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§1. Introduction.

For compact Riemannian manifolds (M, g) and (N, h), harmonic maps between
them are critical points of the energy functional

E(¢)=% j \de|2dv, ,
M

on the space of all smooth maps ¢ of M into N. Namely, for any smooth variation of
¢, ¢, —e<t<eg, with ¢p,=4¢, it holds that

d

2| E@)=0.

t=0

A remarkable existence result, in compact case, is due to Eells-Sampson [7]. They
showed that if the target manifold (N, h) has non-positive curvature, then there exists
a minimizing harmonic map in its homotopy class for any smooth map of (M, g) into
(N, h).

On the other hand, the notion of harmonic maps is well-defined for non-compact
Riemannian manifolds, and existence problem is also interesting. Recently Li-Tam [10]
showed the existence of a harmonic map from (M, g) into (N, h), provided that these
manifolds are complete and have some curvature conditions. As an application, they
investigated the boundary value problem of harmonic map between the hyperbolic
spaces and showed the existence of one which is equal to a given C* boundary map
with non zero energy density (see also Akutagawa [1]).

But so far results of explicit construction of harmonic maps between non-compact
Riemannian manifolds are very few, except works by Baird [3] and Kasue and Washio
[9]. Baird [3] reduced the harmonic map equation to an ordinary differential equation
defined on (0, o), and investigated the behavior of a solution at the origin. Kasue and
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Washio [9] studied the existence of global solution for some warped product. However
they did not prove the existence of equivariant harmonic map between the hyperbolic
spaces. Our purpose of this paper is extending the results in [15] to non-compact
cohomogeneity one Riemannian manifolds, and construct harmonic maps of several
non-compact Riemannian manifolds including the standard Euclidean space (R™, g 4n),
the hyperbolic space (RH™, g.,,), the standard complex Euclidean space (C™, g,,,) and
the complex hyperbolic space (CH™, g.,,)- These manifolds have large Lie group actions
which are so-called cohomogeneity one Riemannian manifolds. In this paper, making
use of this group actions, we give a set-up to reduce the harmonic map equation to an
ordinary differential equation, and construct new harmonic maps as stated in Theorem
6.5 and Corollary 6.6.

§2. Cohomogeneity one Riemannian manifolds.

We shall review the notion of cohomogeneity one Riemannian manifolds due to
Hsiang-Lawson [8] (see also Berard [4]). Let (M, g) be a Riemannian manifold and X
a compact Lie group which acts isometrically and effectively on (M, g). If there exists
a point of xeM such that dim(Kx)=dim M —1, we call that the group K acts
cohomogeneity one on (M, g). Then the orbit space K\M of K on M is one of the
following seven cases:

(1) [0,7], (2) acircle [0,71/{0,1}, (3) [0,0), (4) [0, 00),
%) 0,7), (6) (0,00) or (7) (—o0, ).

The first two cases occur when M is compact (see [15] for detail). The last five
ones are for non-compact and the cases (4), (7) are complete. We treat here only with
the case [0, /) or [0,/], where /<oo or /=00. In these cases we can give the fine
Riemannian structure on (M, g).

Let c(t), 0<t<I< o0, be the geodesic of (M, g) representing the orbit space K\ M.
Let J, be the isotropy subgroup of KX at c(t). Then it is known (cf. [4]) that the subgroup
J, are the same one, denoted by J, for all 0 <t <. The Lie algebra  of Kis decomposed as

= i @ m,
which is orthogonal with respect to the Ad(K)-invariant inner product {, > on I, j is
the Lie algebra of J and m is an Ad(J)-invariant subspace of {.
The mapping K/J x (0, I)a(kJ, t)—kc(t)e M is smooth and its image, denoted by
M’, is open and dense in M. The metric g on M can be expressed on M’ as follows:
2.1 g=dt*+g, .
Here g, is the K-invariant metric on the orbit Kc(t) through c(t), 0 < ¢ </, which is given by

(2.2) 9 Xy Ye)=0(X,Y)  X,Yem,
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where X, the tangent vector at pe M, is defined by
d
=7 exptX -p,
tli=o0
for all Xem. In what follows, we assume the inner product «, on m is of the form
o (X, Xj)=fi(t)25ij, 1<i,j<m-—1,

where m=dim M and {X,}/=,! is an orthonormal basis of (m, <, ).

§3. The Euler-Lagrange equation.

3.1. Setting. Let (M, g) (resp. (N, g)) be Riemannian manifold admitting co-
homogeneity one actions of compact Lie groups K (resp. G). We denote the orbit
space K\M =[0, I] (resp. G\N =[0, /]), where / (resp. [) is finite or infinite and fix the
geodesic c(t), 0<t<l of (M, g) (resp. &(r), 0<r<! of (N, g)) which represents the orbit
space K\M (resp. G\N). Also we denote by J,, H, the isotropy subgroups of K, G at
¢(t), &(r), which coincide with J, H for 0<t<I, and 0<r </, respectively.

Now let 4: K—G be a Lie group homomorphism satisfying A(J)< H. A mapping
¢ : M—N is A-equivariant if ¢(k-x)= A(k)* ¢(x), for ke K and xe M. We assume that
for the A-equivariant map ¢ : M — N, there exists a C* function r : [0, /][0, / ] such that

Ple@)=c(r@) te[0,1].
Then the A-equivariant map ¢ can be recovered as
Pk - c(t))= A(k) - c(r(2)) keK,te[0,1],

and ¢ is smooth on M’. Moreover, the necessary and sufficient conditions for an
A-equivariant map ¢ : M—N to be continuous on the whole space M are that the
function r: [0, ][0, / ] satisfies

3.1 r(0)=0, 0<rt)<l (0O<t<l),
where r(0)=0 means lim,_,,7(t)=0, and the homomorphism A satisfies
(3.2) A(J)=H,

for any te[0,1]. A standard regularity theorem says that any continuous weakly
harmonic map is smooth everywhere and harmonic (cf. [5] p. 397).

3.2. The reduction of the Euler-Lagrange equation.

DEerFINITION 3.3. A smooth map d) : M — N is said to be harmonic if for any smooth
variation ¢,: M—N, —eg<t<e with ¢y=¢,
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d
4], E)=0.

By the first variation formula, it is equivalent that the tension field 7(¢) defined by
t(¢) = 'Zl (Vei¢#ei - ¢*V¢iei) s

vanishes on M. By virtue of the 4-equivariance of ¢ the tension field 7(¢) vanishes on
the open dense subset M’ of M if and only if 7(¢) vanishes on the geodesic c(t), 0 <z <.
To state our result on the calculation of 7(¢) at c(t), 0 <t </, we prepare the description
of the metrics g and § on M, N respectively.
Let m, n be the orthogonal complements of j,  in f, g with respect to the
Ad(K)-invariant, Ad(G)-invariant inner products <, > on f, g, respectively. Then
g=dt*+g,, g=dr’+g,,

and the g,, g, are metrics on the orbits Kc(f), G&(r) corresponding to the inner products
on m, n which are of the form

at(Xi’ X]) =f;'(t)25ij ’ ﬂt( Ya’ Yb) = ha(t)zaab .

Here {X;}7=', {Y,}aZ1 are orthonormal bases of (m, <, »), (n, {, D), respectively. Then
the tension field 7(¢) at c(t) is given as the following theorem.

THEOREM 3.4. Assume that the function r(t) satisfies (3.1) and the inner products
o, and B, satisfy

(X, [Y, X]m) +a(lY, X]m, X)=0, VX, Yem,
BAX', LY, X]) + BALY’, X']s, X)=0, VX', Y'en.

Here for Zel (resp. Z' € ), Z,, (resp. Z,) are the m (resp. n)-component corresponding to
the decomposition E=i@®m (resp. g=hHDn).

Then the tension field 1(¢$) of an A-equivariant map ¢ : (M, g)—(N, §) which is smooth
on M’ and satisfies ¢(c(t))=c(r(t)), 0<t<l, is

m—1
soxen={r0+("E 1000 )0
=S TS0 OB Y A 00

m-—1
+ jZ SOV Udagray -
=1

In particular, 1(¢) vanishes at c(t), 0<t<lI, if and only if
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m—1n—1

(3.5) r(t)+< Z ™Y, (t)> Ht)— Z Z SO 2h{r) P HOBAY , AX ) =0,

j=1i=1

and

m—1
(3.6) Ci= 3 [07Vy Uday=0, in s.
j=

For proof, see [15, Theorem 2.2].

Here &(r) is the tangent vector of the curve r—&(r), A(X)eg, Xet, is defined by
A(X)=(d/dt)|t=0A(exp tX), and A(X;)eg, 1<j<m—1,is decomposed as

according to the decomposition g=h@ n. We denote
j0=Y ana wy=St .

We finally note that the total energy of 4-equivariant harmonic map ¢, E(¢), is
given by

1
E(¢)=Vol(K, <, D) J e(¢)c()D(t)dt ,
0
where the energy density functional e(¢)(c(t)) is

3.7 e(#)(clt) =%{r‘(t)2 + T, S0 A ) A(X,-)n)} :

and

m—1
D(t)= _=l_Ilf,(t) :

Then the equation (3.5) is the Euler-Lagrange equation of E(¢).

§4. Cohomogeneity one Riemannian manifolds.

4.1. Non-compact cases. In this subsection, we give examples of non-compact
complete manifolds which admit cohomogeneity one group actions. For these ex-
amples, we shall consider existence of equivariant harmonic maps in §6.

ExXAMPLE 4.1. The orthogonal group action (SO(n), R"). The special orthogonal
group K=S0(n) acts on the Euclidean space M =R" by the usual manner as

o X:I=0x, a=(a;), x="(x1, ", X )ER",
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where - denotes the matrix multiplication. Consider a Riemannian metric g on R"
invariant under the action of K. This is the simplest example of cohomogeneity one
action whose orbit space is the half-line [0, c0). Let ¢(t), 0 <t< oo, be a geodesic of
(R", g) emanating the origin 0 of R" with the arc length parameter ¢. Then c(t) is of the
form

c(t)='0,---,0, ), O<t<oo.
The isotropy subgroup J, of K at c(t) is K itself if t=0, and for t>0,

J,=J=SO(n—1)={<:I ?); a’eSO(n—l)}.

Ad(K)-invariant inner product on ¥ is given by

(X, Y)=—3tr(XY) X,Yet,
and the orthogonal complement m of j in ¥ with respect to {, > is given by
0 —-'X

m={X(xla”°9xn—1):=<X 0

) 5 X=(x1! Y xn—l), xEER} .
The orthonormal basis {X;}}=1 is given by X;=X(0, - - -, —1, - - -, 0) where j-th entry is
—1 for 1<j<n—1. Then the Riemannian metric g is of the form on M’=R"—{0},

g=dt*+g,,
where g, is a K-invariant metric on the orbit Kc(t), 0<t< 0o, given by
9 Xy Ye) =2(X, Y) X,Yem,
corresponding to the inner product «, on m which is of the form
w(X, V)= f(t)’{X,Y) X,Yem,

that is, a(X;, X;)= f(t)*5;;, 1 <i,j<n—1. Necessary and sufficient conditions for g to
be extended to a smooth metric on M are that f(—t)= — f(¢) and f(t)=1.

The obtained Riemannian manifold (R", g) is a rotationally symmetric space. In
particular, in the case f(f)=t, we obtain the standard Euclidean space (R", g,,,), and
in the case f(t)=sinht, then we obtain the hyperbolic space (RH", g.,,) of constant
negative curvature —1.

EXAMPLE 4.2. The special unitary group action (SU(n), C"). The special unitary
group K=S8U(n) acts on the complex Euclidean space M =C" by the usual matrix
multiplication. Let us take a Riemannian metric g on C" invariant under the action of
K. Let c(t), 0<t< o0, be a geodesic of (C", g) emanating the origin 0 of the same form
in Example 4.1 with the arc length parameter ¢. The isotropy subgroup J, of K at c(t)
is K itself if t=0, and for t>0,
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J,=J=SU(n—1)={<°g ?); cx’eSU(n—l)}.

Ad(K)-invariant inner product on f is given by
(X, Y)=—3tr(XY) X, Yet,

and the orthogonal complement m of j in T with respect to ¢, > is decomposed into the
direct sum of two Ad(K)-invariant subspaces

m=m;@m,,
where
m, :={Z(0;zy," ", z,—1); 2;€C},
m,:={Z(6;0,---,0); 6eR} .
Here we put
—i ’ —Z
ZO5z4, "y 2p-q) = , 0eR, z;eC.

—i0  —z,_,
Z4 ctt Zy—1 i(n—l)e

The orthonormal basis of (m, {, >) is given by
X]=Z(09 09 Y 0: 19 0,-- '50)’
Xn—1+i=Z(O;Os”'>Oai30"”90) for ISJ<n_19

(n—1n

Then the Riemannian metric g is of the form
g = dtz + gt Py

on M’'=C"—{0}. Here g, is a K-invariant metric on the orbit Kc(f) corresponding to
the inner product

%X, Y)=f1(0) X", Y')+ f2(()<X", Y,
for X=X'+X",Y=Y+Y", where X', Y em,, X, Y'em,. That is,
(X, X )= f1()?d;;, 1<i,j<2n-2,
(X 3p-1, X;)=0, 1<j<2n-2,
(X 50— 15 Xon—1)=f2()* .
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Necessary and sufficient conditions for g to be extended to a smooth metric on M are
that the functions f(t), i=1, 2, satisfy

. n .
J1(0)=1 and ’mfz(t)=l .

The obtained Riemannian manifold (C™, g) is a unitary rotationally symmetric space.
In particular, in the case f;(t) =/f,(t) =t, we obtain the standard complex Euclidean space
(R", gcan), and in the case f;(t)=sinh ¢, and f,(t)=./(n— 1)/2nsinh 2t, then we obtain the
complex hyperbolic space (CH", g.,,) of curvature —4<K, <-1.

4.2. Compactcases. There are several compact Riemannian manifolds admitting
a cohomogeneity one group action. All cohomogeneity one actions on the unit sphere
(8", g.an) are classified by Hsiang-Lawson [8], Takagi-Takahashi [12], and Asoh [2],
and classification of all cohomogeneity one actions on the complex projective space
(CP", g.,,) is done by Uchida [13]. Here we only note the simplest actions on the unit
sphere and the complex projective space.

EXAMPLE 4.3. The unit sphere S". The special orthogonal group

K=S0(n)={(: ?), aeSO(n)}cSO(n+l)

acts cohomogeneity one on the unit sphere S"< R"*! by the usual matrix multiplication.
We choose a geodesic

ct)="0,---,0, —sint, cos)=z(t)-*0,---,0, 1),
where

In -1
z(t)= cost —sint
sint cost

Then the isotropy subgroup J, of K at c(t) is K itself if =0, n, and for t>0,

__ )Y 0. _
Jt_J_{(o Iz),yeSO(n 1)},

where 7, is the identity matrix of degree m. The orbit space K\S" is the closed interval
[0, =]. Ad(K)-invariant inner product on f is given by

(X, Y)=3tr(XY) X, Yetl,

and the orthogonal complement m of j in ¥ with respect to ¢, ) is given by
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0 —-'X 0
m=11X 0 0| ;X=(x,"  ",%X,-1),XER
0 0 o0

The orthonormal basis {X;}72] of (m, {, )) is given by Xj=X(O, +e+, —1, -+, 0) where
J-thentryis —1 for 1 <j<n—1. A K-invariant Riemannian metric g on S$" is of the form

g=dt’+g,,

where g, is a K-invariant metric on the orbit Kc(t), 0<t < oo, corresponding to the inner
product

(X, Y)=f(O)*X,Y) X,Yem,

that is, a(X;, X;)= f(t)*6;;, 1<i,j<n—1. Necessary and sufficient conditions for g to
be extended to a smooth metric on M are that f(t) satisfies

{f(—t)=—f(t), f(0)=1 and
fln—t)=—f(n+1), fim)=—1.

The obtained Riemannian manifold (S", g) is a spherical rotationally symmetric space.
The standard unit sphere (S*, g,,,) corresponds to f(t)=sin.

EXAMPLE 4.4. The complex projective space CP". Let us denote the complex
projective space

CP"={["(zy, " * ", 24+ 1)) ; z:€ C},
as a coset space SU(n+ 1)/S(U(n) x U(1)). The group

K=SU(n)={<o(;l (1)) ; oz’eSU(n)}cSU(n+1)

acts on CP" cohomogeneity one as matrix multiplication. Take a geodesic
()=, ---,0, sint, cost)]eCP",

with respect to the Fubini-Study metric. Then the isotropy subgroup J, of K at c(t) is
K itself if t=0, and for t=mn/2,

'

o
T2 = e’ ;0eU(m—1),0eR, (deta)e®=1
1

which coincides with S(U(n—1) x U(1)). Also for 0 <t<n/2

J=J= 1 ;a'eSUMNM—1)
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Their orbits are Kc(0)=c(0) and Kc(n/2)=CP"~!. We take an inner product on the Lie
algebra f of K by

X,Y)=—3tr(XY) X,Yetl.

The orthogonal complement m of j in ¥ with respect to {, ) is also decomposed into
the direct sum of two Ad(K)-invariant subspaces

m=m;dm,,
where
my :={Z'(0;2,," ", 2,-1); z;€ C},
m,:={Z'6;0,---,0); 0eR} .
Here we put
2024,y 2,—1):=(Z(O; 24, ", 2,—1) O)EM..
We take an orthonormal basis {X;}727* of (m, {, D) as
X;=72'0;0,---,0,1,0,---,0),
Xp_14;=2'0;0,---,0,i,0,---,00 for l<j<n—1,

’ 2 . PR
XZ"-FZ(JW"” "’)'

Then any K-invariant Riemannian metric g on CP" is of the form
g=dt*+g,

on M'=CP"—{Kc(0)uKc(rn/2)}, where g, is a K-invariant metric on the orbit Kc(t),
0<t<m/2, corresponding to the inner product

1(X, V) =1t <X, YD +£()*<X", YD,
for X=X'+X", Y=Y +Y"”, where X', YYem,, X", Y’em,. That is,
(X, Xj)=f1()?0;; 1<i,j<2n-2,
(X 201, X))=0, 1<j<2n-2,
(X 2n-15 X2n-1)=f2(t)* .

Necessary and sufficient conditions for g to be extended to a smooth metric on M are
that the functions f(t), i=1, 2, satisfy the following conditions.

fll—)=—£), /,O)=1, fl(g—t)= ~fi (12’—+r), f'l<§>= —1;
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n . T T n . T
J=0= L0, [3-"S0=1, fz(?—t) __ fz(TLt), i f2<7>= 1

The obtained Riemannian manifold (CP", g) is a projective rotationally symmetric space.
In particular, in the case f;(t)=sint and f,(¢) =./(n— 1)/2n sin 2t, we obtain the complex
projective space CP" with the Fubini-Study metric g, Wwith sectional curvature
1<K, <4.

Gcan

§5. Calculation of harmonic maps.

Under the above preparations, we want to yield harmonic map equations

(1) of a (spherical) rotationally symmetric space (R™, g) (resp. (S™, g)) into (R", g).

(2) of a (spherical) rotationally symmetric space (R™, g) (resp. (S™, g)) into a spherical
rotationally symmetric space (S", g).

(3) of a unitary (projective) rotationally symmetric space (C™, g) (resp. (CP™, g)) into
(c", g).

(4) of a unitary (projective) rotationally symmetric space (C™, g) (resp. (CP™, g)) into
(CP", g).

5.1. To construct harmonic maps of the above types (1) and (2), we should prepare
a homomorphism A of SO(m) into SO(n) satisfying A(SO(m—1))=SO(n—1). To do this,
let us take an n-dimensional irreducible orthogonal representation (¥, ) of SO(m) which

is spherical with respect to J =SO(m — 1)={< :; (1’) ; 0eSO(m— 1)}. That is, there exists

a unit vector v, in V with respect to inner product (,) such that =n(j,=v, for all
jeJ=80(m—1). Taking an orthonormal basis {v;}!_, of (V,(,)), we can define a
homomorphism A4 : K=80(m)—G=S0(n) by

AR)=(m k), m k)=, v),  keK=SO(m).
Then A sends J into H, where

J={(; ?);aeSO(m—l)} and H={(ﬁ ?);BeSO(n—l)}.

Let us denote by m, n, the orthogonal complements of i, f) in the Lie algebras {, g with
respect to the inner products as in Example 4.1 or Example 4.3 respectively, and set

AX)=U;+V,
for an orthonormal basis {X;}7=;' of (m, {, >), where U;en and V;e}. Then it holds that

m—1
C= ) [U;V;1=0.
ji=1
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Indeed, A(j), jeJ, acts on n by
A(J)- W=A(j)eW-A(j)™', jeJ=SOm—1), Wen,

where the circle means the composition of endomorphisms. It is clear that A(j)-C=C

for all je J. This implies A(j)e SO(n— 2) for all jeJ unless C=0. That is, the irreducible

orthogonal representation (V, n) of SO(m) admits two dimensional subspace of V of

which elements are fixed by the action of SO(m— 1). This contradicts a theorem of E.

Cartan about a spherical irreducible representation of (SO(m), SO(m —1)). Thus C=0.
The inner product {, ) in m, n satisfy that

(X, LY, X1m> +<LY, X]m, X>=0 VX, Yem,
XL, LY, XT)+<[Y, X'], X'>=0 VX', Y'en
because of [m, m]<j and [n, n]ch.

Case 1. (S™,g)—(S", g). In this case, we treat with harmonic maps of a spherical
rotationally symmetric space (S™, g) into another one (S”, g). Take the above homomor-
phism A : K=8S0(m)—»G=S0(n) corresponding to the orthogonal irreducible repre-
sentation (V,, m,) of SO(m), spherical with respect to SO(m—1). The representation
Vi, ) corresponds to the space of all the k-th order harmonic polynomials on the
Euclidean space R™. Note that the restriction to the unit sphere S™! of the k-th
harmonic polynomials are the eigenfunctions of the Laplacian on the standard sphere

8™ 1, g..n) Wwith eigenvalue A, =k(k+m—2) and n=dim V,=(k+m—3)2k+m—2)/
(k!(m—2)"). Then

alX, X)=f()*{ X, X"), X, X'em,
BY, Y)=h(*Y,Y), Y,Yen,
where the functions f(t), h(r) satisfy
f(=9=—f1®), fO=1, fla—t)=—fn+1), flm)=-1,
h(—r)=—h(r), WO)=1, h(r—r)=—h(rn+r), HK(m)=-—1.
On the other hand, we get

m—1n—1

m—1
Y Y CAX) Y= .;1 I AX ), 12 =2 =Kk +m—2).

j=1 i=1
Then the ordinary differential equation of equivariant harmonic map is given by

1) fe)?
Here recall #(t)=dr/dt, h'(r)=dh/dr, and h'(r(t)) is the substitution of r(t) into h'(r).

0, O<iti<m.
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Case 2. (R™, g)—(S",g). In this case, we can take the same homomorphism
A: K=80(m)—G=S80(n) and «,, f, have the same form. The different point is only the
function f{(¢) is defined on (0, o) and satisfies

f(=)=—ft), flO)=1.

The obtained ordinary differential equation of equivariant harmonic map is

N f) . h(rO)h'(r(t)) _
(D K+ 7 HO— k(e m—2) =2 T =

Case 3. (R™, g)—(R" g). In this case, we also can take the same homomorphism
A: K=80(m)—»G=S80(n) and a,, B, as in Case 1. The both functions f{(t) and h(r) are
defined on 0 <7< o0 and satisfy
f(==—f1®), flO)=1,
h(—r)= —h(r), HO)=1.

0, O<t<oo.

The obtained ordinary differential equation of equivariant harmonic map is the same
as (5.2).
Also, in these three cases, the energy density functional is given by
h(r(z))? }
f@?

from (3.7). The equations (5.1) and (5.2) are the Euler-Lagrange equation of

e(p)c(t) = % {r’(t)2 +k(k+m—2)

1
E(¢)=Vol(K, <, )) f e(o)c()D(r)dt ,
0

where I=m or oo and D(z) is given by

D@e)y=f)""*.

5.2. To construct harmonic maps of the above types (3) and (4), we should
prepare a homomorphism A4 of SU(m) into SU(n) satisfying A(SU(m—1))cSU(n—1).
To do this, let us take an n-dimensional irreducible unitary representation (V, ) of
SU(m) which is spherical with respect to J=SU(m— 1)={<z (1)) ;0eSUmM— 1)} . That

is, (V, m) is an n-dimensional irreducible representation space of SU(m) which has an
orthonormal basis {v;}}, with n(j)v,=v, for all jeJ=SU(m—1). Then we can define a
homomorphism A4 : U(m)— U(n) by

AR)=(mifk),  mfk)=(n(k)v, v), keK=SU(m).
Then it is easy to see A(SU(m))=SU(n) and
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A(J)cH={(ﬁ (1)); ﬁeSO(n—l)},

since n(j)v,=v, for all je SU(m—1).
All the above irreducible representations of SU(m) are given as the following way.
Firstly, remember that all irreducible unitary representations of SU(m) are exhausted
by the ones Vy;, +...41,,_,1,._, With highest weight V; ; ..., ., | with respect to the
order 4,>--->4,_,. Here each 4, is a linear map of

81 m
T=[< );sieC,|8i|=1,nsi=l]
em i=1

assigning its element to ¢;€ C, and each /; runs over all non-negative integers.
Then the following lemma due to Weyl is essential.

LEMMA 5.1. Any irreducible unitary representation of Vi, +..41,, .., can be

decomposed into irreducible wunitary representation of SU(m—1) regarding as
SU(m— 1)-modules, that is,

4
V=3 Viias+ e+t 2im-3 >

where Vi, +..ip, i, , i an irreducible unitary representation of SU(m—1). All
non-negative integers l; (1 <i <m— 1), in the sum, run over the ones satisfying the condition

llzli+lm—1212215+lm—12 M Zlm_zzl,’”_z"'lm_l .
Moreover all V'’s in the sum appear once.

PROPOSITION 5.2. Any irreducible unitary representation of SU(m) which are
spherical with respect to SU(m—1) are exhausted by V=V, ; ....i. 1. ,» Where both
ly and I, run over all non-negative integers satisfying the condition I, >1,>0. Moreover,
all such representations are decomposed into irreducible unitary ones of SU(m—1) as

Vl;[l] + e+ l2Am -1 =Z Vl"]l) £
where 1y runs over all non-negative integers such that 1, > 1] +1,.

Therefore due to this proposition,

(1) the fixed point set of V="V, ; 41,4, +-+1,,_,4,.., Under the action of SU(m—1)
is one dimensional and

(2) allirreducible unitary representations of SU(m) which are spherical with respect
to SUm—1) are exhausted by V="V, 111, +-+ra,..,» k=0, which are of degree k
in both variables z=(z, - - -, z,) and Z=(Z,, - - -, Z,,). The space H**(C™) is naturally
identified with the eigenspace of the Laplacian of (CP™"!, g.,,) with the eigenvalue
A =4k(k+m—1). Here g,,, is the Fubini-Study metric on CP™~ ! with sectional curvature
1<K<4.
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Now let us denote by m=m, +m,, n=n, +n,, the orthogonal complements of i,
b in the Lie algebras ¥, g with respect to the inner products as in Example 4.2 or Example
4.4 respectively. Then for the homomorphism A4 obtained by Proposition 5.2, set

AX)=U;+V;,
for an orthonormal basis {X,} 2™ * of (m, <, >), where U;enand V;eh. Then it holds that

0= C=f1(t)_2C1 +f2(t)_2C2 >

which is equivalent to

2m—2

Cl = z [UJ’ V]]=O, and C2 :=[U2m._1, Vzm_1]=0 .

ji=1
Indeed, A(j), jeJ, acts on n by
A(j) W=A(j)e WoA(j)~, jeJ=SUm—1), Wen.

Then A(j)- C;=C,; for jeJ and i=1, 2. Unless C;=0, A(j)€SO(n—?2) for all jeJ which
contradicts the above fact (1) that the fixed point space of ¥ under the action of
SU(m—1) is one-dimensional.

It is easy to see both the inner products «, and S, on m and n satisfy the condition
in Theorem 3.4 respectively.

Moreover, we get

2m—2 2m—2

Y, Yoo, AX D= Y AKX ), 17=0,
i=1 ji=1

2n—2

‘;1 <Yia A(sz—1)>2 = H A(sz—1)n1 “2 =0.

We denote
2m—2 2n—2 2m—2

hi= XX (Y AKX’ = 3 1 AK ) I,

i=1

pi=<Yz_1, A(sz—1)>2= | AX 2= 1, 1%

‘Note that for the homomorphism of Kinto G, denoted by A4,, associated to the irreducible
representation Vk = VZkl; +kAz+ - tkAm—1 ?

A=A =4k(k+m—2), pu=0.

Case 4. (CP™ g)—(CP",3). In this case, take the above homomorphism
A : K=SU(m)—G=S8U(n). The Riemannian metrics g and g correspond to the inner
products

(X, Y) =11 <X", YD+, X", Y ,
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BAZ, W)=h,(r)’<Z", W'> +hy(r}<Z", W"> ,

for X=X'+X",Y=Y4+Y'emand Z=2'+Z", W=W'+ W” en. Here the functions
f{t), h{r), i=1, 2, satisfy the corresponding conditions in Example 4.4. Then the ordinary
differential equation of equivariant harmonic map is given by

7@ , 140 }r.(t)

I P
’(t)+{( "7 T

) hy(r(®)h's(r(1)) u hy(r(®))h(r(2)) _
f@e)? S2(0)?

In particular, for the homomorphism A, corresponding to the represéntation Vi, the
equation (5.3) becomes

(5.3)

0, 0<t<1.
2

O

hy (e (r(2)) _
f1@®)?

Case 5. (C™ g)—(CP", 3). In this case, we can take the same homomorphism

A: K=SUm)—»G=SU(n) and «,, B, as in Case 4. The functions fi(t) corresponding to

the K-invariant Riemannian metric g on C™ satisfy the conditions in Example 4.2. The
harmonic map equation is of the same form (5.3) and (5.4) defined on (0, o).

Ko+ {(Zm_z) ARG }r.(t)

(5.4)

— 4k(k+m—2) 0, 0<t<%.

Case 6. (C™ g)—(C" g). In this case, we also can take the same homomorphism
A: K=SU(m)-»G=SU(n)and a,, B, as in Case 4. Also the both functions f(t) on 0 < ¢ < o0
and h(r) on 0 <r < oo satisfy the conditions in Example 4.2. The harmonic map equation
is of the same form (5.3) and (5.4) defined on (0, o).

In these cases, the energy density functional is given by

hy(r(t))? u hy(r(t))? }
[P T f0?
from (3.7). The equation (5.3) is the Euler-Lagrange equation of

e(¢)(c(t»=%{r‘(t)2+a

E(¢)=Vol(K, {, >)J e(op)c()D(t)de ,
V]

where I=n/2 or co and D(t) is given by

D(t)=1£,(t)*"2£5(t) .

The situation of the Case 1 is some generalization of Eells and Ratto [6]. The
special cases, that is, the Euclidean space and hyperbolic space in Cases 2, 3 are treated
in a book of Baird [3], and Case 4 is a generalization of the setting of Urakawa [15].
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But Cases 5, 6 are new. The existence of solutions r(t) of the equations (5.1)~(5.4)
satisfying the condition (3.1) are studied by the second author [14]. Making use of this
result, we shall construct new harmonic maps for our cases in the next section.

§6. Construction of harmonic maps.

In this section, we firstly refer to the result due to the second author on the existence
of global solution for the ordinary differential equation with singularities, and apply it
to our construction problem of equivariant harmonic maps.

Let fi(t), i=1, 2, be positive C* functions on (0, o), and h(r), i=1, 2, also positive
C* functions on (0, c0). Let us consider the following ordinary differential equation
on (0, o0):

“°+{pﬁﬂ)+qﬁa>

(L hrORew) nummwmq=0
% A0F T 40

We want to get a global (without blow-up) solution r =r(t) defined on (0, o) satisfying
lim,_, o (t)=0 regarding (3.1) and the investigation in section 5. To do this, we have to
impose the following conditions on f;(t) and h;(r):

(I-1) Fori=1,2, f(t)>0 on [0, o).

_f.lﬂ S2(0) }r‘(t)
6.1)

(I-2) For i=1, 2, there exist positive constants a;> 0 satisfying that
fi)=azt+0(?) (as t—0).
(I-3) For all #,>0 there exists a positive constant C = C(t,) >0 such that

f 1(2) f (1)
O < _
=P o T 0

(I-4) For some t,>0,

1<C on [O0,¢t,].

J. G 7o

+ dt<oo .
w U1(D (D)
(II-1) Fori=1,2, {hH}(r)=0 on [0, o).

(II-2) For i=1, 2, there exist positive constants b,>0 satisfying that
h(r)=b;r + O(r3) (as r—>0).
(II-3) For i=1, 2, there exist positive constants ¢;>0 such that

h{(r) <sinh(c;r) on (0, c0).
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Then we obtain the following theorem.

THEOREM 6.2 ([14, Theorem 1]). Let f{t), h(r), i=1, 2, be positive C* functions
on (0, o) satisfying the above conditions (I-1)~(I1-3). Let u and v be two non-negative
real numbers and p and q two non-negative integers satisfying p+q=>1. Then for all t,>0,
there exist positive constants a.>0 and B>0 such that a positive solution r=r(t) of (6.1)
exists globally on (0, o0) and satisfies

limr(t)=0 and limr(t) " "r,,
t— o0

t—0

where r, is some positive constant.

Moreover we assume the following conditions:
(II-4) For i=1,2, h!(r)=0 on [0, c0).
(II-5) For i=1, 2, there exist positive constants d;>0 and /> 1 such that

hy(r)=d,r* or hyr)>d,r'
for sufficiently large r>0.

Then we can show the following theorem.

THEOREM 6.3. ([14, Theorem 2]). There exists a global solution r=r(t) to (6.1)
satisfying

limr(t)=0 and limr(t) oo .
t—w

t—0

Here we examine the conditions in real 2-dimensional case, that is, we consider
equivariant harmonic maps

(R?, dt* +£(t)*d6?) 5 (t, 0)—(r(t), ¢(0)) € (R?, dr* + h(r)*d¢?) ,
where (t, ) and (r, ¢) are polar coordinates on R2. Then the equation (6.1) becomes
A, hr@KE)
—u b =0,
S S
and we can obtain the explicit solution to (6.4) (see [14, §41]).

Case 1. (R2 g..,,)—(RH?, 3..,). In this case, f(t)=t, h(r)=sinhr, and the
condition (I-4) is broken. On the other hand, the solution to (6.4) is given by

r(t)

tanh——=Ct",
2

(6.4) #(t)+

where C is a constant determined by the initial value. This solution blows up at ¢,
where Ctf, =1.
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Case 2. (R?, goan)—(R?, G..)- Inthiscase, f(t)=t, h(r)=r, and the condition (I-4)
is broken. However the solution to (6.4) is given by

r)=C't",

where C’ is a constant determined by the initial value, and this solution exists globally
on [0, o0).

These examples imply that if h(r) increases rapidly, then the condition (II-4) is
necessary for the existence of a global solution. In fact, if f(t)=t and h(r)>sinh cr, then
there is no global solution to (6.4). The condition (II-3) is used to estimate the initial
value a >0 for which the solution r=r(¢) is bounded. We can replace the function sinh ¢;r
in (II-3) by expc;r, however it is not necessary for applications. Now we shall state
our main theorem.

THEOREM 6.5. (I) Let (M, g) and (N, g) be two non-compact complete Riemannian
manifolds which coincide with (R™, g) and (R", g) given as in 4.1 respectively, and let
A : K=S0(m)— G =S0(n) be a homomorphism induced from an n-dimensional irreducible
orthogonal representation of SO(m) which is spherical with respect to SO(m—1) as in
Case 3 of 5.1. Assume that the positive C® functions f,(t) =f,(t)=f(t) and h,(r)= h,(r)= h(r)
satisfy the above conditions (1-1)—(11-3). Then there exists a full A-equivariant harmonic
map ¢ from (M, g) into (N, g).

(IT) Let (M, g) and (N, g) be two non-compact complete Riemannian manifolds which
coincides with (C™, g) and (C", ) given as in 4.1 respectively, and let A : K=SU(m)—»G=
SU(n) be a homomorphism induced from an n-dimensional irreducible unitary representation
of SU(m) which is spherical with respect to SUm—1) as in Case 5 of 5.2. Assume that
the positive C*® functions f{t) and h(r) on [0, c0) with i=1, 2 satisfy the above conditions
(I-1)«(I1-3). Then there exists-a full A-equivariant harmonic map ¢ from (M, g) into (N, g).

Here we call a C* map ¢ from R™ (resp. C™) into R" (resp. C") to be full if
there exists no hyperplane of R™ (resp. C™) which includes the image of ¢. The fullness
of ¢ in Theorem 6.5 follows from A-equivariance of ¢ and irreducibility of the
corresponding representations.

COROLLARY 6.6. (I) Let A: K=S0O(m)—>G=_S80(n) be a homomorphism induced
from an n-dimensional irreducible orthogonal representation of SO(m) which is spherical
with respect to SO(m—1). Then there exist full A-equivariant harmonic maps
(1) from the standard Euclidean space (R™, g.,,) into another one (R", §_,,),

(2) from the hyperbolic space (RH™, g.,,) into the standard Euclidean space (R", .,,),
(3) from the hyperbolic space (RH™, g.,,) into another hyperbolic space (RH", §.,,)-

(I) Let A: K=SUm)—->G=SU@n) be a homomorphism induced from an
n-dimensional irreducible unitary representation of SU(m) which is spherical with respect
to SU(m—1). Then there exist full A-equivariant harmonic maps
(1) from the standard complex Euclidean space (C™, g.,,) into another one (C", §..,),
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(2) from the complex hyperbolic space (CH™, g_,,) into the standard complex Euclidean
Space (Cn’ g-can)’

(3) from the complex hyperbolic space (CH™, g_,,) into another complex hyperbolic space
(CH”, §can)-

Here we note that the cases (I)-(1) and (IT)-(1) are not covered by Theorem 6.5.
However, in this case, we can reduce the problem to prove the existence of harmonic
functions.

REMARK 6.7. (1) For Case 1: (S", g)—(S",g) in 5.1 and Case 4. (CP™ g)—
(CP", §) in 5.2, see Urakawa [15].

(2) For any given R> 0, there exists a global solution of (6.1) satisfying r(tf)<R
on [0, c0). We do not know, however, the lim,_, , 7t)=R holds or not. If lim,_, , r(t)=R,
then ¢ may be an onto map from (R™, §) to Bg(0). Here we denote Bg(0) the geodesic
ball of radius R in.(R", g) or (C", g).

(3) We can show that there exists an equivariant harmonic maps ¢ from (R™, g)
(resp. (C™, g)) into the geodesic ball Bg(0) in (S, g) (resp. (CP", g)) for some radius R>0.

(4) For the case of the standard Euclidean space (R™, g) into the hyperbolic space
(RH", ), and the standard complex Euclidean space (C™, g) into the complex hyperbolic
space (CH™, 3), to construct full 4-equivariant harmonic maps is still unsolved problem
for us because these cases do not satisfy the condition (I-4).

(5) If we take the homomorphism A=id : SO(m—1)—-SO(m— 1), then Tachikawa
[11] showed that there exists no 4-equivariant harmonic map ¢ from (R™, g.,,) into
(RH m, gcan)'
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