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§0. Introduction.

The purpose of this article is to find a combinatorial description of the first coefficient
in g of the Kazhdan-Lusztig polynomial (Theorem A) by introducing a left subword,
which is a special one of subwords (see Def. 1.6). From its description, we show the
non negativity of the first coefficient in g of the Kazhdan-Lusztig polynomial for x, w
satisfying I(w)=1I1(x)+I(x~'w) or I(w)=I(x)+I(wx~1), where x, w are elements of an
arbitrary Coxeter system (W, S) and / is the length function.

In §1 we find a combinatorial description of the first coefficient in g of the
Kazhdan-Lusztig polynomial (Theorem A). In particular, for x, we W satisfying /(w)=
I(x)+1(x"tw) ((W)=1(x)+1(wx™1)), the first coefficient in g is equal to ¢~ (x, w)—
g(x~'w) (resp. ¢~ (x, w)—g(wx~1)), where ¢ (x, w) (g(w)) is the number of coatoms
(resp. atoms) of the interval [x, w] (resp. [e, w], e is the identity element) in the Bruhat
order (see Def. 1.3). '

In §2 we give the proof of the non negativity of ¢~ (x, w)—g(x~'w) for x, we W
satisfying I(w)=1(x)+1(x"1w).

Let us give a brief review of known results. It is conjectured in [KL] that all
coefficients of the Kazhdan-Lusztig polynomials are non negative. This is still an open
problem, but some of the special cases are verified. For example, this conjecture is
correct for finite Weyl groups, affine Weyl groups and dihedral groups. M. Dyer has
proved the non negativity of the first coefficients in g of the Kazhdan-Lusztig polynomials
for e, we W by showing that the first coefficient is equal to ¢~ (e, w) —g(w) in this case
and it is non negative ([D]). So, our results include his.

§1. Combinatorial description of the first coefficient.

At first, we shall define the Bruhat order and the Kazhdan-Lusztig polynomials.
Throughout this article, (W, S) is an arbitrary Coxeter system, where S denotes a
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privileged set of involutions in W.

DEerFINITION 1.1 (Bruhat order). We put T:={wsw™!;s& S, we W}. For y,ze W,
we denote y <’z if and only if there exists ze T such that l(tz)<l(z) and y=1z, where
[ is the length function. Then the Bruhat order denoted by < is defined as follows.
For x,we W, x<w if and only if there exist x,, x,, - » X, € W satisfying x=x,<’
x;<'---<'x,=w. We also use the notation x<w if x<w and Ix)=Il(w)—1.

The following is well known (cf. [H]). Let w=s,s," " ‘Sm€W be a reduced
decomposition (i.e. all s;€.S and /(w)=m). For xe W, x<w if and only if there exist
iy, i3, =+, i, such that 1<i;<i, < - <i,<m and X=s5;,8;," - *s;,. This expression is not
reduced in general, i.e. it may be the case that /(x) <¢. However it is known that one
can find 1<j; <j, < - <j,<m such that x=s; s 5,00 °S;, and [(x)=r.

DEerFINITION 1.2 (Kazhdan-Lusztig polynomial). For x,we W, we define the
Kazhdan-Lusztig polynomial for x, w denoted by Pew=Y s 0Pi(x, W)g'€ Z[q] as
follows.

P, ,=0 if x£w,

P, =1 if x=w.
When x <w, for fixed se S satisfying /(sw) <I(w), we set
{ 0 if x<sx

1 if sx<x.

Then, P, , is defined inductively as follows.

Prw=q" " Py +qPry,— Y ulz, sw)gt-izp

3Z<z<sSw
where u(z, sw) is the coefficient of g =¥~ 12 of p_ e

. REMARK. For the equivalence of this definition with the original definition in
[KL], we refer the reader to [H].

We define some notations.
DerFINITION 1.3. For x, we W, we put
[x, wl:={yeW ; x<y<w},
C™(x, w):={yelx,wl; I(y)=I(w)—1},
C*(x, w):={yelx,wl; () =I(x)+1},
c (x,w):=%#C"(x,w),
ct(x,w):=4#C*(x, w),
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gw):=c*(e,w).

C™(x, w) is the set of atoms in the interval [x, w] with respect to the Bruhat order, and
C™(x, w) is the set of coatoms in [x, w] i.e. atoms in the dual of [x, w] (cf. [St]).

For a statement ST, we put §(ST):=1 if ST is correct and §(ST):=0 if ST is
incorrect. :

We shall begin with showing the next proposition.

PROPOSITION 1.4. Let x, we W with x<w and let s;s,"--s,, be a reduced de-

composition of w. We let x' denote s,x and w’ denote s,w. Then, we have the following.
@) Ifl(x)>1l(x) (i.e. s;x>Xx), then

pi(x, wy=c~(x,w)—c*(x, w)+p,(x, w)—c (x, w)+ct(x, w).
() Ifl(x)<l(x) (i.e. s;x<Xx), then
pi(x, w)=c7(x, w)+p1(x’, w)—c(x', w) .
Before the proof of this proposition, we will show a lemma.

LEMMA 1.5. We use the same notations as in Proposition 1.4.
If I(x")>I(x) (i.e. s;x>Xx), then we have
(i) po(x',w)+#{zeW;x<z<w,z£w'} =1,
(ii)) c"(x,w)=1+#{ze W ,x<z<w,z<s,z}.
If I(x") <l(x) (i.e. s;x<Xx), then we have the following.
(iii)) For ze W, if s,z<z, then x' <z is equivalent to x<z.
(iv) c (e, W) =po(x, w)+#{ze W; x'<z<w, z<s,2}.

PrOOF. (i) From the well known fact that po(x’,w)=1if x’<w’and P,. ,. =0 if
x"£w' (cf. [H]), it is enough to show that

1 if x'£w'

#{zeW;x<z$w,z$w’}={0 i <
if x'<w’.

Let ze{ze W;x<z<w,z£w'}. From z<w=s,5,"" 'S, and z£w’ =s5,55" " s, there
eXiSt il’ i2, ety i,. Such that 2Si1<i2< tee <i,.$m, l(Z)=r+1 and z=S1SilSi2' ¢ 'Sl-r
Therefore, from x<z, x=s;.8, "5, or x=s.8,58, 5, s (1<j<r), where
Si,_Si;81,,, 18 5;,_,5;,, .. In the second case, we have s,x<x and this is a contradic-

tion. Hence, we may consider the first case. Then, we can obtain z=s5,x=x". So, we have
1 if x'&w'
¥zeW ,x<z<w,zgw'}= . ,$ )

0 if x'<w’,

Therefore, we get (i). .
(i) By the definition of C~(x, w), we have
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C (x,w)={z=s5,5,"""5;"**5,€C (e, W) ; 1<i<m, x<z}.
From x <s,x, we can see x<s,5;" - *s,,. S0, we have

C(x, w)={s353" - "5} I{z=5y8," -5 - -5,,€C (e, W) ;

2<i<m,x<z}.

We can define a function ¢ from {ze W;x<z<w’,z<s,z} to {z=s5y5" "5} "5,,€
C7(e;w);2<i<m, x<z} by ¢(z):=s,z. Since ¢ is obviously a bijection, we obtain

c(x,wy=1+#{zeW ; x<z<w', z<s,z}.

(i) We suppose that x’'<z. From s,z<z, there exists z’ such that z=y5,z" and
I(z)=1(z")+1. So, from x'<s;z’=z and x'<s,x’, we have x'<z'. Hence, we see
x=s5;x'<s,z'=z. From x’'<x, it is trivial that x’' <z if x<z.

(iv) From the definition of ¢~ (x, w), we have

¢ (x,wy=#{z=515," 5" 5,€C (e,w) ; 1 <i<m, x<z}
_{l if x<w’
0 if xgw
+#{z=5185," 5 5,€C7(e,w) ; 2<i<m, x<z}
=Po(x, w')
+#{z=5y5,"""5 - -5,€C (e, W) ; 2<i<m, x<z}.

We can define a function y from {ze W;x'<z<w’,z<s,2} to {z=s5,5,"" 5} - “Sm €

C7(e,w) ; 2<i<m, x<z} by Y(z): =s,2z. We can easily see that V¥ is a bijection. Hence,
we obtain

cm(x, W)=po(x, W)+ #{ze W ; x'<z<w', z<5,2} . O
We shall prove Proposition 1.4.
PROOF OF PROPOSITION 1.4. (i) We put s=s,, then ¢=0 from x<s;x. By the

definition of Kazhdan-Lusztig polynomials, we have

Px,w = qu',w’ + Px,w’ - Z [l(Z, w,)q(l(W)_l(z»/sz,z .
$1z<z<w’
From 1 <(l(w)—1(2))/2, we can see
P1(x, W)=po(x', w)+p,(x, w)— > u(z, wpo(x, z)

s1z<z<w, l(w)-Il(z)=2

=po(x’, W) +pi(x, W)= Y po(z, w)po(x, 2)

s1z<z<w’
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=po(x’, w)+p(x, w)— Z 1

s1z<z<w,x<z
=po(x’, W) +p,(x, w)—#{zeW ; x<z<w', 5,z<z}
=po(x’, W) +pi(x, w)—c"(x, w)
+#{ze W, x<z<w',z<syz}.
From ¢ (x,w)=c*(x, w)+#{ze W; x<z<w, z£w’}, we have
P1(x, W)=po(x', w)+#{zeW ; x<z<w,z£w'}
+#{ze W ; x<z<w',z<sz}—c*(x, W)
+pi(x, w)—c (x,w)+ct(x,w).
Hence, by Lemma 1.5, we obtain
pi(x, wy=c~(x, w)—cT(x, w)+p,(x, w)—c (x,w)+ct(x,w).
(i1) Similarly, we put s=s,, then c=1 from s;x <x. We can easily see that
D1(x, Wy=p (X', W)+ po(x, w)—#{zeW ;, x<z<w, s,z<2z}.
From Lemma 1.5 (iii), we have
P1(xX, W)=p,(x", W) +po(x, w)—#{zeW ; x'<z<w, 5,2<z}
=p1(x’, W)+ po(x, w)—c™(x', w')
+H#{zeW ;X' <z<w',z<s,z}.
Hence, by Lemma 1.5 (iv), we obtain
pi(x, w)y=c~(x, w)+p(x’, w)—c (x',w'). O

For x, we W with x<w, we introduce the left subword and right subword of a
reduced decomposition s,s,- - *5,, of w in order to find a combinatorial description of
the first coefficient in g of P, ,,.

DeFINITION 1.6. Let w=s,5, - s, W be a reduced decomposition. We put
[m]={1,2, - - -, m} and define a map f from [m] to S by f(i)=s;. Let J=(j1, 2> * " *»J,)
and J'=(j1, j5, -, Jj.) be subsequences of (1, 2, - - -, m). We call f | ; (restriction map)
subword of 5,5, - s,and weset | f'|; 1= f(j)f (o) * - fU) =55, - *S;,. Wedefine J<J’
if and only if there exists ke[r] such that j, =j, j,=Jj% s jx—1=Jk-1 and j, <j;
(i.e. lexicographic order). For xe W with x<w and I(x)=r, if I=(i;,i,, -, )=
min{J=(jy, j,, - *, j,) subsequence of (1,2, ---,m);| f|;|=x}, then we call f|; left
subword of 5,5, - s

From now, we identify | f|;| with f|; when there is no confusion.
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‘5, 18

We define a right subword s,,s,," - *s,, of s,5," - s, if and only if 84,8, _,""
a left subword of s,,5p -1 " *5;. ’

EXAMPLE 1.7. Let S, be the symmetric group of degree 4. For ie[3], we let
o;=(i, i+1), where (i, ) is the transposition of i and j. Then f |{1,2, is a left subword of
0162030,6; but f|, 4 is not a left subword.

Note. From the definition of left subword, we can easily check the following.
Let s5,,5,," - -5, be a left subword of s,s,- - -s,,. For eachpe[rlanda,_, +1<j< a,—1,
we have

KaSapas " Sa) <USsSasSay 1" 50 »
where a,=0.
Then, p,(x, w) is described as follows.
THEOREM A. For x,we W with x<w, let
X=818," TSy a1 SolSie1 FoSie1 S,
be the left subword of a reduced decomposition 518" * 'S Of w. Then, we have

pl(x, w)=c‘(x, w)—g(s,+ 15 +2°° 'Sm)
k
— Z 6(‘911' . .Sz,,\l : ST,\” : -Sfa: : ‘Sr$si,+1si,+2' * S -
i=1

REMARK. We can also obtain the similar equation with respect to the right order.
PROOF. We will show this theorem by induction with respect to k. When k=0,
from Proposition 1.4, we have
P16 W)=cT(X, W) +p (5283 ¢ 5, 8,537 7 S
—C (85253 " "5y, 52837 Sp)
=cT (X, W) +P1(& S, 41542 " Sp)
—c (€ S+ 15427 " "Sm)
=c (X, W)—cT(e,5,4+15+2" " )
+P1(€ S+ 2843 )
—c (e, S, 42843 Sm)HCT (€, S, 425,437 " " Sy)
=c (x,w)—c*(e, 841542 *Sm)
+pi(e,e)—c (e,;e)+c* (e, €)
=¢ (%, W) —g(S,+15,42" " “Sy) -

We suppose that theorem is correct if k<u—1 (1 <u). When k=u, from Proposition
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1.4, we have

Pi(x, w)=c7(x, W)+ py(s,8;5° - RN SRR AR "Sps $283° " Sy)

1 2 tu
-

-
.Siz. - -siu- 3 -Sr, s2S3- . .Sm)
=c~(x, W)+P1(Si1+l TSyt S S S S 417 " Sw)

- - .
—c (St,+1"'siz'"si “Sps i, Siy 41" " Sm)

_c—(szsa. . .E‘:. .

—_pr + R R ..
=c (x’ W)—C (Si1+1 Siz si *Sps 8 S11+1 Sm)
-
+p1(Sil+1"’S,-2"'S,u S Sll+1Sl1+2 '.sm)

- . e .A . . ol 3 . "
—cC (Sz1+1 Syt S, Sy Sy 418,427 " " Sm)
-——

_—

+
+C (Sll-f-l.-.si e

2 S Si 415,427 " Sm)

-A . o o o o
Siw T TS 81,85 +1 Sm)

TSy Sy +18i 427" " Sm)

=c (W) —cT (5,415,
+C+(si1+1. . .Ei:. .

—9g(Sp 418,42 " Sm)

5‘%)

—_N -
- Z 6(Slj lj+1 "sij...z"'Sik'”Sr-i{-sij+1sij+2'“sm)-
On the other hand, we can easily see that
+ . A' . e A . »
c (Si,+1' PR PR A S Sty 417" "Sp)
—C (si1+1 Siy S Sy Siy 185,427 " S)

- - -
=0(s;, S Fe - TSty 1S a2 S -
Hence, we have

pl(x W) 4 (x’ W) g(sr+1 r+2°° 'sm)
- Z 5(5';, ’ z,+1 '@2"'@"'&-&‘:%“&#2'"Sm)-
So, we obtain Theorem A.

From Theorem A, we can easily get the following corollary.

COROLLARY 1.8. For x, we W with I(w)=1(x)+1(x~'w), we have ’

Pi(x, w)y=c7(x, w)—g(x~w).

For x, we W, it is known that P, ,=P, ;-1 (cf. [Sh]). Hence, from Corollary

1.8, we also see the following.
COROLLARY 1.9. For x, we W with I(w)=I(x) +I(wx~1), we have

pi(x, wy=c"(x, w)—g(wx™1).
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ProOF. From the assumption on x and w, we see [(w™1)=I(x"")+I(xw™ ). So,
we have p,(x, w)=p,(x"}, w H)=c"(x~!, w™)—g(xw™1). Also, it is easy to check that
[x, w] is isomorphic to [x !, w™!] as the partially ordered set in the Bruhat order (cf.
[St]). Hence, we have p,(x, w)=c~(x, w)—g(xw ™). O

If W has the longest element w, then we know P, ,, =1 and I(wo) =1(x) + I(x ™ 1 w,).
" Hence, we can immediately obtain an interesting corollary as follows.

COROLLARY 1.10. Let (W, S) be a Coxeter system with the longest element w,.
For xe W, we have

¢~ (x, wo)=g(x~'wo) .

§2. Nonnegativity of the first coefficient.

In this section, we shall show the non negativity of p,(x, w) for x, w satisfying
Iw)=1(x)+1(x"'w) or I(w)=I(x)+1(wx™?).

PROPOSITION 2.1. Let x, we W.
(i) If Iw)=1(x)+1(x"w), then we have ¢~ (x, w)—g(x~'w)>0.
@) If I(w)_=l(x)+l(wx‘1), then we have ¢~ (x, w)—g(wx~1)=>0.

PrOOF. We will show the first statement by an induction with respect to /(x~1w)
and /(x).

If /(x~'w)=0 or 1, it is easy to check that the statement is correct. We prove the
statement in case /(x~ 'w) =k + 1 under the assumption that it is correct when /(x " 'w) <k
(1<k). Here, we use the induction with respect to /(x).

If I(x)=0, we put w=s,5,53"* *8S+ (a reduced decomposition), and we consider
two cases.

Case (1): 5, <s5,53" " Sx+1- We have c7 (e, w)=c7 (51, W) =>9g(5253" * “Si+ 1) =g(W).
Case (2): 5, £5,53°* *S+1. We have C (e, w)={s,53" " 534 1} 11C (54, w). Hence, we
see c (e, w)=1+4c"(5;, W=149(5,83° * " S+ 1) =9g(W).

We suppose that ¢~ (x, w)—g(x~w)=>0 if /(x)<r (0<r), and show the statement
in case /(x)=r+1 from now. We put x=s5,5,""-5,,, and x " w=ss%s54" "5+, (@
reduced decomposition).

Case (a): s, <5555 " St+1. We have ¢~ (x, w)—g(x~w)=c"(x, W)—g(s555 " " "Sk+1)=
¢ (xs’, W)—gls58% * Sk 1) 20.

Case (b): s, £5555 - 5k+1- Weput J:=8\{s}}, W,:=subgroup of W generated by
Jand W’:={ye W ; I(yz)=1(y)+1(z) for any ze W,}. Then, there exist w’e W’ and
w; € W, such that xs;, =w’w;,. In general, for J= S and we W, there exist w’ e W’ and
w;€ W, such that w=w’w, (cf. [H]). Note that w’/#e and w,s’,s% - -s;., € W,. Also,
we put w' =5,y satisfying I(w’)=1+1(p). Now, w=_35,yw,s%85" * *Sk4 1.

Case (b)-(a): §;we C~(x,w). By the induction hypothesis, ¢~ (w;, w;s585° - *s§4+1)=>
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9(s253° - *Sk+1)- From the definition of W, w/C~(w;, wysys’y- -« *si4 )= C™(x, ). Of
course, we see §ywe C™(x, w)\w'/C~(w,, w;s,5% - - -sk+,). Hence, we have c (x,w)>
14+g(s555" sk 1) =g(x " 'w).
Case (b)-(B): §;w¢C(x,w). Note that x£§w<w. From XS] =8.8,"" r+1S1—'
wiw,=5yw,, we get xs', =35,s5,5," "8 85,4151 for some ie[r+1] or xs, =555,
S,+1=58x. If xs7=5§x, then we see x<§,w and this is a contradiction. Hence, it is
sufficient to consider the first case. Note that x=s,5,"* s, 1=581518 & 8,4, from
$1827 " Sp4181=51515, 55,4151, We put ;5,05 “Sp41 =888, and
$;=8 11+ for te[k+1]. Now, w=35,5," - 5,44, and x=5§,5, - - *§,+1. By the induction
hypothesis, we have ¢ (5,5, - Spv15 5285 8k 2) 29128037 S 2) =g(x " w).
If there exists y=4,5;- 5; s,+k+zeC'(§2§3 “ 84158283 S, 4x+2) such that
l(sly)<l(y) then, there exists ge {j+1,j+2, - - -, r+k+2} satisfying y=35,5, 8
sq" Sr+k+2. Since §83---5,,,<y and §§, --5,,, is a reduced decomposition of
x, we have 5,855, <8 & -5 5,44, Hence, we have x=53, 5., <
518, 5 8 Bike2=y =58 -§;- 8, 1x4+2<5w. But this contradicts our as-
sumption that xﬁ‘;slw So, §1C7 (5283 84155283 *So4nr2)=C (x, w). It follows
that ¢~ (x, w)> g(x~1w).

From (i) and ¢™(x, w)=c"(x~*, w™1!), we can easily verify the second statement.

a

Therefore, from Corollary 1.8, Corollary 1.9 and Proposition 2.1, we can obtain
the following.

THEOREM B. Let (W, S) be an arbitrary Coxeter system and x, w be elements of
W.If Iw)=1(x)+1(x"'w) or I(w)=I(x)+I(wx~1), then the first coefficient in q of the
Kazhdan-Lusztig polynomial for x, w is non negative.

REMARK. Of course, from Proposition 2.1, p,(x, w)>0 if all terms of o6(¢) in
Theorem A is equal to 0.

We can find an interesting corollary as follows.

COROLLARY 2.2. For we W, if there exist xe W and se S satisfying one of the
JSollowing conditions, then p,(e, w)> 1.
(1) IwW)=Ix)+1(x"'w), Isw)<Il(w), gWw)=g(x~'w) and x £sw.
() Iw)=Ix)+I(wx~Y), I(ws)<l(w), gw)=g(wx~1') and x£ws.

PRrROOF. In the case of (i), we can easily see swe C™ (e, w)\ C™(x, w). Hence, we
get ¢ (e, w)>c™(x, w)>g(x~'w)=g(w). It follows that pile, w)=c (e, w)—g(w)>1.
Similarly, we can show the statement in case (ii). O

REMARK. Unfortunately, the converse of Corollary 2.2 is false. For example, we
may think w=0,056,0,€S,.
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