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1. Introduction.

Let $(M, g)$ and $(N, h)$ be compact smooth Riemannian manifolds of dimension $m$

and $n$ , respectively and $f:M\rightarrow N$ be a smooth map. As a natural generalization of a
harmonic map, an exponentially harmonic map and a p-harmonic map $(1 <p<\infty)$ are
defined by extremals of the functionals $\int_{M}e^{|df|^{2}/2}v_{g}$ and $\int_{M}|df|^{p}v_{g}$ , respectively. And a
$(1, p)$-harmonic map is defined by an extremal of the less degenerate functional
$\int_{M}(1+|df|^{2})^{p/2}v_{g}$ as in [D-F]. We call them extremal maps of various types.

We will study the following problem; for a given smooth map $\varphi:M\rightarrow N$, does there
exist an extremal map $f$ such that $f$ is homotopic to $\varphi$ ?

Eells and Ferreira [E-F] gave some positive answer to the above problem allowing
conformal change of the Riemannian metric $g$ in the case of harmonic maps. Hong
[H] also solved in the case of exponentially harmonic, by the method of the conformal
equivalence of harmonic maps and exponentially harmonic maps. On the other hand,
there are some results due to H. Takeuchi [T] about the conformal equivalence of
p-harmonic maps and p’-harmonic for some $p$ and $p^{\prime}$ .

In this paper, we give a positive answer to the above problem allowing conformal
change of $g$ in the case of $(1, p)$-harmonic for any $p(1<p<\infty)$ , and obtain conformal
equivalence among extremal maps of various types each others.

We also study their stability under the conformal change of $g$ in the last section.
Now, we will illustrate our results in this paper as the following diagram.
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In this diagram, the arrows indicate conformal equivalence between two of extremal
maps. And the under part of each box indicates existence theorem of each extremal map
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2. Preliminaries.

Let $(M, g)$ and $(N, h)$ be compact smooth Riemannian manifolds of dimension $n$

and $n$ , respectively. For a smooth map $f:(M, g)\rightarrow(N, h)$ , we define the energy
exponential energy, p-energy and $(1, p)$-energy functionals of $f$ by

$E(f)=\int_{M}|df|^{2}v_{g}$ , $E_{e}(f)=\int_{M}e^{|df|^{2}/2}v_{g}$ ,

$E_{p}(f)=\int_{M}|df|^{p}v_{g}$ , and $E_{p}^{1}\omega=\int_{M}(1+|df|^{2})^{p/2}v_{g}$ ,

respectively, where $|df|$ denotes the Hilbert-Schmidt norm of the differential $df($

$\Gamma(T^{*}M\otimes f^{-1}TN)$ with respect to $g$ and $h$ , and $v_{g}$ is the volume element of $(M, g)$ ant

$p$ is a real number with $ 1<p<\infty$ .
DEFINITION 2.1. A smooth map $f$ is said to be harmonic, exponential harmonic

p-harmonic and $(1, p)$-harmonic if it is an extremal of the functionals $E(f),$ $E_{e}\omega,$ $E_{p}(f$
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and $E_{p}^{1}(f)$ , respectively.

Direct computation of the first variation of the functionals yields the Euler-
Lagrange equation;

$div(Adf)=0$ .
In local coordinates $(x^{i})$ and $(f^{\alpha})$ on $M$ and $N$, this is equivalent to

$-\frac{1}{\sqrt{g}}\frac{\partial}{\partial x^{i}}(A\sqrt{g}g^{ij}\frac{\partial f^{\gamma}}{\partial x^{j}})=Ag^{ijN}\Gamma_{\alpha\beta}^{\gamma}\frac{\partial f^{\alpha}}{\partial x^{i}}\frac{\partial f^{\beta}}{\partial x^{j}}$ $(1 \leq\gamma\leq n)$ , (2.1)

where $ N\Gamma_{\alpha\beta}\gamma$ are Christoffel’s symbols of the connection on $N$, and $A$ stands for

1 , $e^{|df|^{2}/2}$ , $|df|^{p-2}$ and $(1+|df|^{2})^{\langle p-2)/2}$

accordingly for $f$ to be harmonic, exponentially harmonic, p-harmonic and $(1, p)-$

harmonic, respectively. Thus if a smooth map $f:(M, g)\rightarrow(N, h)$ satisfies (2.1), we call it
an extremal map.

Put $\tilde{g}=\psi g$ for a smooth positive function $\psi:M\rightarrow R$ and a smooth Riemannian
metric $g$ on $M$. Substituting $g=\psi^{-1}\tilde{g}$ into (2.1), we have

$-\frac{1}{\sqrt{\tilde{g}}}\frac{\partial}{\partial x^{i}}(A\psi^{\langle 2-m)/2}\sqrt{\tilde{g}}\tilde{g}^{ij}\frac{\partial f^{\gamma}}{\partial x^{j}})=A\psi^{\langle 2-m)/2}\tilde{g}^{ijN}\Gamma_{a\beta^{\frac{\partial f^{\alpha}}{\partial x^{i}}\frac{\partial f^{\beta}}{\partial x^{j}}}}^{\gamma}$ $(1 \leq\gamma\leq n)$ . (2.2)

3. Main theorem.

Let $(M, g)$ and $(N, h)$ be compact smooth Riemannian manifolds of dimension $m$

and $n$ , respectively, and $\ovalbox{\tt\small REJECT}$ be a homotopy class of a smooth given map $\varphi:(M, g)\rightarrow$

$(N, h)$ .
Our first main theorem is as follows:

THEOREM 3.1. Suppose $m=\dim M\geq 3$ . Then there exists a smooth metric $\tilde{g}$

conformally equivalent to $g$ anda map $f\in\ovalbox{\tt\small REJECT}$ such that $f:(M,\tilde{g})\rightarrow(N, h)$ is $(1, p)$-harmonic
for any $p(1<p<\infty)$ .

In order to prove Theorem 3.1, we prepare the following proposition and some
lemmata.

LEMMA 3.2. Suppose that a smooth map $f:(M, g)\rightarrow(N, h)$ is harmonic. Then for
any $\epsilon>0$ , there exists a smooth metric $\tilde{g}$ conformally equivalent to $g$ such that $ f:(M,\tilde{g})\rightarrow$

$(N, h)$ is harmonic and $|df|_{\tilde{g}}^{2}\leq\epsilon$ .

For the proof, refer to [$H$ , Lemma 2, p. 489].

LEMMA 3.3. Define afunction $y$ in the variable $\psi$ by $ y(\psi)=\psi^{\alpha}-\psi$ . Then thefunction
$y(\psi)$ has a positive smooth inverse function $\Phi(y)$ on the following interval depending on
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the real number $\alpha$ .
i) When $\alpha>1,$ $y(\psi)$ has a positive smooth inverse function on $y\geq 0$ .
ii) When $0<\alpha<1,$ $y(\psi)$ has the one on $0\leq y\leq(1/\alpha)^{1/\langle\alpha-1)}(1/\alpha-1)$ .
iii) When $\alpha=0,$ $y(\psi)$ has the one on $0\leq y<1$ .
iv) When $\alpha<0,$ $y(\psi)$ has the one on $y\geq 0$ .
$PR\infty F$ . Calculating the derivative of $y(\psi)$ and drawing the graph on each case,

we can easily prove this lemma.

LEMMA 3.4. Suppose $m=\dim M\geq 3$ andf: $(M, g)\rightarrow(N, h)$ is harmonic. Then there
exists a smooth metric $\tilde{g}$ conformally equivalent to $g$ such that $f:(M,\tilde{g})\rightarrow(N, h)$ is
$(1, p)$-harmonic for any $p(1<p<\infty)$ .

$PR\infty F$ . Let $f:(M, g)\rightarrow(N, h)$ be a harmonic map. Putting $A=1$ at (2.2), we have

$-\frac{1}{\sqrt{\tilde{g}}}\frac{\partial}{\partial x^{i}}(\psi^{(2-m)/2}\sqrt{\tilde{g}}\tilde{g}^{ij}\frac{\partial f^{\gamma}}{\partial x^{j}})=\psi^{\langle 2-m)/2}\tilde{g}^{ijN}\Gamma_{\alpha\beta}^{\gamma}\frac{\partial f^{\alpha}}{\partial x^{i}}\frac{\partial f^{\beta}}{\partial x^{j}}$ .

To get the $(1, p)$-harmonic map $f:(M,\tilde{g})\rightarrow(N, h)$ , we want to get a positive smooth
function $\psi$ such that $\psi^{\langle 2-m)/2}=(1+|df|\frac{2}{g})^{\langle p-2)/2}$ . Sinoe

$|df|_{\tilde{g}}^{2}=\tilde{g}^{ij}h_{\alpha\beta}\frac{\partial f^{\alpha}}{\partial x^{i}}\frac{\partial f^{\beta}}{\partial x^{j}}=\psi^{-1}|df|^{2}$ ,

we need
$\psi^{\langle p-m)/(p-2)}-\psi=|df|^{2}$

Putting $\alpha:=(p-m)/(p-2)$ , where $p\neq 2$ , the above equality coincides with

$\psi^{\alpha}-\psi=|df|^{2}$ $(3.1^{\backslash }$,

Setting $\psi:=\Phi(|df|^{2})$ , where $\Phi(y)$ is given in Lemma 3.3, it is easily verified that $\psi$ if
a positive smooth function and satisfies (3.1) in any cases in Lemma 3.3.

To check the conditions of Lemma 3.3, note that since $m=\dim\geq 3$ , the cases $\alpha>1$

$0<\alpha<1,$ $\alpha=0$ and $\alpha<0$ in Lemma 3.3 correspond to $p<2<m,$ $p>m>2,$ $ p=m\geq-\wedge$

and $2<p<m$ , respectively. We also note that in the cases $0<\alpha<1$ and $\alpha=0$, we cat
suppose $|df|^{2}\leq\epsilon<(1/\alpha)^{1/\langle\alpha}$

‘ $1$ )
$(1/\alpha-1)$ and $0\leq|df|^{2}\leq\epsilon<1$ , respectively, by Lemma 3.2

Substituting $\psi$ obtained above and $A=1$ into (2.2), we have the Euler-Lagrangt
equation for $(1, p)$-harmonic maps with respect to $\tilde{g}$ and $h$ . Since $(1, 2)$-harmonic $maI$

is nothing but harmonic map, this lemma is valid also in the case $p=2$ . q.e.d

PROPOSmON 3.5. Suppose $m=\dim\geq 3$ . Then there exists a smooth metric $\acute{\iota}$.
conformally equivalent to $g$ and a map $f\in\ovalbox{\tt\small REJECT}$ such that $f:(M,\tilde{g})\rightarrow(N, h)$ is harmonic.

$PR\infty F$ . We prove Proposition 3.5 in an analogous way as in [E-F].

LEMMA 3.6. Suppose $ p/2>m=\dim$ M. Then there exists a smooth map $f\in\ovalbox{\tt\small REJECT}$ sucl
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that $f:(M, g)\rightarrow(N, h)$ is $(1, p)$-harmonic.

For the proof, refer to [E-F, Step 1, p. 160].

LEMMA 3.7. Suppose $m=\dim\geq 3$ and $f:(M, g)\rightarrow(N, h)$ is $(1, p)$-harmonic for
$ p/2>m=\dim$ M. Then there exists a smooth metric $\tilde{g}$ conformally equivalent to $g$ such
that $f:(M,\tilde{g})\rightarrow(N, h)$ is harmonic.

PROOF. Putting $A=(1+|df|^{2})^{\langle p-2)/2}$ and $\psi:=(1+|df|^{2})^{\langle p-2)/\langle m-2)}$ at (2.2), we
can prove that $\psi$ is a positive smooth function and satisfies

$(1+|df|^{2})^{\langle p-2)/2}\cdot\psi^{\langle 2-m)/2}=1$ .

So (2.2) impliesf: $(M,\tilde{g})\rightarrow(N, h)$ is harmonic. q.e. $d$ .

Combining Lemma 3.6 with Lemma 3.7, we can prove Proposition 3.5. q.e. $d$ .

PROOF OF THEOREM 3.1. In the case $p/2>m$ , Lemma 3.6 implies Theorem 3.1
without conformal change of metric $g$ . In the other case, applying Lemma 3.4 to the
map obtained in Proposition 3.5, we get Theorem 3.1. q.e. $d$ .

Here are a few observations about the conformal equivalence of harmonic map
and other extremal maps in the case $m=\dim\geq 3$ . H. Takeuchi [T] showed the following;

THEOREM 3.8. If$f:(M, g)\rightarrow(N, h)$ is a p’-harmonic map $(1 <p^{\prime}<\infty)$ , then there
is a smooth metric $\tilde{g}$ conformally equivalent to $g$ on $M_{+}$ such that $f:(M_{+},\tilde{g})\rightarrow(N, h)$ is
p-harmonic $(p\neq m)$ , where $M_{+}=\{x\in M;|df(x)|\neq 0\}$ .

In his theorem, putting $p=2$ or $p^{\prime}=2$ , we can easily get conformal equivalence of
harmonic map and p-harmonic map. Together with Hong’s theorems [$H$ , Theorem 2,
p. 489 and Theorem 3, p. 490] and Lemma 3.4 and Lemma 3.7 to these, we have
accomplished to show results in the diagram of the introduction concerned to conformal
equivalence among extremal maps of various types in the case $m=\dim M\geq 3$ .

4. In the case $m=\dim M=2$ .
If $m=\dim M=2$ , note that the energy functional is conformal invariant of the

metric on $M$. So it tums out to be impossible to get the conformal equivalence of
harmonic map and the other extremal maps. But there is a theorem about exponentially
harmonic map due to Hong as follows:

THEOREM 4.1. Suppose that $m=\dim M=2$ . Then there exists a continuous metric
$\tilde{g}$ conformally equivalent to $g$ , and a smooth map $f\in\ovalbox{\tt\small REJECT}$ such that $f:(M,\tilde{g})\rightarrow(N, h)$ is
exponentially harmonic in the weak sense.

For the proof, refer to [H].
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We remark that extremal maps $f:(M,\tilde{g})\rightarrow(N, h)$ in the weak sense means that the}
satisfy

$\int_{M}(A\tilde{g}^{ij}\frac{\partial f^{\gamma}}{\partial x^{j}}\frac{\partial\phi^{\gamma}}{\partial x^{i}}-\Lambda\tilde{g}^{ijN}\Gamma_{\alpha\beta}^{\gamma}\frac{\partial f^{\alpha}}{\partial x^{i}}\frac{\partial f^{\beta}}{\partial x^{j}}\emptyset^{\gamma})v_{\tilde{g}}=0$

for any $\phi\in C_{0}^{\infty}(M, N)$ . Here $A$ stands for $A=e^{|d\int|_{l}^{2}/2}$ for exponentially harmonic anc
$\Lambda=(1+|df|_{\tilde{g}}^{2})^{\langle p-2)/2}$ for $(1, p)$-harmonic.

Similarly to this theorem, we can get conformal equivalence and existence theoremf
concemed to extremal maps of various types in case $m=2$ , as follows:

THEOREM 4.2. Suppose $m=\dim M=2$ and $f$ : $(M, g)\rightarrow(N, h)$ is exponentially
harmonic. Then there exists a continuous metric $\tilde{g}$ conformally equivalent to $g$ such thal
$f:(M,\tilde{g})\rightarrow(N, h)$ is $(1, p)$-harmonic $(p>2)$ in the weak sense.

$PR\infty F$ . Let $f:(M, g)\rightarrow(N, h)$ be an exponentially harmonic map. Putting
$A=e^{|df|^{2}/2}$ and $\psi^{\langle 2-m)/2}=1$ at (2.2), we have

$-\frac{1}{\sqrt{\tilde{g}}}\frac{\partial}{\partial x^{i}}(e^{|df|^{2}/2}\sqrt{\tilde{g}}\tilde{g}^{ij}\frac{\partial f^{\gamma}}{\partial x^{j}})=e^{|df|^{2}/2}\tilde{g}^{ijN}\Gamma_{\alpha\beta}^{\gamma}\frac{\partial f^{\alpha}}{\partial x^{i}}\frac{\partial f^{\beta}}{\partial x^{j}}$ $(1\leq\gamma\leq n)$ .

Putting

$\psi:=\left\{\begin{array}{l}\frac{|df|^{2}}{e^{|df|^{2}/(p-2)}-1}x\in M_{+}\\p-2x\not\in M_{+}\end{array}\right.$

we can prove immediately that $\psi$ is a positive continuous function assuming $p>2$ and
satisfies

$(1+|df|_{\tilde{g}}^{2})^{(p-2)/2}=(1+\psi^{-1}|df|^{2})^{\langle p-2)/2}=e^{|df|^{2}/2}$

Substituting $\psi$ obtained above and $A=e^{|df|^{2}/2}$ into (2.2), we have the Euler-Lagrange
equation for $(1, p)$-harmonic maps with respect to $\tilde{g}$ and $h$ . q.e.d.

THEOREM 4.3. Suppose $m=\dim M=2$ and $f:(M, g)\rightarrow(N, h)$ is $(1, p)$-harmonic.
Then there exists a smooth metric $\tilde{g}$ conformally equivalent to $g$ on $M_{+}$ such thai

$f:(M_{+},\tilde{g})\rightarrow(N, h)$ is p-harmonic $(p\neq 2)$ , where $M_{+}=\{x\in M;|df(x)|\neq 0\}$ .
$PR\infty F$ . Similarly to the proof of Theorem 4.2, let $f:(M, g)\rightarrow(N, h)$ be as in the

assumption. Put $A=(1+|df|^{2})^{\langle p-2)/2}$ and $\psi:=|df|^{2}/(1+|df|^{2})$ at (2.2). It is easily
proved that $\psi$ is a positive smooth function of $M_{+}$ and satisfies

$|df|_{\overline{g}}^{p-2}=\psi^{-(p-2)/2}|df|^{p-2}=(1+|df|^{2})^{\langle p-2)/2}$

So (2.2) implies $f:(M_{+},\tilde{g})\rightarrow(N, h)$ is p-harmonic. q.e. $d$ .
THEOREM 4.4. Suppose $m=\dim M\geq 2$ . Then there exists a smooth metric $g^{*}$
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conformally equivalent to $g$ on $M_{+}$ , and a map $f\in\ovalbox{\tt\small REJECT}$ such that $f:(M_{+},\tilde{g})\rightarrow(N, h)$ is

p-harmonic $(p\neq m)$ .

PROOF. In the case $m\geq 3$ , combination ofProposition 3.5 and Theorem 3.8 putting
$p^{\prime}=2$ yields this theorem. In this process, $\tilde{g}$ is explicitly given by

$\tilde{g}=(\frac{|df|^{2}}{1+|df|^{2}})^{\langle 2-p)/\langle m-p)}g$ .

In the case $m=2$ , by the results of Sacks and Uhlenbeck in [S-U], there exists a
map $f\in\ovalbox{\tt\small REJECT}$ such that $f:(M, g)\rightarrow(N, h)$ is $(1, p)$-harmonic for $p>2$ . Combination of the
above results of Sacks and Uhlenbeck and Theorem 4.3 gives $\tilde{g}=(|df|^{2}/(1+|df|^{2}))g$

and yields Theorem 4.4. This $\tilde{g}$ coincides with the one in the case $m\geq 3$ , putting $m=2$ .
Therefore Theorem 4.4 is valid in the case $m\geq 2$ . q.e.d.

THEOREM 4.5. Suppose $m=\dim M=2$ . Then there exists a continuous metric $\tilde{g}$

conformally equivalent to $g$ anda map $f\in\ovalbox{\tt\small REJECT}$ such that $f$ : $(M,\tilde{g})\rightarrow(N, h)$ is $(1, p)$-harmonic

for any $p(1<p<\infty)$ in the weak sense. (cf. see remark below Theorem 4.1.)

$PR\infty F$ . For $p>2$ , by the results of Sacks and Uhlenbeck in [S-U], there exists a
map $f\in\ovalbox{\tt\small REJECT}$ such that $f:(M, g)\rightarrow(N, h)$ is $(1, p)$-harmonic.

We shall show that changing metric $g$ to $\tilde{g}$ conformally makes $f:(M,\tilde{g})\rightarrow(N, h)$

$(1,p^{\prime})$-harmonic for any $p^{\prime}(1<p^{\prime}<\infty)$ . We put $A=(1+|df|^{2})^{\langle p-2)/2}$ and

$\psi:=.\left\{\begin{array}{l}\frac{|df|^{2}}{(l+|df|^{2})^{(p-2)/2}-1}\\\frac{2}{p-2}\end{array}\right.$
$x\in M_{+}x\not\in M_{+}$

in the case $p^{\prime}=2$ and

$\psi:=\left\{\begin{array}{l}\frac{|df|^{2}}{(1+|df|^{2})^{\langle p-2)/\langle p^{\prime}-2)}-1}\\\frac{p’-2}{p-2}\end{array}\right.$ $x\in M_{+}x\not\in M_{+}$

in the case $p^{\prime}\neq 2$ at (2.2).
It is verified that $\psi$ is a positive continuous function and satisfies

$(1+|df|_{\tilde{g}}^{2})^{\langle p’-2)/2}=(1+|df|_{g}^{2})^{\langle p-2)/2}$

in each case. So $f:(M,\tilde{g})\rightarrow(N, h)$ is $(1, p^{\prime})$-harmonic for any $p^{\prime}$ .
Rewriting $p^{\prime}$ into $p$ , we have proved Theorem 4.5. q.e. $d$ .

THEOREM 4.6. Suppose $m=\dim M=2$ and $f:(M, g)\rightarrow(N, h)$ is p-harmonic. Then
there exists a smooth metric $\tilde{g}$ conformally equivalent to $g$ on $M_{+}such$ that $ f:(M_{+},\tilde{g})\rightarrow$
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$(N, h)$ is $(1, p)$-harmonic.
$PR\infty F$ . Putting $A=|df|^{p-2}$ and $\psi:=|df|^{2}/(|df|^{2}-1)$ at (2.2), we prove Theorem

4.6. q.e. $d$

THEOREM 4.7. Suppose $m=\dim M=2$ and $f$ : $(M, g)\rightarrow(N, h)$ is exponentially
harmonic. Then there exists a smooth metric $\tilde{g}$ conformally equivalent to $g$ on $M_{+}$ such
that $f:(M_{+},$ $g\gamma\rightarrow(N, h)$ is p-harmonic $(p\neq 2)$ .

$PR\infty F$ . Putting $A=e^{|df1^{2}/2}$ and $\psi:=|df|^{2}/e^{|df|^{2}/(p-2)}$ at (2.2), we prove Theorem
4.7. q.e. $d$ .

THEOREM 4.8. Suppose $m=\dim M=2$ andf : $(M, g)\rightarrow(N, h)$ is p-harmonic $(p\neq 2)$ .
Then there exists a smooth metric $\tilde{g}$ conformally equivalent to $g$ on $M_{+}$ such that

$f:(M_{+},\tilde{g})\rightarrow(N, h)$ is exponentially harmonic.
$PR\infty F$ . Putting $A=|df|^{p-2}$ and $\psi:=|df|^{2}/(\log|df|^{2})$ at (2.2), we prove Theorem

4.8. q.e. $d$ .
We have accomplished to show all our results in the diagram of the introduction

about conformal equivalence and existence of extremal maps of various types in the
remained case $m=2$ .

5. Stability of extremal maps of various types.

In this section, we study stability of several extremal maps $f:(M,\tilde{g})\rightarrow(N, h)$ . At
first, we describe the second variation formulae of the extremal maps.

Let $f:(M, g)\rightarrow(N, h)$ be an extremal map and $V$ and $W$ be variation vector fields
along $f$, that is, $V(x),$ $W(x)\in T_{f\langle x)}N,$ $x\in M$. Let $f_{s,t}$ be a two-parameter variation of an
extremal map $f=f_{0,0},$ $|s|,$ $|t|<\epsilon$ and $V=(\partial f_{s,t}/\partial s)|_{s,t=0},$ $W=(\partial f_{s.t}/\partial t)|_{s,\iota=0}$ . Then a
straightforward calculation gives the second variation formulae:

$\dot{H}_{f}(V, W)=\int_{M}[B\{\langle\nabla V, \nabla W\rangle-\langle R^{N}(V, df\cdot e_{i})df\cdot e_{i}, W\rangle\}+C\langle\nabla V, df\rangle\langle\nabla W, df\rangle]v_{g}$ ,

where $\nabla$ is the covariant derivative for the section of the pull back $f^{-1}TN$ induced
from the Levi-Civita connection of $(N, h)$ and $R^{N}$ is the sectional curvature of $N$ and
$\{e_{i}\}$ is a local orthogonal frame field of $M$.

Here $B$ stands for

1, $e^{|df|^{2}/2}$ , $p|df|^{p-2}$ and $p(1+|df|^{2})^{\langle p-2)/2}$

and $C$ stands for
$0$ , $e^{|df|^{2}/2}$ , $p(p-2)|df|^{p-4}$ and $p(p-2)(1+|df|^{2})^{\{p-4)/2}$

in the cases the map $f$ is harmonic, exponentially harmonic, p-harmonic and $(1, p)-$
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harmonic, respectively.

DEFINITION 5.1. An extremal map $f$ is called stable if $H_{f}(V, V)\geq 0$ for any
variation vector field $V$ along $f$

Now let us study the following problem: Suppose that an extremal map $ f:(M, g)\rightarrow$

$(N, h)$ becomes another type of extremal map $f:(M,\tilde{g})\rightarrow(N, h)$ by a conformal change
of metric $g$ , and that $f:(M, g)\rightarrow(N, h)$ is stable as an extremal map of the above type.
Is $f:(M,\tilde{g})\rightarrow(N, h)$ stable as another extremal map?

H. Takeuchi showed in [$T$ , Proposition 2] that if $p\geq p^{\prime}$ and $f:(M, g)\rightarrow(N, h)$ is
stable as ap’-harmonic map, then $f$ : $(M_{+},\tilde{g})\rightarrow(N, h)$ is also stable as a p-harmonic map.

We shall show the stability of conformal equivalence of harmonic map and the
other extremal maps by extending the method employed by H. Takeuchi.

THEOREM 5.2. Suppose $m=\dim M\geq 3$ and $f:(M, g)\rightarrow(N, h)$ is harmonic. Then
there exists a smooth metric $\tilde{g}$ conformally equivalent to $g$ such that $f:(M,\tilde{g})\rightarrow(N, h)$ is
exponentially harmonic, p-harmonic on $M_{+}(p\neq m)$ and $(1, p)$-harmonic, respectively.

Moreover, if $p\geq 2$ and $f:(M, g)\rightarrow(N, h)$ is stable as a harmonic map, then
$f:(M,\tilde{g})\rightarrow(N, h)$ is also stable as an exponentially harmonic map, a p-harmonic map on
$M_{+}$ and a $(1, p)$-harmonic map, respectively.

PROOF. We have already proved the first part in Proposition 3.5, Theorem 4.4
and Theorem 3.1.

Let $f:(M, g)\rightarrow(N, h)$ be stable as a harmonic map. We have

$H_{f}(V, V)=\int_{M}\{|\nabla V|^{2}-\langle R^{N}(V, df\cdot e_{i})df\cdot e_{i}, V\rangle\}v_{g}\geq 0$ .

Substituting $g=\psi^{-1}\tilde{g}$ into the above inequality, we have

$H_{f}(V, V)=\int_{M}\psi^{\langle 2-m)/2}\{|\nabla V|_{\tilde{g}}^{2}-\langle R^{N}(V, df\cdot e_{i})df\cdot e_{i}, V\rangle_{\tilde{g}}\}v_{\tilde{g}}\geq 0$ , (5.1)

where $\langle$ , $\rangle_{\tilde{g}},$
$v_{\tilde{g}}$ is the inner product and volume element measured by $\tilde{g}$, respectively.

By [$H$ , Theorem 3, p. 490], Theorem 3.8 putting $p^{\prime}=2$ and Lemma 3.4, $\psi^{\langle 2-m)/2}$

is determined as
$e^{|df|\frac{2}{g}/2}$ , $|df|_{\tilde{g}}^{p-2}$ and $(1+|df|_{\tilde{g}}^{2})^{\langle p-2)/2}$ ,

according to exponential harmonic, p-harmonic, $(1, p)$-harmonic, respectively.
On the other hand, the second variation formulae of exponentially harmonic map,

p-harmonic map and $(1, p)$-harmonic map $f:(M,\tilde{g})\rightarrow(N, h)$ are given as

$H_{f}(V, V)_{\tilde{g}}=\int_{M}[B\{|\nabla V|_{\tilde{g}}^{2}-\langle R^{N}(V, df\cdot e_{i})df\cdot e_{i}, V\rangle_{\tilde{g}}\}+C\langle\nabla V, df\rangle_{\tilde{g}}^{2}]v_{\tilde{g}}$ ,
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where $B$ stands for
$e^{|df|_{\beta}^{2}/2}$ , $p|df|_{\tilde{g}}^{p-2}$ , and $p(1+|df|_{\tilde{g}}^{2})^{\langle p-2)/2}$ ,

and $C$ stands for
$e^{|df|_{l}^{2}/2}$ , $p(p-2)|df|_{\tilde{g}}^{p-4}$ , and $p(_{-}p-2)(1+|df|_{\tilde{g}}^{2})^{(p-4)\prime 2}$ ,

respectively.
For every extremal map, it is clear that $C\geq 0$ if $p\geq 2$ and that $B$ in the secon$($

variational formulae coincides with $\psi^{\langle 2-m)/2}$ in (5.1) up to a multiple by $p$ .
So we consequently have

$H_{f}(V, V)_{\tilde{g}}\geq 0$ .
This proves Theorem 5.2. q.e. $d$
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