we denote by w,. the Kihler form of constant holomorphic sectional curvature ¢’.
As wg, is equal to w,. on &, and both are the harmonic forms, we have

1 c’
—_—— W= ——— @, .
2r " 4z

Then we get ¢’'=2.
Since f: £—7, is horizontal and holomorphic, we obtain the energy of ¢,

2.3) s@)=6()=— f frog,
X

=% (—2n(f *c,(@ )))Z)

4 4
= ——c"— cl(f‘lolll)(z)e—cl z.

Case 2. Suppose that ¢ is a quaternionic mixed pair. Assume that the twistor
fibration y’: CP?"*! — HP" is a Riemannian submersion, and the maximum of sectional
curvature of CP?"*1is ¢”. Let % be a tautological bundle over CP?"*! (=Gr,(C3"*V)).

Then we have
' 1 c”
Cl(%)=[——2'n— CUG'_]‘—"I:—.—E (Dcn] .

Hence we get ¢ =2. Similarly we obtain the energy of ¢,

(2.9) | &(p) 54—: Z. .

3. Deformations of strongly isotropic harmonic maps into HP".

(A) Morse-Bott theory over twistor space 7,. Let G and g denote the symplectic
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group and its Lie algebra. Then we can regard 7, as an orbit of the adjoint representation
of G as follows: If we let E, a fixed element of 7, and set &=/~ lng,—./—1n;g,,
then we have 7, > 4d(G)¢. Here ng, denotes the Hermitian projection in C2®* 1 onto E,,.

Fix an element Le CP?"** and put P=./—1n,—/—1n, €g. For X=./—1ny—
J—1n;;€ Ad(G)¢é, where Ee€J,, we define the height function AP: Ad(G)é—R
by

(3.1) HP(X)=(X, P).

“Here (,) is an 4d(G)-invariant inner product on g. Then it is known that AF is a

Morse-Bott function. Let gradA® be a gradient of A® with respect to the Kédhler metric.
The following fact is due to Frankel; the flow of —(gradA®) is given by the action of

{exp./—1tP}.

We shall describe non-degenerate critical manifolds of 4”. It is known that a point
Xe Ad(G)¢ is a critical point of AF if and only if [X, P]=0, i.e.

3.2) [V —1rg—+/—1nyp, /—1n,—/ — 17, ]=0.
Then a critical point X of 4 is characterized by E=E, ® E, ® E; with E, =L, E,<JL,
E,c(L®JL)*, where C*"* V=L ®JL® (LD JL):. We obtain the following lemma.

LEMMA 3.1. There are three connected non-degenerate critical manifolds of h¥;
T.={Eed,| LcE}=7,_,,
To={EeT,| Ec(L®JL)"}=Sp(n)|U(n),
I_={EeJ,|JLcE}x=T,_,.
PROOF. Case E;#{0}, Then E,=L and we have E,={0}. Hence we get the
critical manifold 7, of A*. It is easy to show that I, =7, _,.
Case E;={0}. Then E=E,®E,. If we let E,={0}, then we get the critical
manifold J,. We show that 7,2 Sp(n)/Un)={V<=C*"| V@®JV=C?*"}. For EeJ,,
E is an n-dimensional J-isotropic subspace of (L @ JL)* whose dimension is 2n. Hence

we have the above identification. Now if we let E, # {0}, then we get the critical manifold
I_=7,_, in the same way as . O

We set Gp={A4e€ G| A(L)=L}. In general, we know that the stable manifold for
a non-degenerate critical manifold N is given by SP(N)=GpX for Xe N. In our case
we shall determine the corresponding stable manifolds.

LEMMA 3.2. For three non-degenerate critical manifolds in Lemma 3.1, the
corresponding stable manifolds S*(77,), S¥(J,), S*(T_) are;

S¢=T4,
So={EeJ, | EnL={0}, Ec(JL)'},
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S_={Eed,| EnL={0}, E¢(JL)},
respectively.

ProoF. It is clear that SP(J,) coincides with S,. For AeG,, we have
E,JL)=(E, L)*=(A(E), A(L))*=(A(E), L)*={A(E), JL). Thus we get A(E)<(JL)*
(respectively, A(E) ¢ (JL)'), because E L JL (respectively, E¢ (JL)Y). On the other hand,
since ELL, we have A(E)nL={0}. Then we have SF(F,)=S, (respectively,
SP(T_)=S.). Since

T,=SHTHUSNI)ISYIT)
=S, LIS,IIS-

are two decompositions of F,, we obtain S¥(F,)=S,, S¥(F,)=S,, ST(T_)=S_.
O
ReEMARK. For S¥(J.), if E¢(JL)*, then En L={0}.

(B) Deformations of harmonic maps. Let ¢: Z— HP" be a strongly isotropic
harmonic map, and f: 2—7, be a horizontal holomorphic map corresponding to ¢.
If f(2)=S*(F_), then {(exp/—11P)° f}o<;< Provides a continuous deformation to
a horizontal holomorphic map inte _. We shall show that there exists some Le CP2"**1
such that f(2)<=S?(I).

We set ¥/ ={L'e CP*"*! | f(z)¢S*(J_) for some zeZX}. Then we have ¥/ =
{L’'eCP?"**|JL' 1 f(z) for some zeZX}. It suffices to show that #’ cannot be
equal to CP2"+1,

We define ¥ ={(L’, E)e CP*"*! x 7, | JL' L E}. Let p, and p, be the projections
to CP?**1 and 7,, respectively. Then we get &/ =p,(p; 1(f(2))). Since the fibre of p,
is CP"*1 we hav~

(3.3) dimc®’ <dimcp; 1 f(Z) <dim CP™* ! +dimcf(Z)
<@+1)+1=n+2.

From (3.3), it follows that, if n>2, the space #* cannot be equal to CP"*1, It
suffices to choose Le CP?"*!\ #/. Thus we obtain the following proposition.

PROPOSITION 3.3. If n>2, then any horizontal holomorphic map into 7, can be
deformed continuously through horizontal holomorphic maps to a horizontal holomorphic
map into I,_,.

Hence we obtain the following statement for harmonic maps.

THEOREM 3.4. Let @: Z—HP" be any strongly isotropic harmonic map. Then ¢
can be deformed continuously to a strongly isotropic harmonic map ¥ —HP!.
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PrROOF. From Proposition 3.3, if n> 2, we see that any strongly isotropic harmonic
map 2—HP" can be deformed continuously to a strongly isotropic harmonic map
Z—HP""!. By induction on dimension n, we obtain the theorem. [J]

4. Deformations of harmonic maps of quaternionic mixed pairs.

(A) Morse-Bott theory over twistor space CP?"*!, Let G and g be as in Section
3. We can regard CP2"*! as an orbit of the adjoint representation of G as follows: If
we let L, a fixed element of CP*"*! and set n=./—1n;,—/—1n,., then we have
CP?"* 1= Ad(G)n. Here n;, denotes the Hermitian projection in C2**+ onto L.

Fix EeJ, and put Q=./—1ng—./—1In,zeg. For each X=./—1n,—/—1In, €
Ad(G)n with Le CP?"*1, we consider the height function #2(X)=(X, Q) on CP?"+1,
Then 42 is a Morse-Bott function. Comparing the case of Z, in Section 3, we want to
remark that if we choose Le CP?"*! instead of E as a fixed element, then 42 admits
isolated critical points and our argument does not work at all.

We shall describe non-degenerate critical manifolds of A2. A point Xe€ Ad(G)y is
a critical point of 42 if and only if [X, 0] =0. Then a critical point X of 42 is character-
ized by L=L, ®L,®L, with L,cE, L,cJE, Ly=(E®JE)*, where C*"+1=
E®JE®(E®JE)". By the argument similar to Lemma 3.1, we obtain the following
lemma. '

LEMMA 4.1. There are three connected non-degenerate critical manifolds of hQ;
CP,={LeCP>"*'| LcE}~CP" !,
CP,={LeCP**! | Lc(E®JE)'}=CP!,
CP_={LeCP*"*'| LcJE}=CP""'.

REMARK. (1) The twistor fibration n,: CP2"*!— HP" induces a biholomorphic
automorphism CP_—»CP" 'cHP" 1. . ,
(2) Any holomorphic map X— CP_ is always horizontal.

We set G,={A4€GC | A(E)=E}. We determine the corresponding stable manifolds
by the same way as Lemma 3.2.

LeMMA 4.2. For three critical manifolds in Lemma 4.1, the corresponding stable
manifolds are;

s¢cpP,)=cCP,,
SCPy)={Le CP>*! | L E={0}, Lc(JE)'},
S%CP_)={LeCP**' | LnE={0}, L¢(JE)'}.
REMARK. For S&CP.), if L¢(JE)*, then L n E={0}.
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(B) Deformations of harmonic maps. Let ¢: X— HP" be a quaternionic mixed
pair, and g: Z—CP?"*! be a horizontal holomorphic map corresponding to ¢. If
g(Z)= SYCP_), then {(exp/ —1¢Q) °g}o << » Provides a continuous deformation to a
horizontal holomorphic map into CP_. We shall show that such E exists.

We set #={E'eJ,|g(z)¢SUCP_) for some zeZX}. Then we have ¥?=
{E'eT,|g(2) LIET}.

We define ¥ ={(E’, L)e 7,x CP*"*'| L L JE'}. Let p, and p, be the projections
to 7, and CP?"*!, respectively. Then we get #9=p,(p; 1(g(2))).

It is not easy to find the fibre p; }(L)={E'e 7, | L 1 JE'}. We shall consider two
cases; E'c L* or E'¢ L*. Hence we get p; }(L) =%, [1.%,, where

F#={E'eT,|E LIL EcL*} and #={F'ed,|E LJL E¢L}.

First we deal with #,. Since E' L L and E’ L JL, we have E' = (L @& JL)*. Hence we
obtain the following lemma.

LEMMA 4.3. The space %, is diffeomorphic to Sp(n)/U(n). In particular,
dim¢Sp(n)/U(n) is equal to n(n+1)/2.

Next we consider %#,. So we see E'c L @ (L@ JL)'. Here, for a subspace E of F,
we denote by FOE=Fn E*.

LEMMA 4.4. The space %, is diffeomorphic to a vector bundle

4.1 = |1 Hom(L,(L&JL)'©(E"®JE"))

E"ed, _,
over 7,1 with the fibre Hom(L, (L® JL)* ©(E" ® JE")), where F,_, = {E" | (n—1)-
dimensional J-isotropic subspace of (L& JL)'}.

REMARK. In particular, dim¢ & =(n—1)(n+4)/2 + 2.

PrOOF. Let u and v be the Hermitian orthogonal projections from E’ to L and
(L@ JL)", respectively. Then we can characterize E’ using u as E' = (E' © Ker u) ® Kerpu.
We note that dimc E‘'© Keru=1 and dimcKeru=n—1.

The space Kerpu is J-isotropic. Indeed, since Kerucv(E"), it suffices to show that
V(E") is a J-isotropic subspace of (L @ JL)*. For any v= u(v) + v(v), w=u(w)+ v(w) e E’,
we have 0= (v, Jw) ={v(v), Jv(w)). It follows that Keru is an (n— 1)-dimensional
J-isotropic subspace of (L@ JL)*, that is, an element of J,_, which is diffeomorphic
to 7,_,.

We put W=(L®JL)' © (Keru® JKery), then W is 2-dimensional subspace of
(L@®JL)*. Let V=E'©XKeru. Thus it suffices to examine ¥ which is a line of W& L
such that V¢ L*.

We see that for all xe L, there is unique y e W satisfying x+ye V. Indeed, using
a linear isomorphism u: V—L, since we can write z=x+v(z)e V for any xe L, then
we take v(z)=y. Then we have a linear map &, : L— W defined by J,(x)=y for xe V.




SPACE OF HARMONIC 2-SPHERES ' 251

Hence we obtain a smooth map &%, 3 E'—(Kerp, §,)e &.

Now let us examine its inverse map. For any E”€Z,_, and e Hom(L, (L ®
JLY* ©(E"®JE")), we put E'=V @ E", where V'={x+4(x) | xe L}. Then we see that
E’e #,. Indeed, it is clear that E’L JL and E’'¢ L*. We show that E’ is J-isotropic. It
is enough to show V LJE”. For any z=x+d6(x)eV and seJE”, we get {z,5)=
{x,5)+<{(x), s) =0, because L L JE” and {(LSJL)- ©(E"®JE")} LJE".

Hence we obtain the inverse map & 3(E”, )>E' € %,.

Thus we obtain a diffeomorphism %#,5E <« (E”,5)eS. We note that
Hom(L, (L®JL)' ©(E”" ® JE"))~Hom(C, C*)=C?>. O

It is sufficient to estimate the dimension of the fibre of p, from above by the larger
dimension of #, and &%,. Hence we have

4.2) dimc#* <G (n—D(n+4)+2}+1=3(n+1)(n+2).

From (4.5), it follows that, if n>2, the space #? cannot be equal to Z,. Then we
can choose E€ Z,\ %¢. Thus we obtain the following proppsition.

PROPOSITION 4.5. If n>2, then any horizontal holomorphic map into CP?"*! can
be deformed continuously through horizontal holomorphic maps to a (horizontal)
holomorphic map into CP"~ 1= CP?" 1,

Using Proposition 4.5 recursively, we obtain the following statement for harmonic
maps.

THEOREM 4.6. Any quaternionic mixed pair ¢ : X—HP" can be deformed con-
tinuously to a holomoprhic map ¥— CP!c HP!.

5. Conclusion.

From Theorems 3.4 and 4.6, we obtain the next theorem.

THEOREM 5.1. Let ¢: X—HP" be d harmonic map. If ¢ is strongly isotropic or a
quaternionic mixed pair, then ¢ can be deformed continuously through harmonic maps to
a harmonic map ¥ — HP! = S*.

Now we let Z=S2. Loo, Verdier in case n=4, and Kotani in case n> 3, showed
the following.

THEOREM 5.2. If n>3, the space of harmonic 2-spheres in the unit n-spheres with
fixed energy is path-connected.

Combining Theorems 5.1 and 5.2, we complete the proof of Theorem A.

It is very interesting to investigate the deformations of harmonic 2-spheres in HP"
of class (IV) and to determine the connectedness problem of the space of all harmonic
2-spheres in HP".
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Note added in proof, May 1994. Recently the author obtained similar results on
the connectedness of spaces of harmonic 2-spheres in a real Grassmann manifold of
2-planes Gr,(R"*?), an n-dimensional complex hyperquadric Q,(C) and more generally
classical Riemannian symmetric spaces of inner type.
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