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1. w-elementary functions.

Let $K$ be an ordinary differential field of characteristic $0$ with a single differentiation
$ D\sim$ . We assume $K$ has the field of constants $C$ which is algebraically closed. We fix a
universal extension $U$ of $K$.

Let $R$ be a differential field extension of $K$ with finite transcendence degree over
$K$. By $\Omega_{R/K}$ denote the R-module of all differentials of $R$ over $K$ and by $d_{R/K}$ the canonical
derivation of $R$ to $\Omega_{R/K}$ . With $D$ there associates an additive endomorphism $D^{1}$ of
$\Omega_{R/K}$ , satisfying

$D^{1}(ad_{R/K}b)=D(a)d_{R/K}b+ad_{R/K}(Db)$ , $a,$ $b\in R$ .

If $a$ and $b$ are algebraically dependent over $C$ then $D^{1}(ad_{R/K}b)=d_{R/K}(aDb)$ holds (cf.

Rosenlicht [3]).
Consider an elliptic curve $E$ defined over $C$ which is given in the Weierstrass form

$y^{2}=4x^{3}-g_{2}x-g_{3}$ , $g_{2},$ $g_{3}\in C$ , $g_{2}^{3}-27g_{3}^{2}\neq 0$ .

By $E(R)$ we denote the set ofall R-rational points on $E$ and by $E(R)^{*}$ the set $E(R)\backslash \{O_{E}\}$ ,

where $0_{E}$ denotes the zero element of $E$. Let $P=(1, x, y)$ be an R-rational point on $E$.
We consider the following three types of peculiar differentials in $\Omega_{R/C}$

$\omega_{I}(P)=\frac{d_{R/C^{X}}}{y}$ and $\omega_{II}(P)=x\frac{d_{R/C^{X}}}{y}$ .

For a point $Q=(1, x(Q),$ $y(Q))\in E(C)^{*}$ by $\omega_{III}(P;Q)$ we denote the differential in $\Omega_{R/C}$

$\frac{1}{2}\frac{y+y(Q)}{x-x(Q)}\frac{d_{R/C}x}{y}$

In case $P\in E(C)$ we think that these differentials take the zero differential. In the case
where $R=C(x, y)$ with $x\not\in C$ any differential $\omega$ in $\Omega_{R/C}$ has the unique expression
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$\omega=df+\alpha\omega_{I}(P)+\beta\omega_{II}(P)+\sum_{Q\in E\langle C)}.\gamma_{Q}\omega_{III}(P;Q)$ ,

where $f\in R,$ $\alpha,$ $\beta,$ $\gamma_{Q}\in C$ (cf. Robert [2, p. 138]).
By $\varphi$ denote the R-linear mapping of $\Omega_{R/C}$ to $R$ with the property that $\varphi d_{R/C}=D$

and by $\phi_{K}$ the R-linear mapping of $\Omega_{R/C}$ to $\Omega_{R/K}$ with the property that $\phi_{K}d_{R/C}=d_{R/K}$ .
The existenoe of these mappings is guaranteed by the universality of the differential
module $\Omega_{R/C}$ . We also note the fact that the equality $D^{1}\phi_{K}=\phi_{K}D^{1}$ holds on $\Omega_{R/C}$ .

Let $R$ be a differential field extension of $K$. We assume the field of constants of $R$

is the same as C. Let $x,$ $y,$ $u$ be three elements of $R$ and $P=(1, x, y)$ be apoint on some
elliptic curveE defined over C. $Wesaythatxisaw_{I}$-element ofu if

$Dx/y=Du$

holds. This means $\varphi(\omega_{I}(P)-d_{R/C}u)=0$ . For simplicity we omit describing $y$ explicitly.
Namely $x$ is regarded as a solution of an algebraic differential equation of the second
order. $Wesaythatxisaw_{II}$-element ofu if

$xDx/y=Du$

holds. We say also that $x$ is a $w_{llI}$-element of $u$ if for acertain point $Q\in E(C)^{*}$

$\frac{1}{2}\frac{y+y(Q)}{x-x(Q)}\frac{Dx}{y}=Du$

holds. We conversely say that $u$ is a $w_{i}$-integral of $x$ if $x$ is a $w_{i}$-element of $u$, where
$i=I,$ $\Pi,$ $III$. We shall furthermore say that $x$ is a $w_{i}$-element over $K$ if it is a $w_{i}$-element
of some element of $K$. For a $w_{i}$-integral we also adopt like wording.

DEFINITiON. A w-elementary extension of $K$ is the terminal differential extension
$W_{n}$ of a finite chain of differential field extensions of $K$ :

$K=W_{0}\subset W_{1}\subset W_{2}\subset\cdots\subset W_{n}$ ,

such that the field of constants of $W_{n}$ is the same as $C$ and for each $ iW_{i}=W_{i-1}\langle x_{i}\rangle$ ,
where $x_{i}$ is over $W_{i-1}i$) algebraic, or ii) a $w_{j}$-element for some $j$, or iii) a $w_{j}$-integral
for some $j$, or iv) an exponential, or v) a logarithm.

Here recall that $x$ is said to be an exponential over $K$ if there is an element $u\in K$

with $Dx/x=Du$ and $x$ is said to be a logarithm over $K$ if there is a nonzero element
$u\in K$ with $Dx=Du/u$ .

We shall prove the following.

THEOREM. Let $a$ be an element of $K$ and suppose that there exists a w-elementary
extension of $K$ in which an integral of $a$ is contained. Then $a$ can be written in the form
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$a=Db+\sum_{j}\alpha_{j}\frac{Db_{j}}{b_{j}}+\sum_{i}\beta_{i}\frac{Du_{i}}{v_{i}}+\sum_{i}\gamma_{i}u_{i}\frac{Du_{i}}{v_{i}}+\sum_{i}\sum_{Q\in E_{i}\langle C)^{*}}\delta_{i}(Q)\frac{v_{i}+v_{i}(Q)}{u_{i}-u_{i}(Q)}\frac{Du_{i}}{v_{i}}$ , (1)

where the sums denote finite sums, $b,$ $b_{j}\in K,$ $i$ runs through an index set of a family of
elliptic curves $E_{i}$ defined over $C,$ $(1, u_{i}, v_{i})\in E_{i}(K)$ , and $\alpha_{i},$

$\beta_{i},$ $\gamma_{i}(Q),$ $\delta_{i}(Q)\in C$ .

For the sake of convenience, we call the right member of the above equality the
w-expression over $K$.

A particular case of this theorem is seen in Abel [1], where he deals only with
algebraic extensions. His result will be explained in the next section.

2. Abel’s theorem.

Let $R$ be a differential field extension of $K$. For simplicity we here assume that $R$

is algebraically closed. Let $E$ be an elliptic curve defined over $C$ and $P_{i}=(1, x_{i}, y_{i})\in E(R)$

$(i=1,2,3)$ with $P_{1}\oplus P_{2}\oplus P_{3}=O_{E}$ . The additive theorem for differentials of the first
kind says

$\sum_{i=1}^{3}\omega_{I}(P_{i})=0$ , (2)

for differentials of the second kind

$\sum_{i=1}^{3}\omega_{II}(P_{i})=\frac{1}{2}d_{R/C}\frac{y_{1}-y_{2}}{x_{1}-x_{2}}$ , (3)

and for differentials of the third kind

$\sum_{i=1}^{3}\omega_{III}(P_{i} ; Q)=\frac{d_{R/C}(s(x(Q))-y(Q))}{s(x(Q))-y(Q)}$ , (4)

where $Q=(1, x(Q),$ $y(Q))\in E(C)^{*},$ $s(x)=y_{1}+((y_{1}-y_{2})/(x_{1}-x_{2}))(x-x_{1})$ .
These formulas are valid evem when some of the $P_{i}$ are equal, though a suitable

limit process must be needed. For instance the quotient $(y_{1}-y_{2})/(x_{1}-x_{2})$ is used in
the form

$\frac{y_{1}^{2}-y_{2}^{2}}{(x_{1}-x_{2})(y_{1}+y_{2})}=\frac{4(x_{1}^{2}+x_{1}x_{2}+x_{2}^{2})-g_{2}}{y_{1}+y_{2}}$

when $P_{1}=P_{2}$ .
The proof can be obtained through the theory of elliptic functions, by the use

of Lefschetz’ principle. Let $z_{1},$ $z_{2}$ be new variables, $z_{1}+z_{2}+z_{3}=0$ and $x_{i}=\wp(z_{i})$ ,
$y_{i}=\wp^{\prime}(z_{i})$ . Formulas (2), (3) are obtained respectively by taking the differentials of

$\sum_{i}z_{i}=0$ , $\sum_{i}\zeta(z_{i})=\frac{1}{2}\frac{\zeta^{\prime\prime}(z_{1})-\zeta^{\prime\prime}(z_{2})}{\zeta’(z_{1})-\zeta’(z_{2})}$ .
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Formula (4) is obtained by taking the logarithmic differential of

$-\frac{\sigma(z_{1}-z_{0})\sigma(z_{2}-z_{0})\sigma(z_{3}-z_{0})}{\sigma(z_{O})^{3}\sigma(z_{1})\sigma(z_{2})\sigma(z_{3})}=\wp’(z_{1})-\wp^{\prime}(z_{0})+\frac{\wp^{\prime}(z_{1})-\wp’(z_{2})}{\wp(z_{1})-\wp(z_{2})}(\wp(z_{O})-\wp(z_{1}))$ ,

where $Q=(1, \wp(z_{0}),$ $\wp’(z_{0}))$ . (cf. Whittaker and Watson [4].) Of course, for verificatio]

straightforward but somewhat tedious calculation will do, or for more details we mus
refer to Abel’s original paper.

Abel’s theorem is this: Suppose $a\in K$ have a w-expression over a certain algebrai
extension of K. Then $a$ has a w-expression over $K$.

$PR\infty F$ . Suppose $a$ has a w-expression over a normal algebraic extension $N$ of $R$

Let $\eta$ denote the differential in $\Omega_{N/C}$

$d_{N/C}b+\sum_{j}\alpha_{j}\frac{d_{N/C}b_{j}}{b_{j}}+\sum_{i}\beta_{i}\frac{d_{N/C}u_{i}}{v_{i}}+\sum_{i}\gamma_{i}u_{i}\frac{d_{N/C}u_{i}}{v_{i}}+\sum_{iQ\in}\sum_{E_{i}\langle C)^{*}}\delta_{i}(Q)\frac{v_{i}+v_{i}(Q)}{u_{i}-u_{i}(Q)}\frac{d_{N/C}u_{i}}{v_{i}}$ ,

whose image $\varphi\eta$ is the w-expression over $N$. For each automorphism $\sigma\in Gal(N/K)w|$

define a K-vector automorphism $\sigma^{*}$ of $\Omega_{N/C}$ by

$\sigma^{*}(ud_{N/C}v)=\sigma(u)d_{N/C}\sigma(v)$ , $u,$ $v\in N$ .
Then clearly $\sigma\varphi=\varphi\sigma^{*}$ holds on $\Omega_{N/C}$ . Since $\sigma$ is a differential one, $\sigma\varphi\eta$ is a w-expressio]
of $a$ over $N$. According to formulas (2), (3), (4), the differential $\xi=\sum_{\sigma\in Gal\langle N/K)}\sigma^{*}|$

consists of differentials in $\Omega_{K/C}$ which are of the same types as in $\eta$ . The expression $\varphi($

is a w-expression of $a|Gal(N/K)|$ over $K$. This completes the proof.

3. Two lemmas.

We here assume that $K$ is algebraically closed.

LEMMA 1. Let $P_{i}=(1, x_{i}, y_{i}),$ $i=1,2$ , be respectively non C-rational points $0$’

elliptic curves $E_{i}$ defined over C. Suppose that $R=K(x_{1}, y_{1})$ is a differentialfield extensio’
$ofK$with thefieldofconstants $C,$ $x_{2},$ $y_{2}\in Randx_{2}$ has apole at $O_{E_{1}}$ . Then $x_{2},$ $y_{2}\in C(x_{1},$ $y_{1}$

and $d_{R/C}x_{2}/y_{2}=cd_{R/C}x_{1}/y_{1},$ $c\in C$.
$PR\infty F$ . Since $d_{R/K}x_{2}/y_{2}$ is a differential of the first kind, there is a $c\in K$ witl

$d_{R/K}x_{2}/y_{2}=cd_{R/K}x_{1}/y_{1}$ . Applying $D^{1}$ , we have

$d_{R/K}(\frac{Dx_{2}}{y_{2}})=D(c)\frac{d_{R\prime K}x_{1}}{y_{1}}+cd_{R\prime K}(\frac{Dx_{1}}{y_{1}})$ ,

and hence $Dc=0$ , namely $c\in C$. Let $t$ denote a uniformizing parameter at $O_{E_{1}}an($

$\wp_{i}\in K((t))$ denote the solution of the equation with a pole at $t=0$
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$(\frac{dy}{dt})^{2}=4y^{3}-g_{i2}y-g_{i3}$ ,

where $g_{i2},$ $g_{i3}$ are the constants appearing in the defining equation for $E_{i}$ . As a matter
of fact $\wp_{i}\in C((t))$ . Then we have a representation $x_{1}=\wp_{1}(t),$ $y_{1}=\wp_{1}^{\prime}(t)$ and $x_{2},$ $y_{2}$ as
elements of $K((t))$ satisfy the equation $dx_{2}/dt=cy_{2}$ . Hence $x_{2}=\wp_{2}(ct),$ $y_{2}=\wp_{2}^{\prime}(ct)$ are
contained in $C((t))$ .

Recall the following well-known fact: Let $R$ be a rational function field over $K$.
Suppose a differential

$\xi=d_{R/C}e+\sum_{j}\kappa_{j}\frac{d_{R/C}e_{j}}{e_{j}}\in\Omega_{R/C}$ ,

the $\kappa_{j}$ being linearly independent over the rational number field, satisfies $\phi_{K}\xi=0$ . Then
$e,$ $e_{j}\in K$.

This turns out to be a special case of the following, by thinking of rational function
fields as subfields of certain elliptic function fields.

LEMMA 2. Let $E$ be an elliptic curve defined over $C$ and $P=(1, x, y)$ a non K-
rational point on $E$ and $R=K(x,y)$ . Given a $d\iota fferential$ in $\Omega_{R/C}$

$\xi=d_{R/C}e+\sum_{j}\kappa_{j}\frac{d_{R/C}e_{j}}{e_{j}}+\lambda\omega_{I}(P)+\mu\omega_{II}(P)+\sum_{Q\in E(C)^{*}}v(Q)\omega_{III}(P;Q)$ ,

with $\kappa_{j},$

$\lambda,$
$\mu,$ $v(Q)\in C,$ $\kappa_{j}$ being linearly independent over the field of rational numbers.

Suppose that $\phi_{K}\xi=0$ . Then $e\in K,$ $\mu=0$ and there exist the $f_{j}\in K$ with

$\sum_{j}\kappa_{j}\frac{d_{R/C}f_{j}}{f_{j}}=\sum_{j}\kappa_{j}\frac{d_{R/C}(e_{j})}{e_{j}}+\lambda\omega_{I}(P)+\sum_{Q\in E\langle C)^{*}}v(Q)\omega_{III}(P, Q)$ .

PROOF. Usual argument on poles readily draws the first assertion. Hence

$\sum_{j}\kappa_{j}\frac{d_{R/K}e_{j}}{e_{j}}+\lambda\phi_{K}\omega_{I}(P)+\sum_{Q\in E\langle C)^{*}}v(Q)\phi_{K}\omega_{III}(P;Q)=0$ .

Let $Q\in E(K)$ and $m_{j}(Q)$ denote the residue of $d_{R/K}e\sqrt e_{j}$ at $Q$ . If $Q$ neither effectively
appears in the above sum nor equals $O_{E}$ , then $\sum_{j}\kappa m_{j}(Q)=0$ , which implies $m_{j}(Q)=0$ .
For $Q$ with $v(Q)\neq 0,$ $\sum_{j}\kappa_{j}m_{j}(Q)+v(Q)=0$ . Hence there exists a $\lambda_{j}\in K$ such that

$\frac{d_{R/K}e_{j}}{e_{j}}=\lambda_{j}\phi_{K}\omega_{I}(P)+\sum_{Q}m_{j}(Q)\phi_{K}\omega_{III}(P;Q)$ ,

with $\lambda+\sum_{j}\kappa_{j}\lambda_{j}=0$ . Applying $D^{1}$ to this,

$d_{R/K}(\frac{De_{j}}{e_{j}}-\lambda_{j}\frac{Dx}{y}-\sum_{Q}m_{j}(Q)\frac{y+y(Q)}{x-x(Q)}\frac{Dx}{y})=D(\lambda_{j})\phi_{K}\omega_{I}(P)$ ,
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and hence $\lambda_{j}\in C$. Let $P=(1, \wp(t),$ $\wp^{\prime}(t))$ , with $t$ a uniformizing parameter at $O_{E}$ . Then
$Y=e_{j}$ satisfies

$\frac{1}{Y}\frac{dY}{dt}=\lambda_{j}+\sum_{Q}m_{j}(Q)\frac{y+y(Q)}{(x-x(Q))}$ .

If we denote by $f_{j}$ the coefficient of the first term in $e_{j}\in K((t)),$ $z_{j}=e_{j}/f_{j}\in C((t))\cap R=$

$C(x, y)$ also satisfies the above. The element $z_{j}\in R$ satisfies

$\frac{d_{R/C}z_{j}}{z_{j}}=\lambda_{j}\omega_{I}(P)+\sum_{Q}m_{j}(Q)\omega_{III}(P;Q)$ .

Consequently

$\sum_{j}\kappa_{j}\frac{d_{R/C}f_{j}}{f_{j}}=\sum_{j}\frac{d_{R/C}(e_{j})}{e_{j}}\sum_{j}\kappa_{j}\frac{d_{R/C}z_{j}}{z_{j}}$

$=\sum_{j}\frac{d_{R/C}(e_{j})}{e_{j}}+\lambda\omega_{I}(P)+\sum_{Q}v(Q)\omega_{III}(P, Q)$ .

4. Proof of Theorem.

By induction on the length of chain we prove the theorem. As easily seen in tht
induction argument, thanks for the theorem of Abel, it is sufficient to show that $\iota$

has a w-expression over $K$ provided $K$ is algebraically closed and $a$ has a w-expression
over a certain w-elementary extension of $K$ generated by a single element $x$ which
satisfies one of the conditions $(ii)\sim(v)$ over $K$. Let $R$ denote the differential field
extension $ K\langle x\rangle$ of $K$. Assume $a\in K$ has the w-expression over $R$ :

$a=Db+\sum_{j}\alpha_{j}\frac{Db_{j}}{b_{j}}+\sum_{i}\beta_{i}\frac{Du_{i}}{v_{i}}+\sum_{i}\gamma_{i}u_{i}\frac{Du_{i}}{v_{i}}+\sum_{tQ\in}\sum_{E_{t}(C)^{*}}\delta_{i}(Q)\frac{v_{i}+v_{i}(Q)}{u_{i}-u_{i}(Q)}\frac{Du_{i}}{v_{i}}$ .

Let $\eta$ be the differential in $\Omega_{R/C}$ defined by

$\eta=d_{R/C}b+\sum_{j}\alpha_{j}\frac{d_{R/C}b_{j}}{b_{j}}+\sum_{i}\beta_{i}\frac{d_{R/C}u_{i}}{v_{i}}+\sum_{i}\gamma_{i}u_{i}\frac{d_{R/C}u_{i}}{v_{i}}$

$+\sum_{iQ\in}\sum_{E_{i}\langle C)^{*}}\delta_{i}(Q)\frac{v_{i}+v_{i}(Q)}{u_{i}-u_{i}(Q)}\frac{d_{R/C}u_{i}}{v_{i}}$ . $(5_{J}^{\backslash }$

We then have $ a=\varphi\eta$ and $D^{1}\phi_{K}\eta=0$ because the left member is $\phi_{K}D^{1}\eta=\phi_{K}d_{R/C}a=$

$d_{R/K}a=0$ .
The argument is divided into several cases, according as $(ii)\sim(v)$ .
1) $Dx\in K$. Since the field $R=K(x)$ has genus $0$, differentials of types $\omega_{k}$ ap.

pearing in (5) are all elements of $\Omega_{K/C}$ . Hence $\phi_{K}\eta$ contains only exact and logarithmic
differentials. Since $D^{1}d_{R’ K}x=d_{R/K}Dx=0$ , if we let $\phi_{K}\eta=cd_{R/K}x,$ $c\in R$ , we see $c\in C$
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Therefore

$d_{R/K}(b-cx)+\sum_{j}\alpha_{j}\frac{d_{R/L}b_{j}}{b_{j}}=0$ .

By Lemma 2, $e=b-cx\in K$ and part of logarithmic differentials in (5) is represented by
a C-linear combination of those in $\Omega_{K/C}$ , say $\xi$ . Replacing $d_{R/C}b$ by $d_{R/C}e+cd_{R/C}x$ and
using $\xi$ , we rewrite $\eta$ . Since $Dx$ has a w-expression over $K$, so has $ a=\varphi\eta$ .

2) $Dx/x\in K$. As in the preceding it is seen that differentials of types $\omega_{k}$ in (5)

are those in $\Omega_{K/C}$ . Since $d_{R/K}x/x$ vanishes when applying $D^{1}$ there is a constant $c$ with
$\phi_{K}\eta=cd_{R/K}x/x$ . Hence

$db+\sum_{j}\alpha_{j}\frac{d_{R/K}b_{j}}{b_{j}}c\frac{d_{R/K}x}{x}=0$ .

By Lemma 2, $b\in K$ and part oflogarithmic differentials in $\eta$ are represented by a C-linear
combination of those in $\Omega_{K/C}$ and $d_{R/C}x/x$ . Using these and the fact that $Dx/x$ has a
w-expression over $K$, making a suitable modification in the expression of $\eta$ , we see $a$

has a w-expression over $K$.
From now on we treat the case where $x$ is a $w_{k}$-element over $K$ for some $k$ in

relation to an elliptic curve $E$ defined over $C$ . Before going ahead, we modify expression
(5) of $\eta$ in a more convenient form. According to formulas (2), (3), (4), we may assume
that either the elements $u_{i}$ has a pole at the zero element $O_{E}$ of $E$ or $u_{i}\in K$. Using Lemma
1, this time, $C(u_{i}, v_{i})\subset C(x, y)$ . In the first case differentials of types $\omega_{k}$ in (5) are thus
described as a C-linear combination of $\omega_{I}(P),$ $\omega_{II}(P),$ $\omega_{III}(P;Q)$ and exact differentials
in $\Omega_{C\langle x,y)/C}$ . Here we set $P=(1, x, y)$ . Consequently $\eta$ has the expression

$\eta=d_{R/C}b+\sum_{j}\alpha_{j}\frac{d_{R/C}b_{j}}{b_{j}}+\sum_{i}\beta_{i}\frac{d_{R/C}u_{i}}{v_{i}}+\sum_{i}\gamma_{i}u_{i}\frac{d_{R/C}u_{i}}{v_{i}}$

$+\sum_{iQ\in}\sum_{E_{i}\langle C)^{*}}\delta_{i}(Q)\frac{v_{i}+v_{i}(Q)}{u_{i}-u_{i}(Q)}\frac{d_{R/C}u_{i}}{v_{i}}+\lambda\omega_{I}(P)+\mu\omega_{II}(P)$

$+\sum_{Q\in E\langle C)^{*}}v(Q)\omega_{III}(P;Q)$ , (6)

where $b,$ $b_{j}\in R,$ $u_{i},$ $v_{i}\in K,$
$\alpha_{j},$

$\beta_{i},$
$\gamma_{i},$

$\delta_{i}(Q),$ $\lambda,$

$\mu,$ $v(Q)\in C$. We may assume that the $\alpha_{j}$ are
linearly independent over rational number field. Applying $\phi_{K}$ to this,

$\phi_{K}\eta=d_{R/K}b+\sum_{j}\alpha_{j}\frac{d_{R/K}b_{j}}{b_{j}}+\lambda\phi_{K}\omega_{I}(P)+\mu\phi_{K}\omega_{II}(P)+\sum_{Q\in E\langle C)^{*}}v(Q)\phi_{K}\omega_{III}(P;Q)$ .

3) $\varphi\omega_{I}(P)\in K$. Then we first find $\phi_{K}\eta=c\phi_{K}\omega_{I}(P),$ $c\in C$, since $D^{1}\phi_{K}\omega_{I}(P)=0$ .
By Lemma 2, $b,$ $b_{j}\in K,$ $\mu=0$ , and there exist the $f_{j}$ with



446 KEIJI NISHIOKA

$\sum_{j}\alpha_{j}\frac{d_{R/C}f_{j}}{f_{j}}=\sum_{j}\alpha_{j}\frac{d_{R/C}b_{j}}{b_{j}}+(\lambda-c)\omega_{I}(P)+\sum_{Q\in E(C)^{*}}v(Q)\omega_{III}(P;Q)$ .

Since $Dx/y$ has a w-expression over $K$ by assumption, this together with (6) shows ‘

has a w-expression over $K$.
4) $\varphi\omega_{II}(P)\in K$. By the same argument as above, $\phi_{K}\eta=c\phi_{K}\omega_{II}(P),$ $c\in C$ . $B$]

Lemma 2, $b,$ $b_{j}\in K,$ $\mu=c$ and there exist the $f_{j}$ with

$\sum_{j}\alpha_{j}\frac{d_{R/C}f_{j}}{f_{j}}=\sum_{j}\alpha_{j}\frac{d_{R/C}b_{j}}{b_{j}}+\lambda\omega_{I}(P)+\sum_{Q\in E\langle C)^{*}}v(Q)\omega_{III}(P;Q)$ .

Using the assumption $\varphi\omega_{II}(P)$ has a w-expression over $K$, we see $a$ has a w-expressioI
over $K$.

5) $\varphi\omega_{III}(P;Q_{0})\in K$. Readily $\phi_{K}\eta=c\phi_{K}\omega_{III}(P;Q_{0})$ , $c\in C$. Owing to this
$b,$ $b_{j}\in K,$ $\mu=0$ and there exist the $f_{j}$ with

$\sum_{j}\alpha_{j}\frac{d_{R/C}f_{j}}{f_{j}}=\sum_{j}\alpha_{j}\frac{d_{R/C}b_{j}}{b_{j}}+\lambda\omega_{I}(P)+\sum_{Q\in E(C)}.v(Q)\omega_{III}(P;Q)-c\omega_{III}(P, Q_{0})$ .

Therefore $a$ has a w-expression over $K$.
We thus complete the proof.
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