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0. Introduction.

In 1985, Andrew Casson defined an integer valued invariant A(M) for any oriented
integral homology 3-sphere M, which counts the “signed” irreducible representations
of the fundamental group 7,(M) into SU(2) [1]. In 1989, Kevin Walker extended the
Casson’s invariant to rational homology 3-spheres, by taking into account the reducible
representations of n,(M) coming from torsion [6]. In this paper we give a formula for
Walker’s invariant in the case where a rational homology 3-sphere H is obtained by
Dehn surgery on a link L in a rational homology 3-sphere M, and furthermore the
linking number between every pair of components of L is zero. In this case the Walker’s
invariant, A(H), can be expressed in terms of A(M), the surgery coefficients of L, a certain
coefficient from each of the Conway polynomials of L and all its sublinks, and a certain
function t which was introduced by Walker. In the case of original Casson’s invariant,
a formula for Dehn surgery on a link in an integral homology 3-sphere was given by
Jim Hoste [3]. We adapt his method to the case of the Walker’s invariant and obtain
a formula.

Suppose L={Kj,, ‘- -, K,} is a link in a rational homology sphere M. Let N(K;) be
a tubular neighborhood of K;. Let x;e H,(0N(K;); Z) be a primitive homology class. We
call pairs {(K, x,), * - -, (K,, x,)} aframed link and denote by x((K;, X4), - * -, (K, X,); M),
or simply by x(L; M), the manifold obtained from M by Dehn surgery along L according
to the given framings x;s. Let -, - ) denote the intersection pairing on H,(0M(K;); Z).
(The orientation of ON(K;)=0(M — N(K;)) is induced from that of M — N(K;) via the
“inward normal last” convention.) Let m; and /; be the meridian and longitude of KX
respectively. Walker gives the following formula for Dehn surgery on a knot X (i.e. one
component link):

m, x>

MK M) =MM)+(m, x; D+ TS

I'K; M).
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Here, m and / are the meridian and longitude of K respectively, xe H,(ON(K); Z) is a
primitive homology class which gives framing, 7 is a function which depends on m, x
and /, and I'(K; M) is the second derivative of the symmetrized Alexander polynomial
of K evaluated at 1. We will extend this surgery formula to a link of » components, all
of whose linking numbers are zero. For computative reasons, we will use the Conway
polynomial instead of the Alexander polynomial. If L bounds a Seifert surface F with
0F=K, u ‘- - UK, then it can be shown that the Conway polynomial of L, V. ,(2),
has the form V', ,(z)=2z""(ap+a,z% + - - - +a,z?*), where a;€ Q and k is some positive
integer. Let ¢,(L; M)=a;. Suppose that each component of L is null-homologous. Then
we will show that

oz ) =300+ 3. smowiy+2 3 (11 M)«plw; M).
LeL \ieL' {X; I
Here the sum is taken over all sublinks L’ of L and the product over all i for which X;
is a component of L’. We have abbreviated this as ie L’. Actually, the sum need only
be taken over all sublinks having less than four components as ¢,(L’; M)=0 otherwise.
We will also show a similar formula in the case that some components of L are not
null-homologous.

In Section 1, we will state Walker’s theorem (including the Dehn surgery formula
on a knot) with the definition of 7. In Section 2, we will establish some facts for the
Conway polynomial and the Alexander polynomial. The only difficulty in deriving the
formula from Walker’s Dehn surgery formula is in computing I'(K,; x(K;, - - -, K,_1; M))
in terms of original link data. Section 3 is devoted to doing this. Then in Section 4 we
obtain the formula for A(x(L; M)) (Theorem 4.1 and Theorem 4.2).

1. Theorem of Walker.

In order to state Walker’s theorem, we need to introduce two functions, I and t.

Let K be a knot in M and Ay, ,(t) be the Alexander polynomial of K. Normalize
AK Mm(?) so that A, ,(1)=1 and Ay, (17 1) = Ak, \(2). Let I'(K; M) e Q denote the second
derivative of A,(¢) evaluated at r=1.

The definition of t is more complicated. Let N(K) be a tubular neighborhood of K
and let / be a longitude of K. Let -, - ) denote the intersection pairing on H,(dN(K); Z).
(The orientation of dN(K)=0(M — N(K)) is induced from that of M — N(K) via the
“inward normal last” convention.) Let a, b € H,(dN(K); Z) be primitive homology classes
such that {a, I) #0 and <{b, [) #0. Choose a basis v, w of H,(dN(K); Z) such that (v, w)> =1
and /=dw for some de Z. Define

def B 1 {v,a) _ v, b
™a, b; 1) = —s(Kv, ay, <w, ap) +s({v, b), <w, b))+ < d> )( {w,a) <w,b) ) ’
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where s(g, p) denotes the Dedekind sum

def . 2
(g, p) = sign(p) kgl ((k/p)X(kq/p))

= xeZ

x—[x]-1/2, otherwise .
Note that t(a, b; I) depends only on a, b, I and (-, - >, not on v, w.

THEOREM (Walker). 1. There is a unique function A: {rational homology spheres}
—Q such that
(@) AS*=0, and
(b) "Dehn surgery formula: Let K be a knot in a rational homology sphere M, | be a
longitude of K and N= M — N(K). Then

a, b
<a, 15<b, 1)

Sor all primitive a, be H,(ON(K); Z), <a,1)#0, <b,1>#0. Here N.=N U, (D*x S*"), and
f:10D?*x S'-0N=08N(K) maps 0D? x {8} to a curve representing x.

2. The A invariant has the following properties:
(@) Let — M denote M with the opposite orientation. Then

M—M)=—-AM).

MNy)=AN,) +1(a, b; 1)+ I'(K; M)

(b) Let M, and M, be rational homology spheres. Then
MM, # M,)=AM,)+ MM,) .

2. Some properties of the Conway polynomial and the Alexander polynomial.

Let /k(K, J; M) denote the linking number of K and J in a rational homology
sphere M. Let L={K,, - - -, K,} be an oriented link in M. Suppose that L bounds a
Seifert surface F with 0F=K, U --- UK, Let {e,, - - -, e,} be a basis for H,(F; Z). Let
V(L; M)=(v;;) be a matrix given by v;;=Ilk(e;", e;; M). This is called a Seifert matrix.
In this case, the Conway polynomial of L, V., is

Vi m(z)=det¢V(L; M)—t™'V(L; M)T),
where z=¢—1¢" 1.

PROPOSITION 2.1. Let L={K,, - - -, K,} be an oriented link in M such that there is
a Seifert surface F for L with 0OF=K, U - - - UK,. Let V. (z) be the Conway polynomial
of L. Then V 1\, has the form

Vim@)=2""Yao+a,z2?+ - +a,z*™), ae€Q,
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where m is some positive integer.

PrOOF. Simply let V' denote the Seifert matrix V(L; M). The Alexander polynomial
of L, Ay (2) is given by

A (@) =1""dettV—VT)),

where r is the rank of H 1(F; Z). Note that if n=1, then this is the symmetric normal
form of Ay, y(¢) of a null-homologous knot K (i.e. which satisfies A, p(2)= Ay, (t™ 1)
and Ak, p(1)=1). Now :

Ap (1)) =177 det(t2V — V) =t ~"det(t(tV — 1~ 1V'T))
—det(tV =1 V) =F 102

Note that 4, ,(t™1)=(—1)"4,, ,(?). Hence, if r is even (i.e. n is odd), then 4, ,(¢) has
the form

Apm(®)=co+ci(t+t7 )+ (12 + 17+ -+, (172 + 17717, c,eQ
and if r is odd (i.e. n is even), then 4, ,,(?) has the form
A () =co(t'? =172 4 ey (12— 1732+ - - ey n(tT2 =171, ceQ.
So, if r is even, then
At =co+c (P +17)+c(t* + 179+ - 4o (" +17), ceQ
and if r is odd, then
Apu(P)=colt—t™ )+ e (P =173+ -+ oy (t'—177), c€Q.
But it can be shown that 2™+ ¢~ 2™ has the form
Pt =dy+dy(t— 1 Ayt —t ) - 4 d i), deZ
and ¢2m*1 —~Cm+1 has the form
P2l @Mt D gt — Y+ dy(t =t 4 -+ d (t— 1 YPmrL deZ.
Then it follows that V. ,(z) has the form
{VL;M(z)=bo+blzz+bzz4+ -+ bz?, b;eQ@, rieven (n:odd)
VimZ)=boz+b,z3+ - +bz¥" 1, b,e@, r:odd (n:even).

Now, since F is a surface with n boundary components, we may assume that the basis
of H,(F; Z) has been chosen so that ¥ has the form

A B
V= ,
(BT C)

where A4 is a 2g x2g matrix, B is a 2g x(n—1) matrix, and C is an (n—1)x(n—1)
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symmetric matrix. Then

_ —IAT B
VL;M(z)=det<tA ‘ g )

zBT zC
Hence V1, \(2) is divisible by z"~!. This completes the proof. O

Let ¢,(L; M) denote the coefficient of z"**in V' |, ,,(2) (i.e. ¢;(L; M)=aq;in Proposition
2.1). Let Ak, p(2) be the symmetrized normalized Alexander polynomial of a knot X in
M (i.e. which satisfies Ay, p(t)=Ag, p(t7") and Ay, (1)=1). Let I'(K; M) denote the
second derivative of A, () evaluated at r=1.

PROPOSITION 2.2. Let K be a null-homologous knot in M. Then
I'(K; M)=2¢,(K; M) .

PrOOF. In the proof of Proposition 2.1, we have shown that Ay, ,(t%) =V g, 1(2),
where z=¢—¢"'. Then we can conclude that Ay, y(¢)="F g, (¢} — ¢~ 1/?). From this and
Proposition 2.1, it follows that

d2
I'(K; M)=[dt2 VK;M(tllz"fl/z):l =2¢,(K; M) . O

t=1

Suppose that a knot K in M is not null-homologous. Let F be a Seifert surface for
K. We can assume that the longitude of K, / is represented by d parallel curves on
ON(K). Consider the surface F—N(K). We also denote this surface by F. Let
Oy, * "5 0 V15 ° " *» Ya—1 b€ simple closed curves representing a basis of H,(F; Q) as
shown in Figure 1. Orient the o;s so that

1, irodd, j=i+1
{oy, cxj>=[ -1, ireven, j=i—1
0, otherwise .

Let V'=(v;;) be a matrix given by v;;=lk(a;", a;; M). Then it can be shown that

2 d*—1
I'K; M)= [% t~9det(tV— VT)] + ,
t

. 12

o @ ®on 3, 5, 8

FiGURE 1



364 KATSUHIRO ISHIBE

where g is genus of F (see [6]). By cutting F along J;s (shown in Figure 1), we
get a surface F'. Then we obtain a knot K’ spanned by F’. We call this knot
an associate of K. This is null-homologous and it’s Seifert matrix is V. Hence
[(d?/dt>)t~9det(tV—VT)],-, is equal to 2¢,(K’; M). So we have shown the next pro-
position.

PROPOSITION 2.3. Let K be a knot in M and K’ be an associate of K. If a longitude
of K is represented by d parallel curves, then

d*—1

I'(K; M)=2¢,(K’; M)+

3. Linking in y(L; M).

Suppose that L={(K,, x,), * - *, (K,, X,)} is a framed oriented link in a rational
homology sphere M. Let m; be a meridian of K; and /; be a longitude of K;. Hereafter
we choose m; and /; so that {m;, [;>>0. Throughout the rest of this paper we consider
the case that lk(K;, K;; M)=0 for all i#j. Then y(L; M) is a rational homology sphere
iff {(x;, [;>#0 for all i. Suppose this is the case. Now if J; and J, are two knots in
M — L, then we may think of them either as knots in M or as in y(L; M). In either case
they have a well-defined linking number.

LEMMA 3.1. Suppose J, and J, are two knots in M — L. Then

<mia li><mi’ xi>
<xis l:)

PrROOF. Suppose first that /k(J,, K;; M)=0 for all i. Then J, bounds a Seifert
surface F in M — L. Hence lk(J,, J,; x(L; M))=Ik(J,, J,; M).

If Ik(J,, K;; M)+#0 for some i, then we will proceed as follows. First, consider a
band connected sum of [}, {x;, ;> copies of J;. Here, we choose bands so that the
band connected sum respects the orientations. We denote this knot by J;. Next we will
“slide” J| over the components of L until the linking number becomes zero. Here,
“slide” J| over K; means following move. Let X; be an oriented simple closed curve
on JN(K;) representing x;. Replace J; with a band connected sum of J; and X;. Note
that the band connected sum may either respect or disrespect the orientations of two
curves. We determine the orientation of the band connected sum by that of J.

Slide J| over each K; s; times. We denote this knot by J7. Choose s; to be positive
if the band connected sum respects the orientations and choose s; to be negative if it
disrespects the orientations. Since /k(K,, K;; M)=0 for all k#1,

{xp 4>
<my, 1) '

Ik(J s, I35 x(L; M))=1k(J,, J,; M)— Z Ik(J,, K;; M) Ik(J,, K;; M) .
i=1

lk(J1, K;; M)=1k(J, K;; M)+s;
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Suppose that lk(J7, K;; M)=0. Then

_ <my, 1) I(J',, K M)= — <my, 1)
<xis Ly <xp by

Fp JiD

—— = (1< ) ——— >

s 1 > (IT1<xp 1OKF I 1> Z,

where F; is a Seifert surface for K.
So, we can make the linking number of J| and K; zero for all i. Then

I(JY], T (L M) =Ik(J{, Jo; M)=Ik(J}, J; M)+ ), silk(X;, J2; M)
i=1

>

= 74, I M)~ o 3) 3 28 . K MYy 031U Ki M).

On th'e other hand
Ik(JY, T35 x(L; M))=1k(J, J5; x(L; M)) .

Since J', is a band connected sum of [T<x;, /;> copies of J;, we get from two equations
above

<y, Ly<my, xi

Ue(J 1, T 25 1(Ls M) =1k(Jy, Jo; M)— 3, Ik, Ky M) ety Tz K M)
i=1 Xis &
tl
Now suppose that K is a null-homologous knot in M — L such that K bounds a
Seifert surface Fin M—L. Let {e,, - -, e,} be a basis for H,(F; Z). Now F, together

with the choice of basis {e;}, gives rise to two Seifert matrices: one for K considered
as a knot in M, the other for K considered as a knot in y(L; M). The (i, j) entry of the
first matrix is given by lk(e;", ¢;; M), and for the second by lk(e;", e;; x(L; M)). It follows
easily from Lemma 3.1 that the two Seifert matrices are related as follows.

LEMMA 3.2. Let M, L, K, F, and {e;} be given as above. Then

<m15 ll><ml’ xl>

<x19 11> .
V(K; x(L; M))=V(K; M)—E ET,
(s 1
where E=(e;;) is given by e;;=lk(e;, K;; M).
LemMA 3.3. Suppose {K,, ---,K,} is an oriented link in a rational homology

sphere M with Ik(K,, K;; M)=0 for all i+#j and each K; is null-homologous. Then there
exist Seifert surfaces F; and F, such that 0F,=K,, 0F,=K, U --- UK,,and F; " F, is
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either empty or consists of a single ribbon intersection. Furthermore, in the latter case,
FinF,cintF,, F, n0F,cK,, and F, N F, does not separate F,.

PrROOF. See [3]. The proof given there can be adapted to this case. O

LEMMA 3.4. Let L={(Ky,x,), - -, (K,, x,)} be aframed link in a rational homology
sphere M with Ik(K;, K j; M) =0 for all i#j and each K, is null homologous. Then for each
1 <s<n we have

(pl(Km T, Ks; X(Kl’ Tt Ks—l; M))

= Z (n M)(pl(L',Ks, < Ky M)
L'<Ky,~Ks-1 \ieL' <X ;D

Here the sum is taken over all sublinks of {K,, - - -, K,_,} including the empty sublink.

The product is over all i such that K,= L', which we have abbreviated as ic L'. If L' is

empty we interpret the product as 1.

PrOOF. We proceed by induction on #. If n=1, then the formula is trivially true.
So suppose that L is a link of # components but that the lemma is true for any link of
n—1 or fewer components.

If s=1, then again, the lemma is trivially true. So we shall begin with the case
s=2. Thus we seek to prove that

<my, X1
(pl(KZa o 'aKn; X(Kl, M))=¢1(K2’ oo ',Kn; M)"'# (pl(Kl’ o '5Kn; M)

{xps 11>

Now by Lemma 3.3 there exist Seifert surfaces F, and F, such that oF,=K;,
O0F,=K, U -+ UK, and either F, N F, is empty or consists of a single ribbon inter-
section. If the intersection is empty, then ¢,(K,, - - -, K,; M)=0. (This is well known
if M=S3. See for example [4], and notice that the argument given there will work in
the more general setting of an arbitrary rational homology sphere.) But by Lemma
32, @Ky, -, Ky x(Ky; M))=¢4(K,, * - -, K,; M) since, for any choice of basis of
H,(F,; Z), E=0. Hence the lemma is true.

Now suppose that F; N F, is a single ribbon intersection as described in Lemma
3.3. Let {e;} be a basis for H,(F,; Z) such that e, meets F, transversely in a single point
and e;n Fy = for i>1. Hence ET=(+10---0) and by Lemma 3.2 we have

W=V(K;, -, Ky f(Ki; M)=V(K,, - -, K;; M)‘E(M>ET'
X5 11D

By definition, Vg, .. k. k. m(2)=dettW—t"'WT), where z=t—¢~!. This gives

<m1’ x1>

VKz,"'.K"; (K1: )(Z)=det(tV_t_1VT)_
X TR

Zdet(tVll_t_lVITI)
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<my, x1)
<X1, ll>

where V=V(K,, - -, K,; M), V, is the (1, 1) minor of V, and L’ is the n component
link that is spanned by the Seifert surface obtained by cutting F, along F,. Hence we have

=VK2,~-,K,,;M(Z)_ ZVL’;M(Z) s

my, X1 ,
01K, o Koy Ky M) =04(Ky, -+, Koy M)———2"20 0o(L5s M)
(x5 11D
Thus it only remains to show that ¢,(K;, - - -, K,; M)= —@y(L’; M).

Let F be a Seifert surface for the link L obtained from F; and F, as follows. Away
from F, N F, let Fbe F, U F, and near the intersection let F appear as in Figure 2. Let
{d;} be a basis for H,(F,; Z) so that {c, {d;}, {e;}} is a basis for H,(F; Z), where c is
the curve shown in the figure.

If V'=V(K,, M) is the Seifert matrix determined by {d;}, then a Seifert matrix for
L in M has the form

0,01 O 0

oV A

1

Ol 7 %

0

Hence we have

0 0 z 0 0
0 [tV -t 1pT zA

Viwlz)=det| 2

(.) zAT tV—t~ 1yt
0 /
tV' — —lVrT ’
=—zzdet< ! z4 ),
ZA/T tVll_t_lVfl

where 4’ is obtained from 4 by removing the first column.
But since F, a surface with n—1 boundary components, we may assume that the




368 KATSUHIRO ISHIBE

FIGURE 2

{e;} has been chosen so that ¥ has the form

(5 9)
cT D

where B is a 2h x 2h matrix, C is a 2h x n—2 matrix, and D is ann—2xn—2 symmetric
matrix. This additional information gives

tV'— T zA’

VL;M(Z)=—22det tBll_t_lBlTl ZCI N

AIT
z zC'T zD

where C’ is obtained from C by deleting the first row.

Now ¢,(L; M) is the coefficient of z**! in V' \(z). This is actually the smallest
power of z to appear since /k(K;, K;; M)=0 for all i#j implies that ¢,(L; M)=0. Hence
Vim(@/z" =@ (L; M)+ @o(L; M)z + - - -, and ¢@,(L; M)=1lim,_ oV . )(2)/z"**. But

tV' —~ T zA’
1
Vim@)/z" 1= ——det zAT tB,,—t BT, zC' |,
¥4 AéT CrT D

where A, is the first 2h— 1 columns of 4’ and A4}, is the last n—2 columns. And we may
assume that lk(e; , e;; M)=Ik(e;', e,;, M) for all i>2, hence every entry of the first row
of tB,, —t~'B], is divisible by z. Then we have

. . 1 B,, — -1 pT ’
o:(L; M)=—(llmdet(tV’—t‘lV’T)>(hm—det(t =l B Zc))
=0 0 Z c D
Vs O0o(Ls M)= —1- go(L’s M) .

This completes the proof for s=2.
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Now assume that s>2. We have, using our inductive hypothesis, that
(pl(Km T, Ks; X(Ks—la T, Kla M))
= @Ky, -5 Ko (K1, 7, Ky 1Ky M)

<mi9 xi> ”
= z ( 1—[ (pI(L ’ Kss Y Kn; X(Kl; M)) .
L"cKj, -, Ke—y \ieL” <X 1>

Now, using the inductive hypothesis if L”"#{K,, ---, K;_,} and the result for s=2
otherwise, we have :

(01(K,,, B Ks; X(Ks—-l’ T, Kl; M))

= Z ( 1_[ M)[q’l(‘l’”s Kss A' ) Km M)

L"<Kz, -, Ke-y \ieL" <Xi ;)

M ¢1(K19 L”’ Ks’ T, Km M):I
{xp, 1)
<mi’ xi> "
= Z HH (pl(LsKs:“.sKn;M)' I:I
L"=K;y, -, Ks-1 \ ieL” <xi9 l;)

Next we consider the case that some components of L are not null-homologous.
In Section 2, we constructed a null-homologous knot K’ from a knot K which is not
null homologous. We called this a knot associated to K. (See the description before
Proposition 2.2.) By considering K for each K;, we obtain a link L'={K7, - - -, K} such
that each component of L’ is null-homologous. We call this link a link associated to L.
Note that k(K}, K;; M)=0 for all i#j. Then the next lemma holds.

LEMMA 3.5. Let L={(K;, xy), - - *, (K, X,)} be a framed link in a rational homology
sphere M with IK(K;, K;; M)=0 for all i#j and L' ={Kj, - - -, K,} be as above. Then for
each 1 <s<n we have |

(pI(Kpln Tt K;a X(Kls Tt Ks-l; M))
<my, x;) ) ’ '
= L, K, -+, Ky M).
L”CK'I’Z”"K;'-I ( '!;[ (g 1<% 1) o1

Here the sum is taken over all sublinks of {K'|, - - -, K_,} including the empty sublink.
The product is over all i such that K;= L", which we have abbreviated as ie L". If L" is
empty we interpret the product as 1.

ProOOF. Adapt the proof of Lemma 3.4 directly. In this case we get
{my, X1
{my, 1 D<xy, 1D

since, ET=(+1/<{my,1;),0, - -+, 0) and by Lemma 3.2 we have

01(K3, -, Ky x(Kys M))=@ (K5, -+, Ky M)+ 0Ky, -+, Kjy M)
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/
W=WKj, -, Ky 2(Ky; M))=V(K3, -+, K,’,)—E( <my, I )<my, x41) )ET
Xy, 1)
‘Then the argument in the proof of Lemma 3.4 shows the conclusion. O

Actually, many terms in the sum given in Lemmas 3.4 and 3.5 are zero. This
follows from the following lemma.

LEMMA 3.6. Suppose L={K,, ‘- -, K,} is a link in a rational homology sphere M
with Ik(K;, K;; M)=0 for all i#j and each K; is null homologous, and furthermore n>3.
Then ¢,(L, M )=0.

ProoF. See [3]. The proof given there can be adapted to this case. O

Here the sum given in Lemmas 3.4 and 3.5 may actually just taken over all 1, 2,
and 3-component sublinks.

4. A formula for A.

In this section we will establish a formula for A. It is derived from Walker’s Dehn
surgery formula, Lemma 3.4 and Lemma 3.5. First we consider the case that each
component of a link L is null-homologous.

THEOREM 4.1. Let L={(K,, x,), - -, (K, X,)} be a framed oriented link in a rational
homology sphere M with Ik(K;, K js M)=0 for all i#j and each K; is null-homologous.
Let m; be a meridian of K; and I; be a longitude of K; for each i. Then the Walker
invariant of y(L, M) is given by

AGUL; M) = A(M)+ Z tmy, x5 1) +2 Y (H M)%(L’; M).
i=1 L'cL \ ieL’ < Xis l >

Actually, the sum need only be taken over those sublinks of L having less than four
components.

PROOF. We proceed by induction on n. If n=1, then by Walker’s theorem as
mentioned-in section 1 and Proposition 2.2, it follows that

{my, x4

AUL; M) =AM)+t(my, x5 1) +2
<x19 ll>

¢.(K;; M)

Hence the theorem is true for n=1.
Now assume that n>1. Then

Ax(L; M) = A(Ky x(Ky, -5 Ky—1; M)))
=Ky, * 5 Ky s M) +t(m,, x,; 1)
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<mm xn>

s 1>

By the inductive hypothesis and Lemma 3.4, we have

+2 ng(Kn; X(Kl, : ”9Kn—1; M))

n—1 ) .
AL MY=2M)+ 5 elm, x5 1)+2 T ( I M)(,,I(L,; M)

i L' <Ky, ,Kpn-1 \ ieL’ <xi’ ll>

S m+2M( Y ( I M)cplw, K.; M))

<xm ln> L'<Ky,-,Kpn-1 \ ieL’ <Xi, ll>

< i li '
— MM+ 3 lmy x5 1)+2 ( I —<—"”—>><p1(L;M).
i=1 Ler\ier <{x3 1)
Finally, using Lemma 3.6, we see that only sublinks having less than four components
will contribute to the sum. O

Suppose that some components of L are not null-homologous. In Section 3, we
considered a link L'={K?, - - -, K;} such that each component of L’ is null-homologous.
(See the description before Proposition 3.5.) We called this a link associated to L. We
can assume that the longitude /; of K; consists of d; parallel curves on dN(K;). Then
using Proposition 2.3 and Lemma 3.5, and proceeding the same as the proof of Theorem
4.1, we obtain the next theorem.

THEOREM 4.2. Let L={(Ky, x,), * - *, (K,, X,)} be aframed oriented link in a rational
homology sphere M with Ik(K;, K;; M)=0 for all i#j. Let L'={K}, - --, K.} be a link
associated to L. Let m; be a meridian of K; and I, be a longitude of K,. If I is represented
by d; parallel curves, then the Walker invariant of y(L; M) is given by

AL M) =100+ 3 clm 3 1)+2 T ( 1T <m<’l"> <";> 5 )«zl(L"; M)

+i i <my, x; )
12 i=1 {my, 1)<x, 1)

Actually, the sum need only be taken over those sublinks of L' having less than four
components.

@d:—1).

PROOF. We can prove this theorem as same as Theorem 4.1. 0
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