Correction to: A Characterization of the Poisson Kernel Associated with $\boldsymbol{S U}(1, n)$

(Tokyo Journal of Mathematics, Vol. 11, No. 1, 1988, pp. 37-55)

Takeshi KAWAZOE and Taoufiq TAHANI

Keio University and Université de Lille I

In Corollary 6 (iii), which appears in page 45 of the paper above, the numerator in the right hand side of the second equation should be equal to 4 instead of 2 . As a consequence the numerators $2\left(2 n^{2}-9 n+1\right)$ and $4 n\left(6 n^{2}+5 n-5\right)$ in (21) must be changed into $-2\left(n^{2}+3 n+2\right)$ and $8 n\left(3 n^{2}+n-1\right)$ respectively, and then the equation below (24) into $A=\bar{A}$. Therefore, the argument in p. 51 that deduces (8 d) collapses. We replace it as follows.

Let F be a real valued, C^{2} function on G / K satisfying $F(0)=1$ and (2a), (2b), (2c) in Lemma 1. We here put $[F](g)=\int_{M} f(m g) d m(g \in G)$ and $R=F-[F]$. Then $[F]$ satisfies $[F](0)=1$, (2a) and (2c), and R satisfies $R(0)=0$, (2a) and $\left(\partial R / \partial \zeta_{i}\right)(0)=0(1 \leq i \leq n)$. Especially, if we denote by $[F]=\sum_{N=0}^{\infty}[F]_{N}$ (resp. $R=\sum_{N=0}^{\infty} R_{N}$) a homogeneous expansion of $[F]$ (resp. R) with respect to $\zeta_{1}, \bar{\zeta}_{1}, \zeta_{2}, \bar{\zeta}_{2}, \cdots, \zeta_{n}$, $\bar{\zeta}_{n}$, we see that

$$
\begin{equation*}
[F]_{0}=1, \quad[F]_{1}=n\left(\zeta_{1}+\bar{\zeta}_{1}\right), \tag{1a}
\end{equation*}
$$

$$
\begin{equation*}
R_{0}=R_{1}=0 \tag{1b}
\end{equation*}
$$

Since $P(\zeta)=P\left(\zeta, e_{1}\right)$ and $[F]$ are M-invariant eigenfunctions of D, it follows from Proposition 7 that they have expansions of the forms:

$$
\begin{align*}
& P(\zeta)=\sum_{p, q \geq 0} P_{p q}(r) \phi_{p q}(\dot{\zeta})=\sum_{p, q \geq 0} Q_{p q}^{0}(r) \zeta_{1}^{p} \bar{\zeta}_{1}^{q}, \tag{2a}\\
& {[F](\zeta)=\sum_{p, q \geq 0} C_{p q} P_{p q}(r) \phi_{p q}(\dot{\zeta})=\sum_{p, q \geq 0} Q_{p q}(r) \zeta_{1}^{p} \bar{\zeta}_{1}^{q},} \tag{2b}
\end{align*}
$$

where $r^{2}=|\zeta|^{2}, \dot{\zeta}=\zeta / r, C_{p q} \in C$ and $\phi_{p q}$ is a spherical harmonic on K / M (see [1], p. 144). Since $\phi_{00}(\zeta)=1, \phi_{10}(\zeta)=\zeta_{1}$ and $\phi_{01}(\zeta)=\bar{\zeta}_{1}$, it follows from (1a) that

$$
\begin{align*}
& Q_{00}=Q_{00}^{0}=\left(1-r^{2}\right)^{n}, \tag{3a}\\
& Q_{10}=Q_{01}=Q_{10}^{0}=Q_{01}^{0}=\left(1-r^{2}\right)^{n} n . \tag{3b}
\end{align*}
$$

Moreover, comparing with the coefficient of $1=\zeta_{1}^{0} \bar{\zeta}_{1}^{0}$ in $D[F]=0$, we see from (3a) that

$$
\begin{equation*}
Q_{11}=Q_{11}^{0}=\left(1-r^{2}\right)^{n} n^{2} \tag{4}
\end{equation*}
$$

Therefore, noting the relations among coordinates in p. 41, we can deduce that $[F]$ is of the form:

$$
\begin{equation*}
[F]=1+n(\xi+\bar{\xi})+\alpha \xi^{2}+\bar{\alpha} \bar{\xi}^{2}+n^{2}|\xi|^{2}-n r^{2}+\cdots . \tag{5}
\end{equation*}
$$

We next substitute $F=[F]+R$ for (2b) in Lemma 1:

$$
\begin{equation*}
8 n^{2}\left([F]^{2}+2[F] R+R^{2}\right)=|\nabla|^{2}([F])+2 \nabla([F], R)+|\nabla|^{2}(R), \tag{6}
\end{equation*}
$$

where $\quad \nabla(f, g)=\Delta(f g)-\Delta(f) g-f(\Delta g)$ and $|\nabla|^{2}(f)=\nabla\left(f^{2}\right)$. Since $\quad[\nabla([F], R)]=$ $[\Delta([F] R)]=\Delta([F][R])=0$, the average of (6) over M is given by

$$
\begin{equation*}
8 n^{2}\left([F]^{2}+\left[R^{2}\right]\right)=|\nabla|^{2}([F])+\left[|\nabla|^{2}(R)\right] . \tag{7}
\end{equation*}
$$

Then, comparing with the homogeneous polynomials of degree 2 in (7), we see from (1b) that

$$
\begin{align*}
8\left[\sum_{i=1}^{n}\left|\frac{\partial R_{2}}{\partial \zeta_{i}}\right|^{2}\right]= & \text { the homogeneous polynomial of degree } 2 \tag{8}\\
& \text { in } 8 n^{2}[F]^{2}-|\nabla|^{2}([F])
\end{align*}
$$

We here let $\zeta=\zeta_{0}=\left(0, \zeta_{2}, \cdots, \zeta_{n}\right)$. Then (3) implies that

$$
\begin{equation*}
\left[\sum_{i=1}^{n}\left|\frac{\partial R_{2}}{\partial \zeta_{i}}\right|^{2}\left(\zeta_{0}\right)\right]=0 . \tag{9}
\end{equation*}
$$

This means that $\partial R_{2} / \partial \zeta_{i}=\partial R_{2} / \partial \bar{\zeta}_{i}=0(2 \leq i \leq n)$, so R_{2} is a function of ζ_{1} and $\bar{\zeta}_{1}$. Since $[R]=0$, we can deduce that

$$
\begin{equation*}
R_{2}=0 \tag{10}
\end{equation*}
$$

Then, it follows from (1b) and (10) that $F_{i}=[F]_{i}(i=0,1,2)$ and thus, F is of the same form as (5). Therefore, noting the relations among coordinates in p .41 , we see that $G=e^{-2 n \tau} F$ is of the form:

$$
\begin{equation*}
G=1+a \xi^{2}+\bar{a} \bar{\xi}^{2}+\cdots \tag{11}
\end{equation*}
$$

Therefore, in $H_{2}(\xi, z)$ (see p. 49) $B=D_{i}=0(2 \leq i \leq n)$. Then it follows from (15) and (16) that $B=\operatorname{Re}(A)=0$, so we recover (8d).

The idea used in this correction can be generalized to the case of $S p(n, 1)$ (see [2]).

References

[1] K. D. Johnson and N. R. Wallach, Composition series and intertwining operators for the spherical principal series. I, Trans. Amer. Math. Soc. 229 (1977), 137-173.
[2] T. Kawazoe, A characterization of the Poisson kernel on the classical rank one symmetric spaces, Tokyo J. Math. 15 (1992), 365-379.

Present Addresses:
Takeshi Kawazoe
Department of Mathematics, Keio University, Hiyoshi, Kohoku-ku, Yokohama, 223 Japan.

Taoufiq Tahani
U.F.R. De Mathématiques,

F-59655 Villeneuve d’AscQ Cedex, France.

