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1. Introduction.

In this paper we construct irreducible representations of the algebra of invariant
differential operators on a homogeneous vector bundle, and give a condition for the
nontriviality.

Let G be a connected real semisimple Lie group with finite center, and let K be
a maximal compact subgroup of G. Let E, denote the homogeneous vector bundle
over G/K associated to a representation (r, V) of K (See [10] for the definition),
and let D(E,) denote the algebra of G-invariant differential operators on E,.

Let (z*, V..) be the contragredient representation of 7, and let g be the Lie algebra
of G. Then for an irreducible (g, K)-module W (cf. §3), I' (W)=Homg(V,., W) gives
rise to an irreducible representation of D(E,) unless trivial (Proposition 4.2). Our choice
of W is rather special. But this specialization allows us to apply the classification theory
of Langlands which tells us whether I' (W) be trivial or not.

The construction and the non-triviality condition (cf. §4) yield two applications:
first, a simple proof of (a part of) theorem of Deitmar ([2, Theorem 6]) which claims
that D(E,) is commutative if and only if 1:[ » is multiplicity free (Proposition 6.2); second,
a sufficient condition for some kind of restriction of the Poisson transform to be injective
modulo the kernel of some surjection (Theorem 7.2). Because we can describe the
injectivity condition in terms of Harish-Chandra’s C-function (cf. §7), Theorem 7.2 is
a weak analogue of the result for a line bundle (cf. [8]) which shows that the Poisson
transform is injective if and only if C-function is non-zero.
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2. The algebra of invariant differential operators.

We recall the structure-theory of the algebra of invariant differential operators on
a homogeneous vector bundle over G/K which is developed in [7].

We keep to the notation in the introduction. Let f be the Lie algebra of K. Then
we fix a Cartan decomposition g=1@ p. Here p is an Ad(K)-invariant subspace of g,
that is, G/K is reductive.

Let g, I, and p, be the complexification of g, f, and p respectively. Let U(g,), U(E,)
be the universal enveloping algebra of g, f, respectively. The anti-automorphism (-)"
of U(g,) is determined by

1"=1, X'=-X (Xeg), (XV)"=Y"XT (X, Yeg).

Let 7 be an irreducible representation of K on a finite dimensional complex vector
space ¥V, and let dr be its differential representation of U(f,). We sometimes write for
this simply 7. Let # be the kernel of dr in U(f), and let #7 denote the image of &
under (-)". Let U(g,)* denote the set of K-invariants in U(g,). By Theorem 1.3 of [7]
there is an algebla isomorphism u:

D(E)~U(8)"/U(g)* " U(g)# ™ . 2.1

We fix a maximal abelian subspace a of p and a linear ordering in a*. Let M be
the centralizer of a in K. We denote by g(x; a) the root space of a in g corresponding
to a. Let &(g; a) be the set of (restricted) roots and &*(g; a) the set of positive roots.
We put n=Z¢E¢,+(9; 08 ), p=33, o+ o (dimg(a; ).

The direct sum decomposition g=¥@® a @ n is called the Iwasawa decomposition.
We define a map w: U(g)*—>U(a)U(E) by D—w(D)enU(g,). Identifying U(a,)U(t,)
with a tensor algebra U(a,) ® U(f,), we get an algebra anti-isomorphism w: U(g)*—
U(a)® U(X). We define #eAutU(a) by $(H)=H+p(H) (Hea). If we put w,=
#®(-(*)"))ow, then w,: U(g) - U(a,) @ End(V,) is an algebra homomorphism.
Since Ker(w,)=U(g)* n U(g.)#", (2.1) implies that there exists an injective algebra
homomorphism yx,: D(E,)— U(a,) @ End ,(V,) such that

X oUH=@, .
We define the evaluation map e;: U(a))—C for Aea* by e;,(H)=A(H) (Hea,). Let M
be the set of equivalent classes of irreducible representations of M. If we put H,=
Hom,(V,, V,) for ceR,={(0, V,)e M | [t:6]>0}, then we have V.~ _. V,QH,
as an M-module. Thus one has
End,(V)~ Y, EndH,.

oceR,
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Let w, be the projection from End,(V,) onto End H, oorresponding to the above
decomposition.

We define the representation y, , , of D(E,) for te K, o€ R,, Aea¥ by the following
commutative diagram:

Ug)* £~ DE) %4 C®EndH,

Xe
w, e, Rw,

U(ac) ® EndM ( Vt)

Since dim H,=dimHom,(V,, V,)< o, the representation (Xz.0.20 H,) is finite dimen-
sional.

3. The Langlands classification.

We summarize the classification theory of irreducible (g, K)-modules following
[11]. We cite the contents in [11] as follows:

1. Some bars are inserted since the image of the intertwining operator JPron
isin I, _ . (See the definition right after Lemma 3.9.)

2. The representation space of o€ M is denoted by V, instead of H,.

3. We denote by (V, ,+,r)k, the (mgp, Kg)-module (Vo ke in [11] (cf. Lemma
3.7). Our notation has no ambiguity about shifting by p.

4. The “right” arguments in [11] (e.g., the functional equations and the right
regular actions on the functional spaces) are translated to the “left” one by considering
the G-isomorphism, f+ f o ()" !, from the space of functions on G with right regular
action to the one with left regular action.

We omit the proofs, which can be seen in [11, Chapter 5] or [1, Chapter 4].

DerFINITION 3.1.  We call W a (g, K)-module if W is a g-module (hence a
U(g.)-module) and a K-module, and satisfies the following three conditions:
. kXw=Ad(k)X.k.w wWeW,keK, Xeg).

2. If we W then Kw spans a finite dimensional subspace W, of W, and K acts
on W, continuously.

3. If Yel, we W then d/dt|,_oexp(tY)w=Y.w.

ExAMPLE. Let (n, H) be a Hilbert representation of G. We denote by Hy the space
of C*, K-finite vectors in H. Then Hy becomes a (g, K)-module ([11, Lemma 3.3.5D).
We call Hy a (g, K)-module associated to .

DEerFINITION 3.2. A (g, K)-module W is called irreducible if {0} and W are the
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only g and K-invariant subspaces of W.
If Wis a K-module and if y € K, we denote by W (y) the y-isotypic component of W.

LemMMA 3.3 ([11, Lemma 3.3.3]). Let W be a (g, K)-module. As a K-module
W=, g W() (algebraic direct sum).

DEFINITION 3.4. A (g, K)-module W is called admmissible if dim W(y)< oo for
any ye K.

LemMma 3.5 ([11, Corollary 3.4.8]). If W is an irreducible (g, K)-module, then W
is admissible.

Let 4 be the system of simple roots in &(g; a). For any subset F of 4, we denote
by (Pp, Af) the corresponding p-pair, i.e. Pr is a standard parabolic subgroup
corresponding to F and A is the split component. Let M be the reductive component
of Pg, and Np the nilradical (See [4, §2.3]). Then we have the Langlands decomposition
Pr=MgApNp with M p=MpAr. We put Kp=Kn M,p. Let &(Pf, Af) be the set of
roots of a; on ng.

DEFINITION 3.6. A triple (Pp, 0, p) is called Langlands data if (P, 4j) is a p-pair,
and (o, V,) is an irreducible unitary representation of My such that (V,)g,, the space
of C®, Kg-finite vectors in V, (cf. Example after Definition 3.1), is a tempered
(mg, Kg)-module and pe(af), satisfies Re(u, a) >0 for all a € ®(Pp, Ay).

We define “H?r-"* to be the set of smooth functions from G to (¥,)®, the space
of C®-vectors in V,, such that

f(gman)=e~0*PR@g(m™1) f(g)

for ne Np, ac A, me My, ge G, where H(a)=logae a; for ae A;. Let dk be a normaliz-
ed Haar measure on K. For f,ge®HP™"* we introduce an inner product by
S, 9> =1 Lf(k), g(k)),dk. Let HP™"* be the Hilbert completion of ©*H?r* with
respect to { , ).

By left regular action 7p,,(9)f(x)=/(g™'x) for g,xeG, fe H'™*, (np, 4u
HPr?#¥) is a Hilbert representation of G. We put I_, ,=(H """,

For (g, K)-modules V and W, we denote by Hom, x(¥, W) the set of g and K-linear
maps from V to W.

Let (V, )k, be the (m,p, Kr)-module which equals (V,)g, as a (mg, Kr)-module,
on which ay acts by u. Let P, denote the opposite parabolic subgroup to Pg, that is,
P.=0(P;) where 0 is the Cartan involution of G fixing K.

LEMMA 3.7 (Frobenius reciprocity). If Vis a (g, K)-module, then there is a C-linear
bijection:

Homg,x( V’ IPF,a,u) =~ Hommu.-.xy( V/ﬁl" V9 (Vc,u - pp)xp) .
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Proor. T T, T(v+iizV)=T()(e) (veV) gives the bijection, where e is the
identity elementin G. Note that agactson (¥, ,)x, by u— pp (cf. [11, Lemma 5.2.3]).

We define (HP™*)  to be ®HFF"# a5 a set, and introduce a topology in it by
(countable) seminorms:

6./)=SUP ([, ,u(X)S 1K)

(xe U(g.), fe(H™""), 6€{Pp}pecume.)> Where {Pp}pcume., is the usual system of
seminorms in (V,)®, i.e.

po@)=eDplly, (e(V,)*, DeU(my)).
It is known that (H"F%#)  becomes a Fréchet space. Let dii be an invariant measure
on Np=0(Np).

LEMMA 3.8 ([11, Lemma 5.3.1]). Let (Pg, o, u) be a Langlands data. Then

(1) f§I<f@), w)|di<co (for f € (HF"¥),, we(V,)x,) and the map (H'™ "3
S =[5 | {f(R), w) |dii is continuous.

(2) For nonzero we (V,)x, there exists f€lp_, , such that

L | <f(@), w) |di#0 .

We define a linear map ﬂ,,m,,,,: Ipp o u—= (Ve DY

<ﬂPp,a,u(.f)$ W>H, = <f(ﬁ)’ W>dﬁ (.f € IPF.a.u’ wEe (Vq)KF) .

Nr

Bproouis a Kp-homomorphism and
LemMa 3.9 ([11, Lemma 5.3.3]). Bp. . .(trlp. q.,)=0.

So Bpeou induces a map op. o Ip, ou/ftrlpeou=(Vox, and ap ., is a
(m,r, Kp)-homomorphism. By Frobenius reciprocity there exists a unique jp_, €
Homg,K(IPF,a,pa I&'c_“). SuCh that

ij,a',u(.f)(e) = ﬂPp,c,u(f) . (3'2)

Lemma 3.8 (2) implies that jp_, , is not identically zero.

THEOREM 3.10 ([11, Theorem 5.4.1]). We suppose (Py, o, n) is Langlands data.
Put jPF,a.u(IPF,o',u) =JPp,a,u'

(1) If felp,,, satisfies jp. , () #O0 then f generates Ip_, , as a (g, K)-module.

(2) Jpp,o,u is the unique nonzero irreducible (g, K)-submodule of Iy, ,, such that
Iy, o.u/Jpe,q,u is irreducible.

(3) If (Pg, 0, ) and (Pp., 0’', u') are Langlands data and if Jp_ ,,~Jp., 4, QS G
(g, K)-module, then F=F', u=y’', o6 ~a’ (unitarily equivalent).
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DerFiNiTION 3.11. We call Jp_, ,<Ip,,, Langlands quotient corresponding to
(P, 0, ).

THEOREM 3.12 (Langlands ([11, Theorem 5.4.41)). For any irreducible (g, K)-
module V there exists Langlands data (P, o, ) such that V~J, Pea.u (@S a(g, K)-module).

4. Irreducible representations of D(E,).

We keep to the notation in §3. Let W be an irreducible (g, K)—module. We fix
an irreducible representation (7, V,) of K. Every zeU(g)X acts naturally on
TeHomg(V,, W) by

[z2.T](v)=2.T(v) (veV). : 4.1

Homy(V,, W)=Homg(V,, W(7)) is finite dimensional by the admissibility of W. Hence
Homg(V,, W) is a finite dimensional U(g.)®-module. Moreover [11, Proposition 3.5.4]
claims the following:

PROPOSITION 4.1. Let W be an irreducible (g, K)-module and (v, V,)e K. Then
Homy(V,, W) is an irreducible U(g.)%-module unless trivial.

Weput I' (W) =Homg(V,., W) for any irreducible (g, K)-module W. From Theorem
3.12 it suffices to consider a Langlands quotient Jp_ , , as W. Since Jp_ , , is irreducible,
I'(Jp,q,4) is a finite dimensional irreducible U(g)*-module by Proposition 4.1.

If ze #7 then z" €.# and

T*(2)="(x(z"))=0.

(Here '(+) denotes the transpose map.) It follows that U(g)X n U(g)# T acts trivially
on I' (Jp, ..)- We have proved the next proposition.

ProrosiTiON 4.2. I'(Jp,,,) is a (finite dimensional) irreducible D(E,)-module
unless trivial.

Remark 4.3. The functor I', was originally introduced in [5], [6]. All irreducible
D(E;)-modules are finite dimensional by [S, Theorem 5.3].

Let y denote the action of type (4.1). When Fis empty, we write Pinstead of P .

LEMMA 4.4.

Ipg1~1p g, -,
as a (g, K)-module.
PROOF. We choose an M-invariant nondegenerate bilinear form { , > on V, x V...
We define a map fr f*: HP** s HP" % by f*(gv={(v, f(9)> (geG, veV,). Then
[* satisfies the functional equation of H*"~4, Since this map is a G-isomorphism, the
claim follows from I, , ,=(H"%%)y.




IRREDUCIBLE REPRESENTATIONS 155
LemMa 4.5. (x, I''\(Jp,,.2) is a U(g)*-submodule. of (%.q -2 H,). Hence
O I'(Jp,,2) is a D(E,)-subrepresentation of (%, o, -1, H,)
PrOOF. As a U(g,)%-module,
I'(Jpsi) = I'(Ip,z) (Theorem 3.10)
~ I'(Ipgs, ;) (Lemma 4.4)
~ H, ([7, Lemma 3.1]) .
Note that U(g,)* acts on the right hand side by ., _;.
Finally we give a non-triviality condition of I' (Jp, ;. ,)-
THEOREM 4.6. I'.(Jp, , ) #{0} if and only if there exists f€lp_, (t*) such that
. {f(n), wy,din+#0 (for some weV,).

Proor. Clearly I'(Jp,,,)#{0} if and only if Jp,, . (t*)#{0}. Since Jp,,,=
Ip. . ./Ketjp, , , (Theorem 3.10) and the map jp, ,,, is K-linear, Jp, , ,(t*)#{0} if and
only if there exists f €lp, , ,(t*) such that jp_, . (f)#0. We therefore see that
(%) I'(Jp,....) # {0} if and only if
there exists f €lp, ,,(7*) such that jp_, .(f)#0.

On the other hand, we have from the definition of Bp, , .

(#x) 7S (), w), dii#0 (for some we V)
if and only if Bp, . (f) £0.

First we prove “if”” part. By (3.2) and (**) there exists felp,_, ,(t*) such that
Jrea.u(f)(€)#0. Hence jp_, .(f)#0 for such f. So (*) completes the proof.

Conversely we assume I'(Jp.,,)#{0}. Then (*) implies that there exists f
€lp, . (t*) such that j,_, . (f)#0. So there exists go€ G such that jp_, .(f)(go)#O0.
Since jp, o) €Ip, ., and the map KMpA Npg—G, (k,m, a, n)—kman is surjective
(cf. [4]), we have

[jpp.a,p(/)] @o)= [jPF,a,u(f)](KF(g 0)me(go)ar(go)nr(9o))
= el T#+PHEr@NG(me(go) ™) jip 0w IF(go)) #0

(xr(go) € K, mp(go) € Mg, ar(go) € A, ne(go) € Np).
Hence jp, ., ((KHgo)) #0. We set fo=m7p_, . (kr(go)~')f. Then f, belongs to
Ip. o..(t*) since kg(go) ~! is contained in K. Thus we see that




156 SHIN-ICHI AZUMA

ﬁpp,d,[l(fo) =jPF,a,u(an,a,u(KF(90) - l)f)(e)
= 80 kK E(G0) ™ Viep,u 1))
=Jpr.on ) KF(G0)) #0 .
Now the assertion follows from (*=).

CorOLLARY 4.7. I'(Jp,,)#{0} if and only if there exists f e€lLp , (t*) such that
J' e~ WHOH® (¥ k(M) 1) f(e), WD, di#0  (for some weV,).
N

PrROOF. Considering the Iwasawa decomposition: G~ KAN, g x(g)e¥®n(g) and
felp, (%), we have

f(@)=e @+ IH® £((i))
= WroH®, Lx@ 1) f(e)
=e W PHA*(3(7) ") f(e) -

Hence the claim follows from the above theorem.

5. SL(2, R).
Let G=SL(2, R) throughout this section. Then
K=S0(2)={k,=< cosf sme) ‘ OGR} ’

—sinf cosf

10 1 1 0 01
- =R
! R(—l 0)’ P <0 —I)EBR(I 0)’
0 —i 1 i 1 —i
= C C .
% C(i 0)@ (i —1)EB (—i —1)

As is well known K={y, | le Z}, where y,(k¢)=e".
Let e K be y, for some /e Z. Set

h=(0 "i) :

i 0

Then we have U(Y)=CTh], # =ideal of C[h] generated by (h—1I), #T =ideal of CTk]
generated by (h+1).

We take the following two basis of g,
(1) Eigenvectors for Ad(k,). Set
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1 i) _1(1 —i)
2\ —1) YT\L -1 )

Ad(kp)x=e*"%x, Adkpy=e 2y, Ad(kph=h.

The elements x, y, h form a standard basis of sI(2, C), i.e. satisfy the commutation
relations:

Then

[x,y]=h, [h,x]=2x’ [h’y]=_2y
(2) The basis corresponding to g=n®a@®f Set

X=(0 1>en, H=(1 0 €a, ho=(0 1>ef.
00 0 —1 -10

[H,X]1=2X, [H,hol=—2hy+4X, [hy, X]=H.
The theorem of PBW implies that

U(gc)"={ D, CapX®y°h?

a,peN

Then

Cap € C}.

It follows from the commutation relations that xy and h generate U(g,)X.

Next we compute y, . ;. Let 1 denote the trivial representation of M and let ¢ denote
the representation of M such that e(—7)= —id. Then, since M={+1} and M={1, &},
H, and H,, are isomorphic to C if and only if

(@) I=0mod2Z and 6=1 or (b) /[=1mod2Z and o=¢.

Otherwise H, and H, , are zero. We assume (a) or (b) below.
From the definition of g, , ;, for 4=pu(D) (De U(g)¥) we have

X:,a,A(A) = (e). ® wa) ° CO,(D) .

It is enough to compute actions of xy and A.
(1) When D=h, w(h)=—i(1®1(—hy)). Since t(hy)=il, we have w, (h)=

—I(1®idy). Note that w,(idy )=idy . Thus we obtain that y,, .(4)=—lidy_, i.e. h

acts by —1.

(2) When D=xy, the commutation relations and the base change
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imply that

dxy=H?*—2ihy+h3—2H mod nU(g,) .
We identify a} with C by 1+— A(H). Note that p=1 under this identification. Since
©(—ho)= —il, we have
1
w,(xy)=7 {(H+1)?-2H+1)-1*-2)®id} .
So we obtain that

1
Xt,a',;l(A) =I {)'2 _(l+ 1)2}idH,, s

i.e. xy acts by {42 —(I+1)?}.

REMARK 5.1. (1) and (2) above show that the Casimir element Q=1h?>—h+2xy
acts by $(A2—1).

We fix a Borel subalgebra g = Ch @ Cx and we put C;, = C. Let U(q) act on C; by
hl=k, x.1=0.
We put
V"=U(gc)®v(q)Ck (ke2).

Note that {y™"®1|me N} is a basis of V*. Let g act on V* by left multiplication on
U(g,). Itisknown that V*is a (g, K)-module and irreducible if k <O0. (See[11,5.6.2].)
Set V.= Cv* (now t*=y_)). For Te Hom(V.., V'*), we can write as

T*=Y c,y"®1 (cne0).
Then T belongs to I'y(V*) if and only if
kazcm}’m® 1 =ze(—2m+k)i0cmym® 1.

We therefore see that

e—i10=ei(—2m+k)0 (51)
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for any me N such that ¢, #0.
Since h+/=0 mod U(g)* n U(g,).#", each element he U(g)* acts on TeI (V¥

by —L
On the other hand a direct calculation yields that
[TI0*) =Y (k—2m)c,y"® 1 .

(Here we have used a relation hy™=y™h—2my™.)
Thus we have shown that

—Il=k—2m. (5.2)
Since (5.2) implies (5.1), we suppose (5.2) from now on. Then I'y(V*) # {0} and
I+k
m=__; , (5.3)

It can be easily seen that

xy™tl=ym*ix 4+ (m+ 1)y h—m(m+1)y™ .

Hence

"R I=m+1D)k—m)y"R1.
By (5.3),

(m+1)k—m)= —% (I-k)(I+k+2).

This coincides with the action of xy under Xe,ooa If

— (=K +k+2)=22—(+1)*. (5.4)
PROPOSITION 5.2. Let G=SL(2, R).
(@) Let Dy o=V~ (D, is a (g, K)-module associated to the limit of discrete

series of G.) If l is positive odd then we have the equivalence as a representation of D(E,):

(X’ F?[(D+,0))~(X‘yl,6,0’ He) ]

where x is the action of type (4.1).
(b) Let D,=V"*"! for k>0. (D, is a (g, K)-module associated to the discrete series
of G.) If I—k is positive odd then we have the equivalence as a representation of D(E,):

(X, Fy;(Dk))~(Xy;,a'.iks Ha') .

PrROOF. (a) Put k= —1 in the arguments above. Then we see that (5.3) holds if
and only if A=0. H, is nontrivial if and only if o =e¢.

(b) Replace k by —k—1 in the arguments above. Then we see that (5.3) holds if
and only if /—k=2m+1, (5.4) holds if and only if A2=k2. H, is equal to C if 6 =¢'.
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Set V*=U(g,) ® y;) Cr» When §=Ch® Cy, C,=C (as a linear space). Define the
action of § on C, by h.1=k, y.1=0. We similarly obtain the following results by
considering V* instead of V*.

PROPOSITION 5.3. Let G=SL(2, R). Put D_ o=V',D_,=P**1,
(@) If lis negative odd then

(x: r-y;(D—,O))'\'(xV;,z,Os H&) .
(b) If I+ k is negative odd (k>0) then

(Xa Fy;(D—k)) ~ (Xy;.a', +k He') .

6. The commutativity of D(E)).
DEFINITION 6.1. We say that |y is multiplicity free if [t|p: 6]=1 for any ae M
such that [z|,:6]>0.

PROPOSITION 6.2 (cf. [2, Theorem 6]). The following conditions are equivalent:
(a) 1.'| um IS rultiplicity free.

(b) End,(V,) is commutative.

(©) D(E,) is commutative.

Proor. First we prove that (a) implies (b). Note that

End,(V,)~ Y, EndH, 6.1)

oeR,
as a ring. The assumption implies that
Ho‘ = HomM( Vaa Vt) =C

for any o€ R,. Thus the right hand side of (6.1) is equal to a direct sum of C. Hence
End,(V,) is commutative.

Next we prove that (b) implies (c). From §2 there is an injective algebra
homomorphism:

D(E‘!) - U(ac) ® EndM(Vt) .

Since U(a,) is commutative, (c) follows from the commutativity of End,(V.).
Finally we prove that (c) implies (a). For any o€ R, there exists uea* such that
Ip , , is an irreducible (g, K)-module (cf. [9]). By [11, 4.5.1 and 4.5.2]

(IP,c,u) = IP,a‘, —n
is also irreducible. (( - )~ means the admissible dual.) Frobenius reciprocity implies that
dim HomK(V,., IP,G", _I‘) = [TIM . 0] .

This shows that I',(/p .+, ) # {0}. By Proposition 4.2, I' (Ip ,« _,) is a finite dimensional




IRREDUCIBLE REPRESENTATIONS 161

irreducible D(E,)-module. Now D(E,) is commutative by the assumption, we can apply
Schur’s lemma and we have

Ft(IP,a"‘, - u) = C .
This implies that [7|y: 6]=1 which is desired.

7. The injectivity of the Poisson transform.

We introduce the Poisson transform for vector bundle E, following [7]. See [7]
for details.

For a finite dimensional representation ¢ of M on ¥, and A€a*, we associate the
representation of P defined by

P=MAN smans e~ 4+ PH@g(p) (meM,acAd,neN). (7.1

We denote by F, ; the homogeneous vector bundle over G/P associated to (7.1).
We write simply F, ; instead of F;|,,,» When a=r| u for e K. Let #(E,) and HB(F, ;) be
the space of hyperfunctional sections of E, over G/K and of F, , over G/P respectively.

A(E,) and #(F, ;) can be regarded as G-modules. We denote by 7 and 7, ; the actions
of G on #(E,) and #(F, ;) respectively.

Let #(G, (o, 4)) be the space of hyperfunctions from G to V¥, such that
f(gman)=e*~PHOe(m~1) f(g)  (geG,meM,acA,neN),
and %(G, 1) the space of hyperfunctions from G to ¥V, such that
fgh)=k")f(g) (geG kekK).
Then there are canonical isomorphisms:
BE)=R(G,7), BF,)=%(G, (0, 4).

We identify (E,) (resp. #(F,,;)) with (G, t) (resp. #(G, (g, 4))) by these isomorphisms.
Note that both = and =, ; are left regular actions under this identification.
For ¢ € B(F, ;) we define the function 2_,(¢) on G by

[Z..4(#)](9)= f wk)(gk)dk  (9€G).
K

Then £, ,(¢) belongs to /(E,), the space of analytic sections of E, We call
P, . B(F, ;) (E,) the Poisson transform for E,.
Foro e R, regard H,=Homy(V,, V,) asa trivial bundle over G/K. Then we have

BF, )~ ) BF,)®H, (directsum).

geR,

#(F,;)® H, is regarded as a subspace of %(F,;) by the G-isomorphism_ from
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B(F, ;) ® H, to B(F, ;) defined by

Z¢i®ai""zai¢i (a,€H,, p;c B(F,})).

We define 2,,; to be the restriction of 2 , to #(F,, )®H,. Let H,, =

- Homy(V,, V,) for o€ R,. Then the function ¥, on G defined by

Vu(g) =1 e~ PHOp,1((g) 1)y,

(Aea}, w=),0,®b,e V,® H,,) belongs to #(F, ,) and the map r,,;fromV.QH,,to
B(F, )", the space of spherical sections in #(F, ;), w— y,, is isomorphic. We identify
B(F, ;) with V.QH, ,by I, ,.
Let (x, H) be a subrepresentation of (x, ., H,). Since o is irreducible, the bilinear
form H, , x H,—C, (b, a)— <b, a) defined by
{b, a)=d(z) " tr(ba)

is nondegenerate. We identify H, with H* by this form. We denote by Pyt
H.,® H-(D(E))/Kery)* the transpose of the inclusion,

1: D(E)/Kery~xy(D(E))<EndH
~HQH*<H,Q H*~(H_,® H)*.

Let o (E,, x) denote the space of eigen sections of type y and o/(E,, x)* be the space of
spherical sections in &/(E, x). (See [7, §2].) We define a linear map s,: A(E,, 1)~ V,®
(D(E))/Kery)* by

(s, (u), A+Kery) =(4u)(eK) (ue A(E,, x), Ae D(E))) .

If we set H=I"(Jp, ,), then (x, H) is (equivalent to) a subrepresentation of
(Xe.0,— 20 Hy) of D(E,) by Lemma 4.5. Hence the transpose of this inclusion induces a
surjective map from H, ,® H to H* ® H, which is denoted by p,. We denote by 1, and
1, the inclusions in the defining sequence of 1 from D(E,)/Kery to H® H* and from
H® H*to(H, ,® H)*, respectively. Let p, be the transpose map of 1,. Then we have

Pr="1="(12°1)="(11) 2 '(12) =Py°Ps -

Thus we have the following commutative diagram:

H, ,QH-2 H*®H

pl px

(D(E,)/Kery)* .
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Note that every map in the diagram is surjective since it is the transpose of an inclusion.
LeMMA 7.1. Let Aea¥,6€R, H=T(Jp, ;). Then Ker? , _ )NV, ® H,,®H
=Ker(id ® p,) if there exists fe€lp, ;,(t*) such that
J e~ GHPHM 1 x(1(7) 1) f (), W), dii #0 (for some weV),).
N
Proor. Combining the preceding diagram with [7, Lemma 3.4 and Theorem 3.5],
we get the following commutative diagram:

id®p,

Loa®d o H @H 4P, y @H*®H

T
BF, _)QH

'?r,a, —~i id®pl ld®ﬁl

A(E, 1) —2— V,Q(D(E,)/Kery)* .

It follows from Corollary 4.7 that the assumption implies that (y, H) is nontrivial.
Thus (x, H) is irreducible by Proposition 4.2. It is well known that y is surjective if
(x, H) is irreducible. Therefore we see that P, is bijective. The above diagram shows

that Ker(id ® p,) =Ker(id® p,) since both id® p, and id® p, are surjective. Now the
lemma follows.

We introduce the notation in [3]. For te K and Aea¥*, we set
B(P:P:})= f t(k(7) " e~ GHoH® g5
N

Since B,(P: P: ) commutes with the action of M, we put
BI(P:P:2)=B(P:P: )|y
for e M. A+ BI(P:P:J) is called Harish-Chandra’s C-function. For veV, and
TeHomy(V,, V,), we define f, ;: G-V, by
Jo.7(kan) = e~ G+PH@T(¢(k~1)p)

(keK,aeA,neN). Then V,@ Homy(V,, V,)—>Ip , ;(7), v® T Jo.r gives a K-module
isomorphism. We identify I, , ,(t) with ¥, ® Hom,(V,, V,) by this isomorphism. Note
that T(v)=f, r(e) under this identification.

Since id® p, is surjective, we say that 2, , _, is injective on ¥V, ® H* ® H modulo
Ker(id® p,) if id® p, is injective (hence bijective).

THEOREM 7.2. Under the assumption of Lemma 1.1, P, _, is injective on
V.® H* ® H modulo Ker(id® p,) if B&(P: P:1) is non-zero as an operator.
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PrROOF. We have

f e~ ArORD T2 (7)™ 1) £, 2(e), wHdR
N

— f e—().+p)H(i)< T(T*(x(ﬁ)‘l)v), w)dn
N

=(T(B(P:P: ), w).

Hence the claim follows from the proof of Lemma 7.1 since T'is M-linearand we V.
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