ToKYO J. MATH.
VoL. 17, No. 1, 1994

L*-Approach to Mixed Boundary Value Problems
for Second-Order Elliptic Operators

Kenichiro UMEZU

University of Tsukuba
(Communicated by S. Ouchi)

§1. Introduction and results.

Let Q be a bounded domain in Euclidean space RN with C®-boundary I' and its
closure Q=Q U T is an N-dimensional compact C®-manifold with boundary. Let

A=y i(li aiigx) 2 )+§

i=1 axi j=1 ax] j=1

bi(x) i— +c(x)
0x;

be an elliptic differential operator of second order. Here the coefficients of 4 satisfy
the following conditions:

(1) aY, b/ and c are real-valued C®-functions on & for 1 <i, j<N.

(2) a¥(x)=a%(x) for xeQ, 1<i, j<N.

(3) A is strongly elliptic; there exists a constant a,>0 such that

N .
Y dix)egzalél?,  xeR, EeRM.
i,j=1
@ (<0, xeQ.
First, we shall give regularity, existence and uniqueness theorems of the solutions
of a nonhomogeneous elliptic boundary value problem (*):

Au =f in Q s
(*
) Lu=aﬁ+bu = on I'.
ov r
Here
(1) a and b are real-valued C*-functions on I.

(2) 0/odv is the conormal derivative associated with the matrix (a"):

Ll 0
S atn; o,
Lj=1 Ox;

a —
v
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where n=(n,, - - -, ny) is the unit exterior normal to I'. We associate with Problem ()
an operator /:

o H¥?(Q) —— H*~2P(Q) x B, PRI
u — (Au, Lu) .
We shall explain function spaces. H*?(22) (se R, 1 <p< o) denotes the set of all
functions in LP(Q2) whose derivatives up to order s belong to L?(2) (for the precise

definition, see Section 2). B*~'/P»(I') (s> 1/p, 1 <p < ) denotes the set of the boundary
values of functions in H*?(Q) with the norm:

| @ ls-1/p,p=inf{llull,, ; ue H*X(Q), u|r=0}, @eB* 'PX(I).

B{, 3 ~'/PP(I') denotes the following function space introduced from B*~1/P?(I) and
B*~1~1YPP(I) in connection with the boundary condition L:

Bl P(D)={9=ap, +bp, ; p,€ B* " "1PX(I), ¢,e B~ PH(I)}

with the norm:

10 lapis—1-1p.p=10f{ @1 ls— 1 —1/pp+1 02— 1/p.p ; P=00, +bg,} ,
peB,, ~PN(I).

Then we have the following:

THEOREM 1. Let 1<p<oo. Assume that the following conditions are satisfied:
(A.1) a(x')=0 and b(x)=0 on I.
(A2) b(x)>0 on TI'g={x'erl; a(x")=0}.
(A.3) c(x)<0 in Q.
Then, the operator o« is a homeomorphism for all s> 2.

The proof of Theorem 1 mainly consists of those of the surjectivity and injectivity
of of. The injectivity of ./ is proved by means of the strong maximum principle and
the boundary point lemma due to Protter and Weinberger [9]. On the other hand, we
need characterization of the adjoint operator of «f in the proof of the surjectivity of
&/ . Lions and Magenes [6] consider the case when a(x’)>0 on I, in the space L?(R).
In [6], the adjoint operator of o is characterized by means of Green’s formula. But,
the technique of Lions and Magenes seems to be difficult to characterize the adjoint
operator when a(x')>0 on I'. A method which we use in this paper is that of reducing
Problem () to the study of a first order pseudo-differential operator T on the boundary.

Taira [13], by using this technique of the reduction to the boundary, investigates
Problem (*) under the assumptions (A.1) and (A.2) in the space L*(R2). He makes an
argument in which he mainly use an inequality of Géarding type due to Melin [7], to
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prove the surjectivity of .«/. But, in the present paper, the results with regard to existence
of a parametrix for the operator T due to Hérmander [3] and boundedness of the
parametrix due to Bourdaud [4], play a main role in order to prove the surjectivity of /.

Taira [15] studies Problem (), in the case of the homogeneous boundary conditior
with the assumptions (A.1) and (A.2), in the space L?(Q). Taira [15] gives the a priori
estimate for Problem (%) such that for any solution ue H??(2) of Problem (*) with
feLP(Q) and @ € B2~ 1/7(I"), we have

lell2,, <CULSNp+ 1@ 2- 1,5+ l1ull)

with some constant C>0. In Theorem 1 with s=2, it follows from the continuity of
the inverse & ~! of &/ that for any solution ue H*"?(Q2) of Problem () with f e L?(Q)
and ¢ € B%,}/»P(I'), we have

||u”2,psc(”f”p+ I @ Ia,b; 1 —l/p,p)

with some constant C>0. This implies that the space B, ,)/”?(I') which we introduce
from both B*~!/7»(I'y and B*~ !~ Y/7?(I') in connection with the boundary condition L,
plays an important role. We remark that if a=0 on I and >0 on I' (the Dirichlet
condition), our estimate becomes

lull2,, < CUSNp+ 1@ 12-1/p,p) >

and that if a>0 on I' (the Neumann condition or the third condition), our estimate
becomes

||u||2,p$C(||f||p+|(P |1—1/p,p) .

Secondly we shall derive some properties of eigenvalues and eigenfunctions for
certain unbounded linear operators in the Lebesgue space L?(£2) in connection with a
homogeneous boundary value problem (*x):

Au=2u in Q,
(x*)
Lu=0 on I'.
Here 1€ C. We associate with the homogeneous problem (%) an operator 4, in the
space L?(Q):
(a) The domain 2(4,) of 4, is

P(A,)={ue H*?(Q); Lu=0onT}.

(b) Au=Au, ue (4,).
In order to characterize the adjoint operator of 4, we introduce an unbounded
linear operator A, in the space L?'(£):
=0}~ .
r

, ov N
(a) @(A,,)={veH2"’ Q) ; L*v=a E+{b—-a( _lb‘n,-)}v
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(b) A,v=A%, veD(A4,).
Here 1/p+1/p’=1 and

N 0 N 0 N o 0
ato= 5 2 £ 00 5 0)-E o 2
+<c(x)— i ob’ (x)) v(x) .
i=1 0x;

Agmon [1] treated the case that a(x)>0 on I'. When 1<p<o0, he proved the
following results (see [1], Theorem 4.4; [2], Theorem 15.1):

(1.1) The operator 4, is the adjoint operator of 4,.

(1.2) The eigenvalues and eigenfunctions of 4, are common to all p.

(1.3) The real parts of the eigenvalues of 4, are bounded above by some con-
stant K. _ :
(1.4) All rays argd =0 different from the negative axis are rays of minimal growth
of the resolvent (4,—1)"*.

(1.5) The spectrum of 4, is discrete, the eigenvalues of A, have finite multiplicities
and there are only a finite number of eigenvalues outside any angle: |argA | <n—e¢, > 0.

(1.6) The negative axis is a direction of condensation of eigenvalues.

(1.7) If {4;} is the sequence of eigenvalues of 4, counted according to multiplicity,
and if for A<K, where the constant K is the same as in the assertion (1.3), N(J) is the
number of 4; such that A<Re4,;, then one obtains that

12|

— PLLILN
P 2L(N2+ 1) o)

N

where | 2| denotes the volume of Q.

(1.8) The generalized eigenfunctions are complete in L?(); they are also complete
in 9(4)) in the || ||,,, norm for all p.

In this paper, we shall prove

THEOREM 2. Let1<p<co andp’=p/(p—1). Assume that the conditions (A.1) and
(A.2) are satisfied, and further that the following condition is satisfied

(A9 b(x)— a(x)( i b"(x)n,) >0 on T.
i=1

Then, we have the assertions (1.1)—(1.8).

The assertion (1.1) is proved by means of Green’s formula. By virtue of the
hypoellipticity (Theorem 3.6) of the mapping & in Theorem 1, we prove the assertion
(1.2). Using integration by parts as in [13], we obtain the assertion (1.3). The assertion
(1.4) follows from Theorem 2 of [15]. If the assertion (1.2) is true, we have only to
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verify the assertion (1.3) and (1.5)—(1.7) in the case p=2 and have only to verify the
assertion (1.8) in the case p=2 by virtue of Theorem of Agmon [1]. Taira [13]
investigates this problem in the space L3(€) in the case that the operator A4 is the usual
Laplacian. He proves the assertions (1.1) and (1.3)(1.8) (see [13], Theorems 2 and
7.4). In this paper, in order to prove (1.5)—(1.8), we apply the results due to Agmon
([11, [2]) to the operator A, as in [13].

The rest of this paper is organized as follows:

Section 2 is devoted to the basic definitions and properties of function spaces and
pseudo-differential operators.

Section 3 is devoted to the proof of the injectivity of the operator 7.

In Section 4 we prove the surjectivity and continuity of the operator . In this
section, we finish the proof of Theorem 1.

In section 5 we prove Theorem 2.-

§2. Function spaces and pseudo-differential operators.

2.1. Function spaces. If 1<p<oo, LP(Q2) denotes the space of Lebesgue
measurable functions ¥ on 2 such that |u|? is integrable on Q. The space LP(Q) is a
Banach space with respect to the norm

i/p
Ilullp=(f | u(x) |de) .
Q

We recall the Fourier transform &% and the inverse Fourier transform & *:

9’f(§)=f e"™if(x)dx, feL'(R"),

N
F*rg(x)= (%) f e™%g(&)dé, geL'(RY),
RN,

where x*E=x,&,+ - + xy&y. S(RY) denotes the space of C* functions ¢ on RY such
that for any non-negative integer j, we have that sup{(1+|x|?)?|0*¢(x)| ; xe R",
0<|a|<j}<oco, where 9*=0'*/0x% - -0x%, a=(ay, -, ay) and a; (1<i<N) is a
non-negative integer. The transforms # and #* can be extended to the transforms on
the dual spaces ' (R") of #(R™). If se R, we get a mapping J*: &' (RY)-S'(RY) by
the formula:

Fu=F*(1+| )2 Fu), ueP(RY).

We define function spaces which are called generalized Sobolev spaces. If 1 <p < o0,
H*P(R") denotes the image of LP(R™) under the mapping J*. The space H*?(R™) is a
Banach space with norm ||u||, ,= |/~ *u|| ,. We remark that, if s is a non-negative integer,
H*?(R™) coincides with the usual Sobolev space which is the space of functions u e L°(R")
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whose derivatives 0°u, |a|<s, belong to the space L?(R"), and that for ue H*P(R")
the norm |||, , is equivalent to the norm

( Y f | 0%u(x) I"dx)”p.
lal<s J RN

Next, if 1 <p < oo, B'"»(R" ') denotes the space of functions ¢ € LP(RY~!) such that

f f | @(x+y) —20(x)+ o(x—y) |P
RN-1xRN-1

IyIN—1+p

The space B1"»(RN~1!) is a Banach space with norm

x+y)—2¢(x)+@(x—y)|? lp
lq’hf(f |q,,pdx+” [90:+2) = 2009+ plx—) dydx) _
RN-1 RN-1xRN-1 lyl

If se R, B*?(RY 1) denotes the image of B'"*(RV~') under the mapping J*~! on RV~ !,
The space B*?(R"~') is a Banach space with norm ||, ,=|J"**1g|, ,.

Now, we define H*P(Q) and B>?(I'). H*P(2) denotes the space of restrictions to
Q of functions in H*P(R™). The space H*?(2) has the norm lull;,,=inf|| U], , where the
infimum is taken over all Ue H*?(R") which equal u in Q. Let {O;} be any open covering
over I' such that there is a C*-homeomorphism &; (j=1,2, ---) which maps
{x’eR"~!;|x’|<1} onto O;, and let {g;} be any partition of the unity subordinate to
the covering {O,}, that is, gJeC°°(F) 0<g;<1 on I', suppg;<= O; and Z g;j=lonT.
B*P(I') denotes the space of functions ¢ on I' such that (g;¢) - ®;€ B* "(R" 1 for all
J. The space B*?(I') has the norm | ¢ |,,I,=Zj | (gj®) o P;jls,,- We remark that since Q is a
bounded domain in R", the norm | ¢ |s,, defined above is always finite. H:2(2) denotes
the space of distributions ue 2'(2) such that yue H*?(R"™) for all y € CP(Q). Bi:E(R)
denotes the space of distributions ¢ € 2'(Q) such that Yo € B*P(R") for all y € CL(Q).
We equip the space H};5(€2) with the topology defined by the seminorms u—s || u||, P
as ¢ range over Cg(£2). It is easy to verify that H};2(Q2) is a Fréchet space. Similarly,
the space Bi:2(£2) can be topologized.

In addition, we recall a relation between H*?(Q2) and B*P(I'). It is well known (cf.
[11], [12]) that the trace map

p: H*»(Q) — B*~'PH(I)
u — ulr .

dydx< o .

is well-deﬁnéd continuous and surjective for s> 1/p.
Finally we introduce a subspace of B*?(I') associated w1th the boundary condition
L. If a(x")®>+b(x')>*>0 on I', we let

Bih (N ={p=a¢p,+be, ; ¢, € B>*(I), p, € B**"»(I)}
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and

| @ lap;sp=10f{l @1 |5, +1 P2 l541,, 5 =00, +b@,} .

Then we can check that the quantity ||, ,,, , is @ norm in the space B{/,(I') and that
the space B{;F,,(I") is a Banach space with respect to the | * |, 5., , n"orm. We remark that

BiE,(D)=B**1X(I" if a=0and b>0on T,
BRI =B*?(I') if a>0 onTl’

and

B+ 2Ty By = BT,

with continuous injections.

2.2. Pseudo-differential operators. Let 2 be an open subset of R". If me R and
0<d<p<l, ST xR") denotes the space of all functions ae C*( x R™) with the
property that, for any compact K< Q and multi-indices a, f, there exists a constant
Ck...p>0 such that we have for all xeK and e RY

| 0g02a(x, 0) | < Cx o 5(1+| Q) PleI+aIB1

We set S~ (2 x RY)=(),,.r ST (2 x RY). A symbol a(x, 0) € ST o(2 x R") is said to be
classical if there exist C®-functions a;(x, 6), positively homogeneous of degree m—j in
6 for |8 =1, such that

0
a~ Y, a;
j=o0

Here a~}) 7 _Oaj means that for any k>0, there exists b e ST (2 x R") such that
a=ay+a,+ - +a;_,+b,. The homogeneous function a, of degree m is called the
principal part of a. ST(Q x R™) denotes the set of all classical symbols of order m.

We call an operator 4 of the following form a pseudo-differential operator of order
m on £:

Au(x)= ” e’ =N (x, y, Ou(y)dydé, ueCg(Q),
2 xRN '

with some ae ST (2 x Q x RY). Let L} (Q) be the set of all pseudo-differential operators
of order mon Q. Weset L™ °(2) =", g L7 +(2). We remark thatif p(x, &) € S} 4(2 x R"),
then the operator p(x, D):

p(x, Dyu(x)=

J e™p(x, HM)dE,  ueCg @),
RN

1
@m)"

is a pseudo-differential operator of order m on , that is, p(x, D)€ L 5(€).
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We recall that a continuous linear operator 4 : CF(2)—2'(R) is said to be properly
supported if the following two conditions are satisfied:

(1) For any compact subset K of €, there exists a compact subset K’ of Q such
that if suppv <K, then we have suppAvcK'.

(2) For any compact subset K’ of €, there exists a compact subset K of Q such
that if suppv N K= @, then we have supp Av N K’ = (. If A is properly supported, then
it maps C§(£) continuously into €’(2), and further it extends to a continuous linear
operator on C*(Q) into 2'(2). Let A€ L} (). A properly supported Be L, () is
called a parametrix for A if the operator B satisfies

{ABEI mod L™ *(Q),
BA=1I mod L™ *(Q).

Finally we cite the following two theorems which will be used in the sequel.

THEOREM 2.1 (Bourdaud [3], Theorem 1). Let Q< R™. Every properly supported
operator A€ LT 4Q2), 0<6<1, extends to continuous linear operators

A: Hid(Q) — Hi ™ (Q) ,
A: Bigé(2) — Bi.™"(Q) ,
for all seR.

THEOREM 2.2 (Hormander [4], Theorem 4.2). Let QcR", 1—p<édé<p<1 and
let A=p(x, D)e L} () be properly supported. Assume that, for any compact K< and
any multi-indices a, B, there exist constants Cg , 3>0, Cx >0 and pe R such that we have
Jor all xeK and | €| > Cg,

|030%p(x, £)| < Cg a5l P(x, ) (1 +] E P11 *981
|p(x, O™ < Cr(1+| D).
Then, there exists a parametrix Be L, (£2) for A.

ReMARK. Evenif 2is an N-dimensional compact C® manifold without boundary,
it is known that Theorem 2.1 is valid, and that Theorem 2.2 is also valid by virtue of

the condition that 1 —p<d<p<]1.

§3. Proof of Theorem 1. Part 1.

In this section, after we reduce Problem (*) to the boundary, we shall prove the
injectivity of the operator . If s>2, it is well known that the Dirichlet problem:

{Aw=0 in Q,
w=¢ on I',
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has a unique solution we H*?(Q) for any ¢ € B*~ 1/P"P(I'). Letting w= P¢, the operator
P: Bs~YPr(y— HSP(Q) is called the Poisson operator. Moreover, according to Seely
[10] (Theorems 5 and 6), the operator P maps B*~ !»P(I') isomorphically onto
N(4, s, p)={we H*?(Q) ; Aw=0}, the trace on I' of elements in N(4, s, p) can be defined
and the inverse of P is the restriction map; wv—»wl r-

Let T be

T: C*°(I') — C=(I")
0] —— LPp.
Then we have
T=all+5b,

where I1p =(6/6v)(P¢)| r- We remark that the operator I1 is a classical pseudo-differen-
tial operator of first order on the boundary I'. By Theorem 2.1, the operator T can
be extended to a continuous linear operator:

T: B“P(I'") — B~ 12(I)

for all teR.
Now we reduce Problem (*) to the study of the operator T on I We have the
equivalence of the regularity of ./ with that of T as follows (cf. [15], Theorem 3.9):

THEOREM 3.1. For any s>2, the following two assertions are equivalent:

(1) The condition that ue L?(Q), Aue H*~*?(Q) and Lu e B{,,) ~'/»P(I') implies that
ue H*>?(Q).

(2) The condition that e B~Y»P(I') and Toe B*~'»’(I') implies that @e
Bs~Pr(),

PrROOF. First we show that the assertion (1) implies the assertion (2). We let
@eB~YPX(I) and Tpe B*~'/?»P(I'). And we set u=P¢p. Then, we have that ue LP(Q),
Au=0 in Q and Lu=LPp=Tepe B*~'»P(I'), By the assertion (1) we obtain that
Pgp e H*?(Q). It follows that ¢ € B*~ 1/P-P(I),

Next, we show that the assertion (2) implies the assertion (1). We let ue L?(Q),
Auc H*"*P(Q) and Lu=aq,+be,e B »?(I') where ¢,eB*"'"'»XI) and
@, € B*~YPP(I"), Combining Theorems 3.1 and 3.3 of [15], we have that the Neumann
problem:

Av=Au in Q,

@_=(p1 on I,

ov

has a unique solution ve H*?(Q). Let w=u—v. We obtain that we L?(Q2) and Aw=0
in Q. It follows that there exists ¢ € B~ /»?(I') such that Po =w. But we have by the
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assertion (2) that ¢@eB* 'PP(I'), since To=LPp=Lw=Lu—Lv=ap,+bp,—
a(0v/dv) — bv=Db(, —v) € B*~ '/P?(I'). Hence we obtain that u=w+v= P +ve H*?(Q).
The proof of Theorem 3.1 is now complete.

Next, about properties of the operator I, we have the following:
THEOREM 3.2. (1) The operator II is strongly elliptic, that is, we have, for all
peC=(I),
(3.1) RCJ Mo - pdo=ci| @iz 2—cl@l2y.2,
r

with some constants ¢, >0 and c,>0. Here do is the surface element on I'.

(2) Let pi(x’, &) +/—1q,(x', &) be the principal symbol of the operator II. Then,
we have

(3.2) P, E) 2ol &

on the bundle T*(I') \ {0} of non-zero cotangent vectors with some constant c,>0. Here
| & | is the length of &’ with respect to the Riemannian metric of T induced by the natural
metric of RY.

Proor. (1) By the divergence theorem, for ue C*(Q2), we have

_Re” Au-iidx = j
fo) nul

—Re f @) u(x")do

N ap)
f J (? ; (x) C(x))l u(x) |*dx
N

—5 |, X 5 mlute) P

Taking u= P where @ € C*(I'), we have

Re f i(P¢)-¢da=f > -t = o) O (Pp)x
r ov 0

ij=1 xj

abf
I f (2 j}:la—m c(x))quode

~L f S bi(x') -yl ¢ 2do
2 Jri=1
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Letting
osup(on-3 £ 52 )}
K=max<0, sup

2 j=1 5
and

N .

cs=max{l, sup Z b’(x’)nj} ,
r j=1

we have

(pr)

N
ReJ~ H(p-(;')daZaOJ‘J. Y dx Jf IP(plzdx———j | @ |*do
r Qi=1

C
=a0"P(P”%,2—(ao+K)“P(P"(2),2_—23—J\ |(p|2da .
r

From Theorem 3.16 of Mizohata [8], we obtain that for any ¢ > 0, there exists a constant
C(¢) >0 such that

f | p(x") |°do <e|| Po|3,,+ C(&) Pol3,, -
r

Hence, taking e=a,/c3, we have

c;C
Ref M- o= ||P<p||%,2—(ao+1<+ D) )nP 132
r
Since the operator P maps B!~ 1/2:2(I") isomorphically onto N(4, t, 2) for all € R, we have

Ref Ho-pdo=ci|@l}2—cale 12122
r

with some constants ¢, and ¢, >0.

(2) Itis known (cf. [5]) that the inequality (3.1) implies the strong ellipticity (3.2)
of the operator II.

The proof of Theorem 3.2 is now complete.

Using Theorem 3.2, we shall prove the hypoellipticity of the operator T (see [15],
Lemma 4.1):

THEOREM 3.3. Let 1<p<oo. Assume that the conditions (A.1) and (A.2) are
satisfied. Then, for any distribution ¢ on I', the condition that To € B¥?(I") implies that
@ € B*P(I') for any s€ R. And further we have, for t<s,

@01, <Cs i T s, +1@1s,p)




112 KENICHIRO UMEZU

with some constant C,,>0.

In order to prove Theorem 3.3, we introduce some lemmas. The first lemma is (cf.
[15], Lemma 4.2)

LEMMA 3.4. Let t(x', £") be a symbol of the operator T=all +b. Assume that the
conditions (A.1) and (A.2) are satisfied. Then, for any x' €T, there exists a neighborhood
U(x') of x' such that, for any compact subset K< U(x") and any multi-indices a, B, we
have for x'eK and | &’ |>C,

(3.3) |03 0% 1(x", &)< Crapl 10x", EN|(1+| & )21+ /281
(3.4 | l(x", ENIT <Gy
with some constants Cg , g and Cx>0.

ProOOF. First we prove the inequality (3.4). By Theorem 3.2, the operator IT has
the symbol

pi(x’', 6’)+\/_——1q1(x’, EN+po(x’, C’)+\/-_——lqo(x', &) +terms of order < —1,
where p;, g;€ 8% o(I') (j=0, 1) and p,(x’, £)>co| &' | on T*(I')\ {0}. It follows that
(x', E)y=a(x)[py(x', &) +/—1q,(x', &)]
+{b(x) +a(x ) po(x', &) +/—1ao(x', E)1}
+terms of order < —1.
If a(x")>0, we can take | ¢’| enough large such that
| 6(x’, &) [ =1 a(x) Py (X', £) +po(x’, £)]+b(x") |
- Z[a(x)pi(x', &) +po(x’, )] | —b(x")
22 a(x)| ¢'|—b(x')

z% a(x) &' |+1.

If a(x")=0, for | ¢’| enough large, we have
(3.5) [ #(x’, &)= b(x") .
Noting that the set I'y={x’'e I ; a(x')=0} is compact, it follows that
| 2(x’, &) |=Cla(x")| €' |+ 1} for enough large |¢'|.

Here and in the sequel, the letter C denotes a generic positive constant. This proves the
inequality (3.4).
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Secondly we verify the inequality (3.3). When |«|=1 and | 8| =0, we can take | €]
enough large such that

|08 1(x", &)< Cla(x)+&' |71
<SCA+E D™ a1 &' |+1)
By the inequality (3.5), we have
|02 ¢(x", &) < Ce(x’, &) [(1+]&' ).

This proves the inequality (3.3) with |a|=1 and | 8|=0.
When|a«|=0and|f|=1, we need the following lemma to prove the inequality (3.3).

LEMMA 3.5. Let f be a non-negative C>-function of R such that
sup| f"(x)|<c, ,
xeR

with some constant c,>0. Then, we have
| f' () |</2ca/f(x) on R.
Now we continue the proof of Lemma 3.4. For | ¢’| enough large, we have
105 10x", &) < C(105 a(x") || &' [+ a(x) & |+ .
From Lemma 3.5 and the inequality (3.5), it follows that
|05 1(x', €)1 < C(/a(x)| €' | +a(x")| &' | +1)
<C{E 1Y a(x) & |+ D2+ (a(x)] &' |+ 1)}
SClux, EDNAE 12 ux', )72 +1)
<Clux', ENIA+|& D2,

This proves the inequality (3.3) with |a|=0 and | 8|=1.
For general case that |a|+|B|=k (k=2,3,---), we can similarly prove the
inequality (3.3). The proof of Lemma 3.4 is complete.

Using Lemma 3.4, we prove Theorem 3.3.

PROOF OF THEOREM 3.3. First we remark that we can have a finite number of
local charts {(Uj, x;)}7-, of the boundary I such that the estimates (3.3) and (3.4) hold
in each of them. One can check that the operator T satisfies the conditions of Theorem
2.2 with u=0, p=1 and 6=1/2. So, by Theorem 2.2 there exists a parametrix
SeL{,, ,(U;) of T. Let {@;}7=1 be a partition of unity subordinate to the covering
{U;}7=1, and let Y ;€ CF(U,) be such that y ;=1 on supp ¢;. Then, the operator T is de-
composed as follows:
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To= _gl @;To= -’; ei{TY 0+ T(1 -y )0}

= _gl o; Ty 0+ -21 o;T(1-¥je .

The second term of the right-hand side belongs to L~ *(I") since @i(1—y;)=0. The
proof of Theorem 3.3 is reduced to those of the following assertions:

(1) If y;0eB"?(U;) and Ty ;e B*P(U;), then we have y ;0 € B>?(U,).

@ 19,01, <Col| TY;02,+1¥,0|2,) with some constant C,,>0.

We shall prove the assertion (1). Since the operator T has the parametrix S, we
obtain that

STYjo=y;0o+ Ry 0,

where Re L™ °(U;). Theorem 2.1 tells us that the operator S maps B{:2(I') continuously
into itself for all se R. Hence it follows that ;¢ € B*P(U;). And further we have the
inequality (2). The proof of Theorem 3.3 is complete.

Combining Theorem 3.1 and Theorem 3.3, we have the following:

THEOREM 3.6. Let 1<p<oo. Assume that the conditions (A.1) and (A.2) are
satisfied. Then, for any s>2 the condition that uelLP(Q), Auec H*~%?(Q) and
Lue B ;,~ "P?(I') implies that ue H*?(Q).

Now, we shall show the injectivity of the operator «#. For any s> 2, let ue H*>?(Q),
and suppose that

3.6) Au=0 in Q
and
3.7 Lu=0 on I'.

Then, we shall show that =0 in Q. First we obtain by Theorem 3.6 that ue H"P(Q)
for all 1>2. Hence, using the Sobolev imbedding theorem, we have ue C®(2). We
suppose that we do not have u(x)=0 for all x e Q. Then, by replacing u by —u if u(x) <0
in Q, we have only to consider the two cases:

@) mgx u=u(xy)>0 at some xy€Q2.

ii maxu=u(x,)>0 at some x' el .
a 1 1

If max 5 u=u(x,)>0, it follows from the strong maximum principle (cf. [9], Chap.
2, Sec. 3, Theorem 6) that u(x) = u(x,), x€ Q. By (3.6) and the condition (A.3), we obtain
that 0 = Au(x)=c(x)u(x) <0. This leads to a contradiction.
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If maxgzu=u(x})>0, it follows from the boundary point lemma (cf. [9], Chap.
2, Sec. .3, Theorem 8) that (du/dv)(x;)>0. By (3.7) we have that 0=Lu(x))=
a(x)(0u/0v)(x) + b(x')u(x,). On the other hand, if a(x,)>0, then a(x)(du/dv)(x})
+b(x))u(x1)>0. If a(x},)=0 then, a(x’)(0u/ov)(x'y) + b(x' u(x) = b(xDu(x) > 0.
These assertions also lead to a contradiction. Hence, we have u=0 in .

We have finished the proof of the injectivity of the operator .

§4. Proof of Theorem 1. Part 2.

In this section we shall prove the surjectivity and continuity of the operator 7.
We consider the surjectivity of the pseudo-differential operator T to which we reduce
Problem () on the boundary in Section 3. We recall the operator T:

T: B-~Ypp([) —— Bs~1-1pp(T) s>2,
® ——  allp+bep,

where I1¢p=(9/0v)(Pg)|r. We introduce an operator J in B*~V/PP(I') (s>2) associat-
ed with T as follows:
(a) The domain 2(J) of 7 is the space

D(T)={peB*~PxI) ; Tpe B VPH(I)} .

b) To=To, peD(T).
We remark that the operator J is densely defined, and closed in B~ V/P-2(I"),
Next, instead of Problem (*), we consider the following problem:

A—-NDu=f in Q,
(%),
Lu=¢ on I,
where 1>0. We associate with Problem (), a linear operator A
o, H/(Q) > HS™ 2,p(Q) X B:;b% - 1/p.p( I)
u — ((A—A)yu, Lu) .

We remark that the operator o/, coincides with ./ when A =0. We reduce Problem (%),
to the study of a pseudo-differential operator on the boundary similarly as in the case
of Problem (*). The Dirichlet problem:

A4-)w=0 in Q,
w=¢@ on F,

has a unique solution we H"?(Q) for any @ e B'~YPP(I') when te R and 1>0. The
Poisson operator P(A):

P(2): B*"1PHT) — H*2(Q),
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is given by the formula that P(A)¢ =w. Further the operator P(1) maps B'~'/?»P(I')
isomorphically onto N(A4, t, p)={ue H**(Q) ; (A— A)u=0 in Q} (te R) and its inverse is
the trace operator on I'. We let

T(): C=>(I) — C=()
¢ +—— LP(A)o, A=0.
By Theorem 2.1, the operator T(1) is extended to a continuous linear operator
T(2): B*~YrP(I')— B*~1~1P-P(I) (te R). As in the case of the operator T, we introduce

a linear operator J (4) in B*~YP-P(I') (s>2) as follows:
(@) The domain 2(7 (1)) of J(4) is the space

DT (V)={peB*~'PXI) ; T(A)e B>~ 1/P/(I)} .

(®) T De=T(De, pe DT (1).
We remark that the operator (1) coincides with the operator  when A=0, and that
the operator (1) is densely defined, closed in B*~1/P-P(I).

Further, introducing an auxiliary variable y of the unit circle

S=R/[2nZ
we consider the following problem (*)substituted for Problem (*):
Ali=(A+0*/oy»i=f in Qx8S,
(*) di

Li=a2 4bi| =¢ on I'xS.
ov

rxs

Similarly, we reduce Problem (#%) to the boundary I' x S. The Dirichlet problem
{ Aw=0 in QxS§,
w=¢ on I'xS,

has a unique solution we H*?(2 x S) for any ¢ e B'~Y/PP(I' x S) (te R). The operator
P: B~ UPP(I x §)— H"P(Q x S) is defined by the formula P@=. Further the operator
P maps B'~'P(I' x S) isomorphically onto N(A,t, p)={iic H*?(2x S) ; Aii=0 in
Q x S} (te R) and its inverse is the trace operator on I' x S. We let
T: C°('xS) — C*°(I'x S)
¢ —— LP¢ .
Then we can write
T=all+b,

where IT1¢=(8/0v)(P@)|rxs- Then, the operator IT is a classical pseudo-differential
operator of first order on I' x S. The symbol of the operator IT is given by the formula
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[ﬁl(x’a 6l9 Vs ﬂ)+\/ - 1q~1(x,9 6’9 Ys ’1)]
+ [ﬁo(x,’ élay, 17)+\/ - lqo(x,s é'a Y '7)]

+terms of order < —1

where §;(x', &', y, 1) =E,(1 &' P +n?)Y? on T*(I' x S)\ {0} with some constant &,>0.
Hence, we find that the operator T=all + b is a classical pseudo-differential operator
of first order on I' x S and that the symbol #(x’, &', y, n) of T is given by the formula

a(x,)[ﬁl(x,’ éi,y9 'I)+‘\/ - lql(x,’ 5',}’, ")]
+ {b(x’)+a(x,)[ﬁ0(xl9 él,y, '1) +‘\/ -1 qo(x', Clsy’ ’1)]}

+terms of order < —1.

Further, by Theorem 2.1, the operator T is extended to a continuous linear operator
T: B YPP(I'x §)—>B'~1~1PX[' x S) (teR). As in the case of T, we find that for
(x’, y)eI' and multi-indices a, B there exist constants C>0 and €’ >0 such that

’ ag'.ﬂag',y;(x” é,’y’ ’7) |
<C|1(x", &y, M1 +( & |2+n>)t2)~lel+a/ipl
|7, &y, )|~ <C

for (1¢'12+n2)2>C". By noting Remark of Theorems 2.1 and 2.2, it follows from
Theorems 2.1 and 2.2 that there exists a parametrix for T in LY ,,,(I' x S), and that the
parametrix is bounded in B*P(I" x S) for all se R. Hence it follows that the condition
that ¢ € 2'(I' x S) and T¢ € B*P(I' x S) implies that ¢ € B*?(I" x S) for all se R, and that

I (ﬁls,psés,t(l T(a Is,p+|¢'t,p) ’ t<s

with some constant C,,>0.

As in the case of the operator T, we introduce a linear operator 4 in B*~V/PP(I" x S)
(s=>2) as follows:

(a) The domain 2(J) of  is the space

DT )={¢peB* " PYI'xS); T¢eB ~'PYI xS)} .

b T¢=T¢, pe2(9).
We remark that the operator 4 is densely defined, closed in B*~/P’(I" x S).

Here, we recall that a densely defined, closed linear operator F from a Banach

space X to itself is called a Fredholm operator if the following three conditions are
satisfied:

(1) The null space A°(F) of F has finite dimension.
(2) The range #(F) of F is closed in X.
(3) The range #(F) has finite codimension in X.
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In this case, we introduce the index of F by the following formula:
ind F=dim 4" (F) —codim#(F) .

Now, we have obtained that the operator & maps H*?(Q) injectively into
H*~22(Q) x B, ~'/P(I'), that is, we have dimA'(«)=0. This implies that
dimA#(J)=0 from the definition of J. Hence, the surjectivity of & follows from
-the following four assertions:

PROPOSITION 4.1. indZ is finite.

PROPOSITION 4.2. IfindJ is finite, then there exists a finite subset K< Z such that
ind 7 (A)=0 for all A’=1* with le Z\ K.

PROPOSITION 4.3. indZ (A)=ind T (y) for all A, u=>0.

PROPOSITION 4.4. If the operator  in B*~V/P’(I") with domain D(T) is surjective,
then the map of : H¥P(Q)— H*~%P(Q) x B{; )~ Y»/(T) is surjective.

In fact, combining Propositions 4.1 and 4.2, we have that ind 7 (1")=0 for all
A'=1? satisfying /e Z\ K. Hence, it follows from Proposition 4.3 that ind 9 =0. Since
we have already obtained that dim.A4"(97) =0, we have that codim#(J) =0, that is, the
operator J is surjective. By Proposition 4.4, we find that the operator .« is surjective.

We shall prove the above propositions. First we prove Proposition 4.1. We use the
following result in the proof of Proposition 4.1.

LEMMA 4.5 (Peetre). Let X, Y be Banach spaces, X = Z a compact injection and F
a closed linear operator from X into Y with domain 9(F). Then, the following two assertions
are equivalent:

(i) dimA ' (F)<oo and R(F) is closed in Y.

(ii) There exists a constant C>0 such that

Ixlx<C(lFxlly+1xlz), xeD(F).

Applying Lemma 4.5t0o F=9, X=Y=B*"YPP(I'x ), Z=B"?(I' x S), t <s— 1/p,
we have dim 4" (F) < oo and R(S) is closed in B*~1/P»([ x §).

We consider the adjoint operator * of . Let 7(x’, £,y, n)* be a symbol of T*.
Using a well known asymptotic expansion formula with regard to symbols of adjoint
operators, we have

~ 1 —
t(x,s f',}’, ﬂ)* ~ Zo ; ag’,an’,y(t(xla élay’ ﬂ)) s
a2 .

where D,. ,= —./—10,.,. By an argument as in the case of T, we find that

‘ li;l —s+1/p,p’ < é*(l T'F‘ —-s+1/p,p’ + I ./';lt,p’) s '176 9('f*)
with some constant C* >0, where p’=p/(p—1) and 1< —s+ 1/p. By applying Lemma
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45t0 F=9 * X=Y=B st1»P(I'x §), Z=B"?'(I' x S), t « —s+ 1/p, and by the closed
range theorem, it follows that

codim@(J9)=dimAN (F *¥)< o .
Hence we have
ind9 =dimA4(9)—codimB(J )< ,
which implies that the proof of Proposition 4.1 is complete.

We can prove Propositions 4.2 and 4.3 similarly as in Section 8.4 of [14] and
Corollary 5.3 of [13], respectively. Next, we prove Proposition 4.4. '

PROOF OF PROPOSITION 4.4. Let fe H* 2?(Q), p € B, V/»P(I') where g =aqp, +
bg, with @, € B>~ »?(I") and ¢, € B*~ !~ YPP(I'). Combining Theorems 3.1 and 3.3 of
[15], we have that the Neumann problem:

Av=f in Q,
ov

—_— on I,
oy @,

has a unique solution ve H*?(Q). Since the operator 7 is surjective, there exists
Y € B~ Y/PP(T) such that Iy =b(v|r— ¢,). We let w= Py. Then it follows that

we H*?(Q),
Aw=0 in Q,
Lw=b(v|r—¢,) on TI.
Let u=v—w. We have
ue H*?(Q),
Au=f ' , in Q,
Lu=ap,+bgp, on I'.

This proves that the mapping & is surjective from H*P(Q) onto H*™ %P(Q) x
B{, )~ '/"P(I'). The proof of Proposition 4.4 is complete.

Finally, we can trivially prove that the operator o is continuous. Hence, by the
-closed graph theorem, we have that the inverse of </ is continuous. We have obtained
that the operator &/ is homeomorphic.

§5. Proof of Theorem 2.

(1) This section is devoted to the proof of Theorem 2. We start with the proof
of the assertion (1.1). We use the method due to Taira ([13], Theorem 7.3). By Green’s
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formula, we have that for u, ve C*(Q)

Jf (Au-ﬁ—u-A_*v)dx= — u{ﬁ—( i b‘ni)ﬁ}da+-[ Ou
Q r LOv \i=1 r ov

Here do is the surface element on I'. If » and v satisfy the boundary conditions

aﬁu—+bu=0 on I,
ov

ov N o
a—+<b—al| Y b'n)tv=0 on T,
ov i=1

respectively, these conditions are represented as follows:

ﬁ ,,
- (3)-(5) o r
w (& . _|\s/ \o '
E—(‘; b‘ni)v D

Since (a, b)#(0, 0) on I', we have

*vdo .

ou
— u
ov
det | =0 on I.
N
_a_v_( Y b‘n,)ﬁ ]
ov i=1
That is,
Ay N
ﬁﬁ—u{ﬁ—( > b"n,)ﬁ}=0 on I.
ov ov i=1

Hence we have
 Au, 5y ={u, A*v)  for ueCXDnD(4,), veC* ()N D(4,).

Here <, ) denotes the pairing of LP(2) x L?(£2). Since the spaces C3($2) N 2(A,) and
C*() N 2(A,,) are dense in D(4,) with norm || - | 2.p and 9(4,,) with norm || - ||, .,
respectively, we obtain '

- (Au, 5y={u, A*)  for ueD(4,) and veD(4,).

This proves that 4,.c A}. Here A} denotes the adjoint operator of 4,.
Next we shall show that 4, =A}. By virtue of the condition (A.4), we can apply
Theorem 1 with s=2 to 4, as well as 4,, so that it follows that there exists a constant
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2.<0 such that
A+4,): 24,) — L"(Q),
(A+4,) : 2(4,) — LA(Q),
are both bijective. Therefore, for any vé@(A;), there exists vy € 2(4,) such that
(A+A,wo=@A+A47)v.
For any ue 2(A4,), we have

A+ A, v—v0) =ty (A+ Ay )vo— (A+ A20)=0.

Since the operator A+ 4, is bijective, this implies that v=uv,. Hence we obtain that
A, = A}. The proof of the assertion (1.1) is complete.

Secondly we shall prove the assertion (1.2). Let 1<p<oo, and let A, be one of
eigenvalues of 4, and u,, an eigenfunction for the eigenvalue A,. We can write A Plp= Ay
This implies that

u,e H*?*(Q),
(A—Ayu,=0 in @,
Lu,=0 on I'.

By Theorem 3.6 we have u,€ H*?(2) for all s>2. From the Sobolev imbedding theorem,
it follows that u,e C°°(Q) This implies that u,e 2(4,) for all 1<g<oo. This proves
that the elgenfunctlons are common to all operators 4, (1 <p<o0), and further this
implies that the eigenvalue 4, of 4, is an eigenvalue of A Hence, it follows that the
eigenvalues are also common to all operators A,(1<p< oo) We have finished the proof
of the assertion (1.2).

Thirdly we shall prove the assertion (1.3). In view of the assertion (1.2), we shall
show the assertion (1.3) under the situation that p=2. We shall prove that

Re(d,u, ) <K|ul}, ued(4,),

with some constant K. Here ( , ) is the inner product in L*(9).
By the divergence theorem, for ue C2(Q) N D(A,), we have

- 2Re(A2u, u)=— {(Azu,u) +(A,u, W)}

.[ntjl

— J. {_614_ (x)- u(x’)+ (x ). u(x’)}da+J.
r

f a'(x) ——( ) - (x)dx
nij=1

(x)l u(x)|*dx

Qi=1 0X;
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Z bI(x"n;| u(x") |>do — 2f f c(x)| u(x) |>dx

ri=1

> —f {—— x)- u(x')+—~(x') u(x’)+ Z bi(x")n; |"(x)|2}

_zﬁ{c( ;la }|u(x)|2dx

We estimate the first term of the right-hand side as follows.

[ {2 -+ 2 ey B  u(x) * o
rLov ov i=1

__ f {ﬁ ) w)+ 2 () ux)+ 3 b"(x')n,-lu(x’)l’}dv
M\ To v i=1

ov
=f {Zb(x,) _ i bj(x')n,}lu(x’)lzdazo ,
r\ro a(x’) ji=1

because the conditions (A.1) and (A.4) are satisfied.
Next, we set _
1 Y ob'

K= sup (c(x)——z— Zl P
j=1 0x;

(x))< 0 .

And, we obtain that
—2Re(A4,u, u)> —2K||ul|?, ueC*(Q) N 2(4,),
that is, |
Re(A4,u, u) < Kl|u|?, ueC*(D N o(4,).
Since the space C*(Q) N D(4,) is dense in D(4,) in the | - ||, , norm, it follows that
Re(A4,u, u)<K|ul, ueP(4,).

This proves the assertion (1.3).
(i) From the assertion (1.2), we shall prove the assertions (1 4)—(1 8) when p=2.
We need the following theorem to show these assertions.

THEOREM 5.1. Let 1<p<oo. Assume that the conditions (A.1) and (A.2) are
satisfied. Then, we have that for any ¢>0, there exists a constant r(€)>0 such that the
resolvent set p(A,) contains the set Z(e)={A=r%e" ; r>r(c), —n+e<0<n—s}, and that
the resolvent (A,— A)™! satisfies the estimate:
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n('A,,—A)-ws—‘Cf—l), 1e2(),

with some constant C(¢) >0 depending on ¢.

We can similarly prove Theorem 5.1 as in Theorem 6.1 of [15].

‘ First, the assertion (1.4) immediately follows by Theorem 5.1. Secondly, by
Theorem 3.6 we obtain that 2((4,)*) c H***(Q), k=1, 2, - - -. Hence the assertions (1.5)
and (1.7) follow from the assertion (1.4), by applying Theorem 15.1 of Agmon [2]. The
assertion (1.6) immediately follows by the assertion (1.5). Finally we shall prove the
assertion (1.8). Since we have the assertion (1.4), it follows from Theorem 16.5 of Agmon
[2] that the generalized eigenfunctions are complete in L*(Q2). And since, by Theorem
1, Theorem of Agmon [1] holds in the case that a(x’)>0 on I', the assertion (1.8)
follows from Theorem of Agmon [1].
The proof of Theorem 2 is now complete.
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