Correction to: A Characterization of the Poisson Kernel Associated with SU(1, n)

(Tokyo Journal of Mathematics, Vol. 11, No. 1, 1988, pp. 37-55)

Takeshi KAWAZOE and Taoufiq TAHANI

Keio University and Université de Lille I

In Corollary 6 (iii), which appears in page 45 of the paper above, the numerator in the right hand side of the second equation should be equal to 4 instead of 2. As a consequence the numerators $2(2n^2-9n+1)$ and $4n(6n^2+5n-5)$ in (21) must be changed into $-2(n^2+3n+2)$ and $8n(3n^2+n-1)$ respectively, and then the equation below (24) into $A = \overline{A}$. Therefore, the argument in p. 51 that deduces (8d) collapses. We replace it as follows.

Let F be a real valued, C^2 function on G/K satisfying F(0) = 1 and (2a), (2b), (2c) in Lemma 1. We here put $[F](g) = \int_M f(mg) dm (g \in G)$ and R = F - [F]. Then [F] satisfies [F](0) = 1, (2a) and (2c), and R satisfies R(0) = 0, (2a) and $(\partial R/\partial \zeta_i)(0) = 0$ $(1 \le i \le n)$. Especially, if we denote by $[F] = \sum_{N=0}^{\infty} [F]_N$ (resp. $R = \sum_{N=0}^{\infty} R_N$) a homogeneous expansion of [F] (resp. R) with respect to $\zeta_1, \overline{\zeta_1}, \zeta_2, \overline{\zeta_2}, \cdots, \zeta_n, \overline{\zeta_n}$, we see that

(1a)
$$[F]_0 = 1$$
, $[F]_1 = n(\zeta_1 + \zeta_1)$,

(1b)
$$R_0 = R_1 = 0$$
.

Since $P(\zeta) = P(\zeta, e_1)$ and [F] are *M*-invariant eigenfunctions of *D*, it follows from Proposition 7 that they have expansions of the forms:

(2a)
$$P(\zeta) = \sum_{p,q \ge 0} P_{pq}(r)\phi_{pq}(\dot{\zeta}) = \sum_{p,q \ge 0} Q_{pq}^0(r)\zeta_1^p \overline{\zeta}_1^q ,$$

(2b)
$$[F](\zeta) = \sum_{p,q \ge 0} C_{pq} P_{pq}(r) \phi_{pq}(\dot{\zeta}) = \sum_{p,q \ge 0} Q_{pq}(r) \zeta_1^p \overline{\zeta}_1^q ,$$

where $r^2 = |\zeta|^2$, $\dot{\zeta} = \zeta/r$, $C_{pq} \in C$ and ϕ_{pq} is a spherical harmonic on K/M (see [1], p. 144). Since $\phi_{00}(\zeta) = 1$, $\phi_{10}(\zeta) = \zeta_1$ and $\phi_{01}(\zeta) = \overline{\zeta}_1$, it follows from (1a) that

(3a)
$$Q_{00} = Q_{00}^0 = (1 - r^2)^n$$
,

(3b)
$$Q_{10} = Q_{01} = Q_{10}^0 = Q_{01}^0 = (1 - r^2)^n n$$
.

Received March 25, 1993

Moreover, comparing with the coefficient of $1 = \zeta_1^0 \overline{\zeta}_1^0$ in D[F] = 0, we see from (3a) that

(4)
$$Q_{11} = Q_{11}^0 = (1 - r^2)^n n^2.$$

496

Therefore, noting the relations among coordinates in p. 41, we can deduce that [F] is of the form:

(5)
$$[F] = 1 + n(\xi + \overline{\xi}) + \alpha \xi^2 + \overline{\alpha} \overline{\xi}^2 + n^2 |\xi|^2 - nr^2 + \cdots$$

We next substitute F = [F] + R for (2b) in Lemma 1:

(6)
$$8n^{2}([F]^{2}+2[F]R+R^{2})=|\nabla|^{2}([F])+2\nabla([F],R)+|\nabla|^{2}(R),$$

where $\nabla(f,g) = \Delta(fg) - \Delta(f)g - f(\Delta g)$ and $|\nabla|^2(f) = \nabla(f^2)$. Since $[\nabla([F], R)] = [\Delta([F]R)] = \Delta([F][R]) = 0$, the average of (6) over M is given by

(7)
$$8n^{2}([F]^{2} + [R^{2}]) = |\nabla|^{2}([F]) + [|\nabla|^{2}(R)].$$

Then, comparing with the homogeneous polynomials of degree 2 in (7), we see from (1b) that

(8)
$$8\left[\sum_{i=1}^{n} \left|\frac{\partial R_2}{\partial \zeta_i}\right|^2\right] = \text{the homogeneous polynomial of degree 2}$$

in $8n^2[F]^2 - |\nabla|^2([F])$.

We here let $\zeta = \zeta_0 = (0, \zeta_2, \dots, \zeta_n)$. Then (3) implies that

(9)
$$\left[\sum_{i=1}^{n} \left| \frac{\partial R_2}{\partial \zeta_i} \right|^2 (\zeta_0) \right] = 0$$

This means that $\partial R_2/\partial \zeta_i = \partial R_2/\partial \overline{\zeta_i} = 0$ ($2 \le i \le n$), so R_2 is a function of ζ_1 and $\overline{\zeta_1}$. Since [R] = 0, we can deduce that

(10)
$$R_2 = 0$$
.

Then, it follows from (1b) and (10) that $F_i = [F]_i$ (i=0, 1, 2) and thus, F is of the same form as (5). Therefore, noting the relations among coordinates in p. 41, we see that $G = e^{-2n\tau} F$ is of the form:

(11)
$$G = 1 + a\xi^2 + \bar{a}\overline{\xi}^2 + \cdots$$

Therefore, in $H_2(\xi, z)$ (see p. 49) $B = D_i = 0$ ($2 \le i \le n$). Then it follows from (15) and (16) that $B = \operatorname{Re}(A) = 0$, so we recover (8d).

The idea used in this correction can be generalized to the case of Sp(n, 1) (see [2]).

References

 K. D. JOHNSON and N. R. WALLACH, Composition series and intertwining operators for the spherical principal series. I, Trans. Amer. Math. Soc. 229 (1977), 137-173.

CORRECTION

[2] T. KAWAZOE, A characterization of the Poisson kernel on the classical rank one symmetric spaces, Tokyo J. Math. 15 (1992), 365-379.

Present Addresses: Takeshi Kawazoe Department of Mathematics, Keio University, Hiyoshi, Kohoku-ku, Yokohama, 223 Japan.

Taoufiq Tahani U.F.R. de Mathématiques, F-59655 Villeneuve d'Ascq Cedex, France.