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$0$ . Introduction.

In 1985, Andrew Casson defined an integer valued invariant $\lambda(M)$ for any oriented
integral homology 3-sphere $M$, which counts the “signed” irreducible representations
of the fundamental group $\pi_{1}(M)$ into $SU(2)[1]$ . In 1989, Kevin Walker extended the
Casson’s invariant to rational homology 3-spheres, by taking into account the reducible
representations of $\pi_{1}(M)$ coming from torsion [6]. In this paper we give a formula for
Walker’s invariant in the case where a rational homology 3-sphere $H$ is obtained by
Dehn surgery on a link $L$ in a rational homology 3-sphere $M$, and furthermore the
linking number between every pair of components of $L$ is zero. In this case the Walker’s
invariant, $\lambda(H)$ , can be expressed in terms of $\lambda(M)$ , the surgery coefficients of $L$ , a certain
coefficient from each of the Conway polynomials of $L$ and all its sublinks, and a certain
function $\tau$ which was introduced by Walker. In the case of original Casson’s invariant,
a formula for Dehn surgery on a link in an integral homology 3-sphere was given by
Jim Hoste [3]. We adapt his method to the case of the Walker’s invariant and obtain
a formula.

Suppose $L=\{K_{1}, \cdots, K_{n}\}$ is a link in a rational homology sphere $M$. Let $N(K_{i})$ be
a tubular neighborhood of $K_{i}$ . Let $x_{i}\in H_{1}(\partial N(K_{i});Z)$ be a primitive homology class. We
call pairs $\{(K_{1}, x_{1}), \cdots, (K_{n}, x_{n})\}$ aframed link and denote by $\chi((K_{1}, x_{1}),$ $\cdots,$ $(K_{n}, x_{n});M)$ ,
or simply by $\chi(L;M)$ , the manifold obtained from $M$ by Dehn surgery along $L$ according
to the given framings $x_{i}s$ . Let $\langle\cdot, \cdot\rangle$ denote the intersection pairing on $H_{1}(\partial N(K_{i});Z)$ .
(The orientation of $\partial N(K_{i})=\partial(M-N(K_{i}))$ is induced from that of $M-N(K_{i})$ via the
”inward normal last” convention.) Let $m_{i}$ and $l_{i}$ be the meridian and longitude of $K_{i}$

respectively. Walker gives the following formula for Dehn surgery on a knot $K$ (i.e. one
component link):

$\lambda(\chi(K;M))=\lambda(M)+\tau(m, x;l)+\frac{\langle m,x\rangle}{\langle m,l\rangle\langle x,l\rangle}\Gamma(K;M)$ .
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Here, $m$ and $l$ are the meridian and longitude of $K$ respectively, $x\in H_{1}(\partial N(K);Z)$ is a
primitive homology class which gives framing, $\tau$ is a function which depends on $m,$ $x$

and $l$, and $\Gamma(K;M)$ is the second derivative of the symmetrized Alexander polynomial
of $K$ evaluated at 1. We will extend this surgery formula to a link of $n$ components, all
of whose linking numbers are zero. For computative reasons, we will use the Conway
polynomial instead of the Alexander polynomial. If $L$ bounds a Seifert surface $F$ with
$\partial F=K_{1}\cup\cdots\cup K_{n}$ , then it can be shown that the Conway polynomial of $L,$ $\nabla_{L;M}(z)$ ,
has the form $\nabla_{L;M}(z)=z^{n-1}(a_{0}+a_{1}z^{2}+\cdots+a_{k}z^{2k})$ , where $a_{i}\in Q$ and $k$ is some positive
integer. Let $\varphi_{i}(L;M)=a_{i}$ . Suppose that each component of $L$ is null-homologous. Then
we will show that

$\lambda(\chi(L;M))=\lambda(M)+\sum_{i=1}^{n}\tau(m_{i}, x_{i};l_{i})+2\sum_{L’\subset L}(\prod_{t\in L},$ $\frac{\langle m_{i},x_{i}\rangle}{\langle x_{i},l_{i}\rangle})\varphi_{1}(L^{\prime};M)$ .

Here the sum is taken over all sublinks $L^{\prime}$ of $L$ and the product over all $i$ for which $K_{\dot{t}}$

is a component of $L^{\prime}$ . We have abbreviated this as $i\in L^{\prime}$ . Actually, the sum need only
be taken over all sublinks having less than four components as $\varphi_{1}(L^{\prime};M)=0$ otherwise.
We will also show a similar formula in the case that some components of $L$ are not
null-homologous.

In Section 1, we will state Walker’s theorem (including the Dehn surgery formula
on a knot) with the definition of $\tau$ . In Section 2, we will establish some facts for the
Conway polynomial and the Alexander polynomial. The only difficulty in deriving the
formula from Walker’s Dehn surgery formula is in computing $\Gamma(K_{n};\chi(K_{1}, \cdots, K_{n-1};M))$

in terms of original link data. Section 3 is devoted to doing this. Then in Section 4 we
obtain the formula for $\lambda(\chi(L;M))$ (Theorem 4.1 and Theorem 4.2).

1. Theorem of Walker.

In order to state Walker’s theorem, we need to introduce two functions, $\Gamma$ and $\tau$ .
Let $K$ be a knot in $M$ and $\Delta_{K;M}(t)$ be the Alexander polynomial of $K$. Normalize

$\Delta_{K;M}(t)$ so that $\Delta_{K:M}(1)=1$ and $\Delta_{K;M}(t^{-1})=\Delta_{K;M}(t)$ . Let $\Gamma(K;M)\in Q$ denote the second
derivative of $\Delta_{K}(t)$ evaluated at $t=1$ .

The definition of $\tau$ is more complicated. Let $N(K)$ be a tubular neighborhood of $K$

and let $l$ be a longitude of $K$. Let $\langle\cdot, \cdot\rangle$ denote the intersection pairing on $ H_{1}(\partial N(K);\emptyset$ .
(The orientation of $\partial N(K)=\partial(M-N(K))$ is induced from that of $M-N(K)$ via the
“inward normal last” convention.) Let $a,$ $b\in H_{1}(\partial N(K);Z)$ be primitive homology classes
such that $\langle a, l\rangle\neq 0$ and $\langle b, l\rangle\neq 0$ . Choose a basis $v,w$ of $H_{1}(\partial N(K);l$ such that $\langle v, w\rangle=1$

and $l=dw$ for some $d\in Z$. Define

$\tau(a, b;l)^{d}=^{ef}-s(\langle v, a\rangle, \langle w, a\rangle)+s(\langle v, b\rangle, \langle w, b\rangle)+\frac{1}{12}(1-\frac{1}{d^{2}})(\frac{\langle v,a\rangle\langle v,b\rangle}{\langle w,a\rangle\langle w,b\rangle})$ ,
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where $s(q, p)$ denotes the Dedekind sum

$s(q, p)^{d}=^{ef}sign(p)\sum_{k=1}^{|p|}((k/p))((kq/p))$

$((x))^{d}=^{ef}\left\{\begin{array}{l}0\\x-[x]-1/2\end{array}\right.$ $x\in Zotherwise$

.

Note that $\tau(a, b;l)$ depends only on $a,$ $b,$ $l$ and $\langle$ $\rangle$ , not on $v,$ $w$ .
THEOREM (Walker). 1. There is a unique function $\lambda$ : {rational homology spheres}

$\rightarrow Q$ such that
(a) $\lambda(S^{3})=0$ , and
(b) Dehn surgery formula: Let $K$ be a knot in a rational homology sphere $M,$ $1$ be a
longitude of $K$ and $N=M-N(K)$ . Then

$\lambda(N_{b})=\lambda(N_{a})+\tau(a, b;l)+\frac{\langle a,b\rangle}{\langle a,l\rangle\langle b,l\rangle}\Gamma(K;M)$

for all primitive $a,$ $b\in H_{1}(\partial N(K);\emptyset,$ $\langle a, l\rangle\neq 0,$ $\langle b, l\rangle\neq 0$ . Here $N_{x}=NU_{f}(D^{2}\times S^{1})$, and
$f:\partial D^{2}\times S^{1}\rightarrow\partial N=\partial N(K)$ maps $\partial D^{2}\times\{\theta\}$ to a curve representing $x$ .

2. The $\lambda$ invariant has the following properties:
(a) Let $-M$ denote $M$ with the opposite orientation. Then

$\lambda(-M)=-\lambda(M)$ .

(b) Let $M_{1}$ and $M_{2}$ be rational homology spheres. Then

$\lambda(M_{1}\# M_{2})=\lambda(M_{1})+\lambda(M_{2})$ .

2. Some properties of the Conway polynomial and the Alexander polynomial.

Let $lk(K, J;M)$ denote the linking number of $K$ and $J$ in a rational homology
sphere $M$. Let $L=\{K_{1}, \cdots, K_{n}\}$ be an oriented link in $M$. Suppose that $L$ bounds a
Seifert surface $F$ with $\partial F=K_{1}u\cdots uK_{n}$ . Let $\{e_{1}, \cdots, e_{r}\}$ be a basis for $H_{1}(F;Z)$ . Let
$V(L;M)=(v_{ij})$ be a matrix given by $v_{ij}=lk(e_{i}^{+}, e_{j};M)$ . This is called a Seifert matrix.
In this case, the Conway polynomial of $L,$ $\nabla_{L;M}$ , is

$\nabla_{L;M}(z)=\det(tV(L;M)-t^{-1}V(L;M)^{T})$ ,

where $z=t-t^{-1}$ .
PROPOSITION 2.1. Let $L=\{K_{1}, \cdots, K_{n}\}$ be an oriented link in $M$ such that there is

a Seifert surface Ffor $L$ with $\partial F=K_{1}\cup\cdots\cup K_{n}$ . Let $\nabla_{L;M}(z)$ be the Conway polynomial
of L. Then $\nabla_{L;M}$ has the form

$\nabla_{L;M}(z)=z^{n-1}(a_{0}+a_{1}z^{2}+\cdots+a_{m}z^{2m})$ , $a_{i}\in Q$ ,
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where $m$ is some positive integer.

$PR\infty F$ . Simply let $V$denote the Seifert matrix $V(L;M)$ . The Alexander polynomial
of $L,$ $\Delta_{L;M}(t)$ is given by

$\Delta_{L;M}(t)=t^{-r/2}(\det(tV-V^{T}))$ ,

where $r$ is the rank of $H_{1}(F;Z)$ . Note that if $n=1$ , then this is the symmetric normal
form of $\Delta_{K;M}(t)$ of a null-homologous knot $K$ (i.e. which satisfies $\Delta_{K;M}(t)=\Delta_{K;M}(t^{-1})$

and $\Delta_{K;M}(1)=1)$ . Now

$\Delta_{L;M}(t^{2})=t-r/\backslash \det(t^{2}V-V^{r}))=t^{-r}\det(t(tV-t^{-1}V^{T}))$

$=\det(tV-t^{-1}V^{T})=\nabla_{L;M}(z)$ .
Note that $\Delta_{L;M}(t^{-1})=(-1)^{r}\Delta_{L;M}(t)$ . Hence, ifr is even (i.e. nisodd), then $\Delta_{L;M}(t)$ has
the form

$\Delta_{L;M}(t)=c_{0}+c_{1}(t+t^{-1})+c_{2}(t^{2}+t^{-2})+\cdots+c_{r/2}(t^{r/2}+t^{-r/2})$ , $c_{i}\in Q$

and ifr is odd (i.e. niseven), then $\Delta_{L;M}(t)$ has the form

$\Delta_{L;M}(t)=c_{0}(t^{1\prime 2}-t^{-1/2})+c_{1}(t^{3/2}-t^{-3/2})+\cdots+c_{\langle r-1)/2}(t^{r/2}-t^{-r/2})$ , $c_{i}\in Q$ .
So, if $r$ is even, then

$\Delta_{L;M}(t^{2})=c_{0}+c_{1}(t^{2}+t^{-2})+c_{2}(t^{4}+t^{-4})+\cdots+c_{r/2}(t^{r}+t^{-r})$ , $c_{i}\in Q$

and if $r$ is odd, then

$\Delta_{L;M}(t^{2})=c_{0}(t-t^{-1})+c_{1}(t^{3}-t^{-3})+\cdots+c_{\langle r-1)/2}(t^{r}-t^{-r})$ , $c_{i}\in Q$ .
But it can be shown that $t^{2m}+t^{-2m}$ has the form

$t^{2m}+t^{-2m}=d_{0}+d_{1}(t-t^{-1})^{2}+d_{2}(t-t^{-1})^{4}+\cdots+d_{m}(t-t^{-1})^{2m}$ , $d_{i}\in Z$

and $t^{2m+1}-t^{-(2m+1)}$ has the form

$t^{2m+1}-t^{-\langle 2m+1)}=d_{0}(t-t^{-1})+d_{1}(t-t^{-1})^{3}+\cdots+d_{m}(t-t^{-1})^{2m+1}$ , $d_{i}\in Z$ .
Then it follows that $\nabla_{L;M}(z)$ has the form

$\left\{\begin{array}{ll}\nabla_{L;M}(z)=b_{0}+b_{1}z^{2}+b_{2}z^{4}+\cdots+b_{l}z^{2l}, & b_{i}\in Q, r; even (n: odd)\\\nabla_{L;M}(z)=b_{0}z+b_{1}z^{3}+\cdots+b_{l}z^{2l-1}, & b_{i}\in Q, r; odd (n: even).\end{array}\right.$

Now, since $F$ is a surface with $n$ boundary components, we may assume that the basis
of $H_{1}(F;Z)$ has been chosen so that $V$ has the form

$V=\left(\begin{array}{ll}A & B\\B^{T} & C\end{array}\right)$ ,

where $A$ is a $2g\times 2g$ matrix, $B$ is a $2g\times(n-1)$ matrix, and $C$ is an $(n-1)\times(n-1)$
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symmetric matrix. Then

$\nabla_{L;M}(z)=\det\left(\begin{array}{lll}tA & -t^{-1}A^{T} & zB\\ & zB^{T} & zC\end{array}\right)$ .

Hence $\nabla_{L;M}(z)$ is divisible by $z^{n-1}$ . This completes the proof. $\square $

Let $\varphi_{i}(L;M)$ denote the coefficient $ofz^{n+i}$ in $\nabla_{L;M}(z)$ (i.e. $\varphi_{i}(L;M)=a_{i}$ in Proposition
2.1). Let $\Delta_{K;M}(t)$ be the symmetrized normalized Alexander polynomial of a knot $K$ in
$M$ (i.e. which satisfies $\Delta_{K;M}(t)=\Delta_{K;M}(t^{-1})$ and $\Delta_{K;M}(1)=1$ ). Let $\Gamma(K;M)$ denote the
second derivative of $\Delta_{K;M}(t)$ evaluated at $t=1$ .

PROPOSITION 2.2. Let $K$ be a null-homologous knot in M. Then

$\Gamma(K;M)=2\varphi_{1}(K;M)$ .

PROOF. In the proof of Proposition 2.1, we have shown that $\Delta_{K;M}(t^{2})=\nabla_{K;M}(z)$ ,
where $z=t-t^{-1}$ . Then we can conclude that $\Delta_{K;M}(t)=\nabla_{K;M}(t^{1/2}-t^{-1/2})$ . From this and
Proposition 2.1, it follows that

$\Gamma(K;M)=[\frac{d^{2}}{dt^{2}}\nabla_{K;M}(t^{1/2}-t^{-1/2})]_{t=1}=2\varphi_{1}(K;M)$ . $\square $

Suppose that a knot $K$ in $M$ is not null-homologous. Let $F$ be a Seifert surface for
$K$. We can assume that the longitude of $K,$ $l$ is represented by $d$ parallel curves on
$\partial N(K)$ . Consider the surface $F-N(K)$ . We also denote this surface by $F$. Let
$\alpha_{1},$ $\cdots,$ $\alpha_{2g},$ $\gamma_{1},$ $\cdots,$ $\gamma_{d-1}$ be simple closed curves representing a basis of $H_{1}(F;Q)$ as
shown in Figure 1. Orient the $\alpha_{i}s$ so that

$\langle\alpha_{i}, \alpha_{j}\rangle=\left\{\begin{array}{ll}1 , & j; odd, j=i+1\\-1 , & i: even , j=i-1\\0, & otherwise.\end{array}\right.$

Let $V=(v_{ij})$ be a matrix given by $v_{ij}=lk(\alpha_{i}^{+}, \alpha_{j};M)$ . Then it can be shown that

$\Gamma(K;M)=[\frac{d^{2}}{dt^{2}}t^{-g}\det(tV-V^{T})]_{r=1}+\frac{d^{2}-1}{12}$ ,

$FlGURE1$
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where $g$ is genus of $F$ (see [6]). By cutting $F$ along $\delta_{i}s$ (shown in Figure 1), $w$

get a surface $F^{\prime}$ . Then we obtain a knot $K^{\prime}$ spanned by $F^{\prime}$ . We call this knc
an associate of $K$. This is null-homologous and it’s Seifert matrix is $V$. Henc
$[(d^{2}/dt^{2})t^{-g}\det(tV-V^{T})]_{t=1}$ is equal to $2\varphi_{1}(K^{\prime};M)$ . So we have shown the next prc
position.

PROPOSITION 2.3. Let $K$ be a knot in $M$ and $K^{\prime}$ be an associate ofK. Ifa longitud
of $K$ is represented by $d$ parallel curves, then

$\Gamma(K;M)=2\varphi_{1}(K^{\prime};M)+\frac{d^{2}-1}{12}$ .

3. Linking in $\chi(L;M)$ .
Suppose that $L=\{(K_{1}, x_{1}), \cdots, (K_{n}, x_{n})\}$ is a framed oriented link in a $ration_{\iota}^{r}$

homology sphere $M$ . Let $m_{i}$ be a meridian of $K_{i}$ and $l_{i}$ be a longitude of $K_{i}$ . Hereafte
we choose $m_{i}$ and $l_{i}$ so that $\langle m_{i}, l_{i}\rangle>0$ . Throughout the rest of this paper we conside
the case that $lk(K_{i}, K_{j};M)=0$ for all $i\neq j$. Then $\chi(L;M)$ is a rational homology spher
iff $\langle x_{i}, l_{i}\rangle\neq 0$ for all $i$ . Suppose this is the case. Now if $J_{1}$ and $J_{2}$ are two knots $i$

$M-L$, then we may think of them either as knots in $M$ or as in $\chi(L;M)$ . In either cas
they have a well-defined linking number.

LEMMA 3.1. Suppose $J_{1}$ and $J_{2}$ are two knots in $M-L$ . Then

$lk(J_{1}, J_{2};\chi(L;M))=lk(J_{1}, J_{2};M)-\sum_{i=1}^{n}lk(J_{1}, K_{i}; M)\frac{\langle m_{i},l_{i}\rangle\langle m_{i},x_{i}\rangle}{\langle x_{i},l_{i}\rangle}lk(J_{2}, K_{i};M)$ .

$PR\infty F$ . Suppose first that $lk(J_{1}, K_{i};M)=0$ for all $i$. Then $J_{1}$ bounds a Seife]

surface $F$ in $M-L$ . Hence $lk(J_{1}, J_{2};\chi(L;M))=lk(J_{1}, J_{2};M)$ .
If $lk(J_{1}, K_{i};M)\neq 0$ for some $i$, then we will proceed as follows. First, consider

band connected sum of $\prod_{i=1}^{n}\langle x_{i}, l_{i}\rangle$ copies of $J_{1}$ . Here, we choose bands so that th
band connected sum respects the orientations. We denote this knot by $J_{1}^{\prime}$ . Next we wi
“slide” $J_{1}^{\prime}$ over the components of $L$ until the linking number becomes zero. Her$($

“slide” $J_{1}^{\prime}$ over $K_{i}$ means following move. Let $X_{i}$ be an oriented simple closed curv
on $\partial N(K_{i})$ representing $x_{i}$ . Replace $J_{1}^{\prime}$ with a band connected sum of $J_{1}^{\prime}$ and $X_{i}$ . Nol
that the band connected sum may either respect or disrespect the orientations of tw
curves. We determine the orientation of the band connected sum by that of $J_{1}^{\prime}$ .

Slide $J_{1}^{\prime}$ over each $K_{i}s_{i}$ times. We denote this knot by $J_{1}^{\prime\prime}$ . Choose $s_{i}$ to be positis
if the band connected sum respects the.orientations and choose $s_{i}$ to be negative if
disrespects the orientations. Since $lk(K_{k}, K_{l};M)=0$ for all $k\neq l$,

$lk(J_{1}^{\prime\prime}, K_{i};M)=lk(J_{1}^{\prime}, K_{i};M)+s_{i}\frac{\langle x_{i},l_{i}\rangle}{\langle m_{i},l_{i}\rangle}$ .
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Suppose that $lk(J_{1}^{\prime\prime}, K_{i}; M)=0$ . Then

$s_{i}=-\frac{\langle m_{i},l_{i}\rangle}{\langle x_{i},l_{i}\rangle}lk(J_{1}^{\prime}, K_{i};M)=-\frac{\langle m_{i},l_{i}\rangle}{\langle x_{i},l_{i}\rangle}(\prod\langle x_{j}, l_{j}\rangle)\frac{\langle F_{i},J_{1}\rangle}{\langle m_{i},l_{i}\rangle}$

$=-\frac{1}{\langle x_{i},l_{i}\rangle}(\prod\langle x_{j}, l_{j}\rangle)\langle F_{i}, J_{1}\rangle\in Z$ ,

where $F_{i}$ is a Seifert surface for $K_{i}$ .
So, we can make the linking number of $J_{1}^{\prime\prime}$ and $K_{i}$ zero for all $i$ . Then

$lk(J_{1}^{\prime\prime}, J_{2};\chi(L;M))=lk(J_{1}^{\prime\prime}, J_{2};M)=lk(J_{1}^{\prime}, J_{2};M)+\sum_{i=1}^{n}s_{i}lk(X_{i}, J_{2};M)$

$=lk(J_{1}^{\prime}, J_{2};M)-(\prod\langle x_{j}, l_{j}\rangle)\sum_{i=1}^{n}\frac{\langle m_{i},l_{i}\rangle}{\langle x_{i},l_{i}\rangle}lk(J_{1}, K_{i};M)\langle m_{i}, x_{i}\rangle lk(J_{2}, K_{i};M)$ .

On the other hand

$lk(J_{1}^{\prime\prime}, J_{2};\chi(L;M))=lk(J_{1}^{\prime}, J_{2};\chi(L;M))$ .

Since $J_{1}^{\prime}$ is a band connected sum of $\prod\langle x_{j}, l_{j}\rangle$ copies of $J_{1}$ , we get from two equations
above

$lk(J_{1}, J_{2};\chi(L;M))=lk(J_{1}, J_{2};M)-\sum_{i=1}^{n}lk(J_{1}, K_{i};M)\frac{\langle m_{i},l_{i}\rangle\langle m_{i},x_{i}\rangle}{\langle x_{i},l_{i}\rangle}lk(J_{2}, K_{i};M)$ .
$\square $

Now suppose that $K$ is a null-homologous knot in $M-L$ such that $K$ bounds a
Seifert surface $F$ in $M-L$ . Let $\{e_{1}, \cdots, e_{n}\}$ be a basis for $H_{1}(F;Z)$ . Now $F$, together
with the choice of basis $\{e_{i}\}$ , gives rise to two Seifert matrices: one for $K$ considered
asaknot in M, the other forK considered asaknot in $\chi(L;M)$ . The $(i, j)$ entry of the
first matrix is given by $lk(e_{i}^{+}, e_{j};M)$ , and for the second by $lk(e_{i}^{+}, e_{j};\chi(L;M))$ . It follows
easily from Lemma 3.1 that the two Seifert matrices are related as follows.

LEMMA 3.2. Let $M,$ $L,$ $K,$ $F$, and $\{e_{i}\}$ be given as above. Then

$V(K;\chi(L;M))=V(K;M)-E\left(\begin{array}{lll}\frac{\langle m_{1},l_{1}\rangle\langle m_{1},x_{1}\rangle}{\langle x_{1},l_{1}\rangle} & & \\ & \ddots & \\ & & \frac{\langle m_{n},l_{n}\rangle\langle m_{n},x_{n}\rangle}{\langle x_{n},l_{n}\rangle}\end{array}\right)E^{T}$ ,

where $E=(e_{ij})$ is given by $e_{ij}=lk(e_{i}, K_{j};M)$ .

LEMMA 3.3. Suppose $\{K_{1}, \cdots, K_{n}\}$ is an oriented link in a rational homology
sphere $M$ with $lk(K_{i}, K_{j};M)=0$ for all $i\neq j$ and each $K_{i}$ is null-homologous. Then there
exist Seifert surfaces $F_{1}$ and $F_{2}$ such that $\partial F_{1}=K_{1},$ $\partial F_{2}=K_{2}\cup\cdots\cup K_{n}$ , and $F_{1}\cap F_{2}$ is
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either empty or consists of a single ribbon intersection. Furthermore, in the latter case,
$F_{1}\cap F_{2}\subset intF_{1},$ $F_{1}\cap\partial F_{2}\subset K_{2}$ , and $F_{1}\cap F_{2}$ does not separate $F_{2}$ .

$PR\infty F$ . See [3]. The proof given there can be adapted to this case. $\square $

LEMMA 3.4. Let $L=\{(K_{1}, x_{1}), \cdots, (K_{n}, x_{n})\}$ be aframed link in a rational homology
sphere $M$ with $lk(K_{i}, K_{j};M)=0$ for all $i\neq j$ and each $K_{i}$ is null homologous. Then for each
$1\leq s\leq n$ we have

$\varphi_{1}(K_{n}, \cdots, K_{s};\chi(K_{1}, \cdots, K_{s-1};M))$

$=\sum L’\subset K_{1},\cdots,K_{s- 1}(\prod_{i\in L^{i}}\frac{\langle m_{i},x_{i}\rangle}{\langle x_{i},l_{i}\rangle})\varphi_{1}(L^{\prime}, K_{s}, \cdots, K_{n};M)$ .

Here the sum is taken over all sublinks of $\{K_{1}, \cdots, K_{s-1}\}$ including the empty sublink.
The product is over all $i$ such that $K_{i}\subset L^{\prime}$ , which we have abbreviated as $i\in L^{\prime}$ . If $L^{\prime}$ is
empty we interpret the product as 1.

$PR\infty F$ . We proceed by induction on $n$ . If $n=1$ , then the formula is trivially true.
So suppose that $L$ is alink of $n$ components but that the lemma is true for any link of
$n-1$ or fewer components.

If $s=1$ , then again, the lemma is trivially true. So we shall begin with the case
$s=2$ . Thus we seek to prove that

$\varphi_{1}(K_{2}, \cdots, K_{n};\chi(K_{1};M))=\varphi_{1}(K_{2}, \cdots, K_{n};M)+\frac{\langle m_{1},x_{1}\rangle}{\langle x_{1},l_{1}\rangle}\varphi_{1}(K_{1}, \cdots, K_{n};M)$ .

Now by Lemma 3.3 there exist Seifert surfaces $F_{1}$ and $F_{2}$ such that $\partial F_{1}=K_{1}$ ,
$\partial F_{2}=K_{2}u\cdots\cup K_{n}$ , and either $F_{1}\cap F_{2}$ is empty or consists of a single ribbon inter-
section. If the intersection is empty, then $\varphi_{1}(K_{1}, \cdots, K_{n};M)=0$ . (This is well known
if $M=S^{3}$ . See for example [4], and notice that the argument given there will work in
the more general setting of an arbitrary rational homology sphere.) But by Lemma
3.2, $\varphi_{1}(K_{2}, \cdots, K_{n};\chi(K_{1};M))=\varphi_{1}(K_{2}, \cdots, K_{n};M)$ since, for any choice of basis of
$H_{1}(F_{2};Z),$ $E=0$ . Hence the lemma is true.

Now suppose that $F_{1}\cap F_{2}$ is a single ribbon intersection as described in Lemma
3.3. Let $\{e_{i}\}$ be a basis for $H_{1}(F_{2};Z)$ such that $e_{1}$ meets $F_{1}$ transversely in a single point
and $ e_{i}\cap F_{1}=\emptyset$ for $i>1$ . Hence $E^{T}=(\pm 10\cdots 0)$ and by Lemma 3.2 we have

$W=V(K_{2}, \cdots, K_{n};\chi(K_{1};M))=V(K_{2}, \cdots, K_{n};M)-E(\frac{\langle m_{1},x_{1}\rangle}{\langle x_{1},l_{1}\rangle})E^{T}$

By definition, $\nabla_{K_{2},\cdots,K_{n};\chi\langle K_{1};M)}(z)=\det(tW-t^{-1}W^{T})$ , where $z=t-t^{-1}$ . This gives

$\nabla_{K_{2},\cdots,K_{n};\chi(K_{1};M)}(z)=\det(tV-t^{-1}V^{T})-\frac{\langle m_{1},x_{1}\rangle}{\langle x_{1},l_{1}\rangle}z\det(tV_{11}-t^{-1}V_{11}^{T})$
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$=\nabla_{K_{2},\cdots,K_{n};M}(z)-\frac{\langle m_{1},x_{1}\rangle}{\langle x_{1},l_{1}\rangle}z\nabla_{L’;M}(z)$ ,

where $V=V(K_{2}, \cdots, K_{n};M),$ $V_{11}$ is the $(1, 1)$ minor of $V$, and $L^{\prime}$ is the $n$ component
link that is spanned by the Seifert surface obtained by cutting $F_{2}$ along $F_{1}$ . Hence we have

$\varphi_{1}(K_{2}, \cdots, K_{n};\chi(K_{1};M))=\varphi_{1}(K_{2}, \cdots, K_{n};M)-\frac{\langle m_{1},x_{1}\rangle}{\langle x_{1},l_{1}\rangle}\varphi_{0}(L^{\prime};M)$ .

Thus it only remains to show that $\varphi_{1}(K_{1}, \cdots, K_{n};M)=-\varphi_{0}(L^{\prime};M)$ .
Let $F$ be a Seifert surface for the link $L$ obtained from $F_{1}$ and $F_{2}$ as follows. Away

from $F_{1}\cap F_{2}$ let $F$ be $F_{1}\cup F_{2}$ and near the intersection let $F$ appear as in Figure 2. Let
$\{d_{j}\}$ be a basis for $H_{1}(F_{1};Z)$ so that $\{c, \{d_{j}\}, \{e_{i}\}\}$ is a basis for $H_{1}(F;Z)$ , where $c$ is
the curve shown in the figure.

If $V^{\prime}=V(K_{1}, M)$ is the Seifert matrix determined by $\{d_{j}\}$ , then a Seifert matrix for
$L$ in $M$ has the form

$\left\{\begin{array}{lllllll}0 & 0 & & 1 & 0 & \cdots & 0\\0 & V^{\prime} & & & A & & \\1 & & & & & & \\0 & A & T & & V & & \\| & & & & & & \\0 & & & & & & \end{array}\right\}$

Hence we have

$\nabla_{L;M}(z)=\det\left(\begin{array}{lllllll}0 & & 0 & Z & 0 & \cdots & 0\\0 & tV^{\prime} & -t^{-1}V^{\prime T} & & zA & & \\Z & & & & & & \\0 & & zA^{T} & & & & tV-t^{-1}V^{T}\\| & & & & & & \\0 & & & & & & \end{array}\right)$

$=-z^{2}$ det $\left(\begin{array}{lll}tV^{\prime} & -t^{-1}V^{\prime T} & zA^{\prime}\\ & zA^{\prime T} & tV_{11}-t^{-1}V_{11}^{T}\end{array}\right)$ ,

where $A^{\prime}$ is obtained from $A$ by removing the first column.
But since $F_{2}$ a surface with $n-1$ boundary components, we may assume that the
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$\rightarrow$

FIGURE 2

$\{e_{i}\}$ has been chosen so that $V$ has the form

$V=\left(\begin{array}{ll}B & C\\C^{T} & D\end{array}\right)$ ,

where $B$ is a $2h\times 2h$ matrix, $C$ is a $2h\times n-2$ matrix, and $D$ is an $n-2\times n-2$ symmetric
matrix. This additional information gives

$\nabla_{L;M}(z)=-z^{2}$ det
$\left(\begin{array}{llll}tV^{\prime} & -t^{-1}V^{\prime T} & zA^{\prime} & \\ & & tB_{11}-t^{-1}B_{11}^{T} & zC^{\prime}\\ & zA^{\prime T} & zC^{T} & zD\end{array}\right)$

,

where $C^{\prime}$ is obtained from $C$ by deleting the first row.
Now $\varphi_{1}(L;M)$ is the coefficient of $z^{n+1}$ in $\nabla_{L;M}(z)$ . This is actually the smallesl

power of $z$ to appear since $lk(K_{\dot{t}}, K_{j};M)=0$ for all $i\neq j$ implies that $\varphi_{0}(L;M)=0$ . Henct
$\nabla_{L;M}(z)/z^{n+1}=\varphi_{1}(L;M)+\varphi_{2}(L;M)z^{2}+\cdots$ , and $\varphi_{1}(L;M)=\lim_{z\rightarrow 0}\nabla_{L;M}(z)/z^{n+1}$ . But

$\nabla_{L;M}(z)/z^{n+1}=-\frac{1}{Z}$ det
$\left(\begin{array}{llll}tV^{\prime} & -t^{-1}V^{\prime T} & zA^{\prime} & \\ & zA_{1}^{\prime T} & tB_{11}-t^{-1}B_{11}^{T} & zC^{\prime}\\ & A_{2^{T}}^{\prime} & C^{T} & D\end{array}\right)$

,

where $A_{1}^{\prime}$ is the first $2h-1$ columns of $A^{\prime}$ and $A_{2}^{\prime}$ is the last $n-2$ columns. And we ma]

assume that $lk(e_{2}^{+}, e_{i};M)=lk(e_{i}^{+}, e_{2};, M)$ for all $i\geq 2$ , hence every entry of the first row
of $tB_{11}-t^{-1}B_{11}^{T}$ is divisible by $z$ . Then we have

$\varphi_{1}(L;M)=-(\lim_{z\rightarrow 0}\det(tV^{\prime}-t^{-1}V^{\prime T}))(\lim_{z\rightarrow 0}\frac{1}{z}$ det $\left(\begin{array}{ll}tB_{11}-t^{-1}B_{11}^{T} & zC^{\prime}\\C^{T} & D\end{array}\right))$

$=-\nabla_{K_{1};M}(0)\varphi_{0}(L^{\prime};M)=-1\cdot\varphi_{0}(L^{\prime};M)$ .
This completes the proof for $s=2$ .
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Now assume that $s>2$ . We have, using our inductive hypothesis, that

$\varphi_{1}(K_{n}, \cdots, K_{s};\chi(K_{s-1}, \cdots, K_{1};M))$

$=\varphi_{1}(K_{n}, \cdots, K_{s};\chi(K_{s-1}, \cdots, K_{2};\chi(K_{1};M)))$

$=,\sum_{L^{\prime}\subset K_{2},\cdot K_{s- 1}}..,(\prod_{i\in L^{\prime}},$ $\frac{\langle m_{i},x_{i}\rangle}{\langle x_{i},l_{i}\rangle})\varphi_{1}(L^{\prime\prime}, K_{s}, \cdots, K_{n};\chi(K_{1};M))$ .

Now, using the inductive hypothesis if $L^{\prime\prime}\neq\{K_{2}, \cdots, K_{s-1}\}$ and the result for $s=2$

otherwise, we have

$\varphi_{1}(K_{n}, \cdots, K_{s};\chi(K_{s-1}, \cdots, K_{1};M))$

$=,,\sum_{L\subset K_{2},\cdot K_{s- 1}}..,(\prod_{i\in L},,$ $\frac{\langle m_{i},x_{i}\rangle}{\langle x_{i},l_{i}\rangle})[\varphi_{1}(L^{\prime\prime}, K_{s}, \cdots, K_{n};M)$

$+\frac{\langle m_{1},x_{1}\rangle}{\langle x_{1},l_{1}\rangle}\varphi_{1}(K_{1}, L^{\prime\prime}, K_{s}, \cdots, K_{n};M)]$

$=,,\sum_{L\subset K_{1},\cdot K_{s- 1}}...(\prod_{i\in L},,$ $\frac{\langle m_{i},x_{i}\rangle}{\langle x_{i},l_{i}\rangle})\varphi_{1}(L^{\prime\prime}, K_{s}, \cdots, K_{n};M)$ . $\square $

Next we consider the case that some components of $L$ are not null-homologous.
In Section 2, we constructed a null-homologous knot $K^{\prime}$ from a knot $K$ which is not
null homologous. We called this a knot associated to K. (See the description before
Proposition 2.2.) By considering $K_{i}^{\prime}$ for each $K_{i}$, we obtain a link $L^{\prime}=\{K_{1}^{\prime}, \cdots, K_{n}^{\prime}\}$ such
that each component of $L^{\prime}$ is null-homologous. We call this link a link associated to $L$ .
Note that $lk(K_{i}^{\prime}, K_{j}^{\prime};M)=0$ for all $t\neq j$. Then the next lemma holds.

LEMMA 3.5. Let $L=\{(K_{1}, x_{1}), \cdots, (K_{n}, x_{n})\}$ be aframed link in a rational homology
sphere $M$ with $lk(K_{i}, K_{j};M)=0$ for all $i\neq j$ and $L^{\prime}=\{K_{1}^{\prime}, \cdots, K_{n}^{\prime}\}$ be as above. Then for
each $1\leq s\leq n$ we have

$\varphi_{1}(K_{n}^{\prime}, \cdots, K_{s}^{\prime};\chi(K_{1}, \cdots, K_{s-1};M))$

$=,,,\sum_{L\subset K_{1}.\cdot K_{*- 1}}..,’(\prod_{i\in L^{\prime}},$ $\frac{\langle m_{i},x_{i}\rangle}{\langle m_{i},l_{i}\rangle\langle x_{i},l_{i}\rangle})\varphi_{1}(L^{\prime\prime}, K_{s}^{\prime}, \cdots, K_{n}^{\prime};M)$ .

Here the sum is taken over all sublinks of $\{K_{1}^{\prime}, \cdots, K_{s-1}^{\prime}\}$ including the empty sublink.
The product is over all $i$ such that $K_{i}^{\prime}\subset L^{\prime\prime}$ , which we have abbreviated as $i\in L^{\prime\prime}$ . If $L^{\prime\prime}$ is
empty we interpret the product as 1.

$PR\infty F$ . Adapt the proof of Lemma 3.4 directly. In this case we get

$\varphi_{1}(K_{2}^{\prime}, \cdots, K_{n}^{\prime};\chi(K_{1};M))=\varphi_{1}(K_{2}^{\prime}, \cdots, K_{n}^{\prime};M)+\frac{\langle m_{1},x_{1}\rangle}{\langle m_{1},l_{1}\rangle\langle x_{1},l_{1}\rangle}\varphi_{1}(K_{1}^{\prime}, \cdots, K_{n}^{\prime};M)$

since, $E^{T}=(\pm 1/\langle m_{1}, l_{1}\rangle, 0, \cdots, 0)$ and by Lemma 3.2 we have
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$W=V(K_{2}^{\prime}, \cdots, K_{n}^{\prime};\chi(K_{1};M))=V(K_{2}^{\prime}, \cdots, K_{n}^{\prime})-E(\frac{\langle m_{1},l_{1}\rangle\langle m_{1},x_{1}\rangle}{\langle x_{1},l_{1}\rangle})E^{T}$

Then the argument in the proof of Lemma 3.4 shows the conclusion. $[$

Actually, many terms in the sum given in Lemmas 3.4 and 3.5 are zero. Thi
follows from the following lemma.

LEMMA 3.6. Suppose $L=\{K_{1}, \cdots, K_{n}\}$ is a link in a rational homology sphere $J$

with $lk(K_{i}, K_{j};M)=0$ for all $i\neq j$ and each $K_{i}$ is null homologous, andfurthermore $n>-’$.

Then $\varphi_{1}(L;M)=0$ .
$PR\infty F$ . See [3]. The proof given there can be adapted to this case. $[$

Here the sum given in Lemmas 3.4 and 3.5 may actually just taken over all 1, \’A

and 3-component sublinks.

4. A formula for $\lambda$ .
In this section we will establish a formula for $\lambda$ . It is derived from Walker’s Deh

surgery formula, Lemma 3.4 and Lemma 3.5. First we consider the case that eac
component of a link $L$ is null-homologous.

THEOREM 4.1. Let $L=\{(K_{1}, x_{1}), \cdots, (K_{n}, x_{n})\}$ be aframedoriented link in a ration‘

homology sphere $M$ with $lk(K_{i}, K_{j};M)=0$ for all $i\neq j$ and each $K_{i}$ is null-homologou.
Let $m_{i}$ be a meridian of $K_{i}$ and $l_{i}$ be a longitude of $K_{i}$ for each $i$. Then the Walkc
invariant of $\chi(L;M)$ is given by

$\lambda(\chi(L;M))=\lambda(M)+\sum_{i=1}^{n}\tau(m_{i}, x_{i};l_{i})+2\sum_{L’\subset L}(\prod_{i\in L},$ $\frac{\langle m_{i},x_{i}\rangle}{\langle x_{i},l_{i}\rangle})\varphi_{1}(L^{\prime};M)$ .

Actually, the sum need only be taken over those sublinks of $L$ having less than $ fo\iota$

componen $ts$ .
$PR\infty F$ . We proceed by induction on $n$ . If $n=1$ , then by Walker’s theorem ’

$mentioned\cdot in$ section 1 and Proposition 2.2, it follows that

$\lambda(\chi(L;M))=\lambda(M)+\tau(m_{1}, x_{1} ; l_{1})+2\frac{\langle m_{1},x_{1}\rangle}{\langle x_{1},l_{1}\rangle}\varphi_{1}(K_{1}; M)$ .

Hence the theorem is true for $n=1$ .
Now assume that $n>1$ . Then

$\lambda(\chi(L;M))=\lambda(\chi(K_{n};\chi(K_{1}, \cdots, K_{n-1};M)))$

$=\lambda(\chi(K_{1}, \cdots, K_{n-1};M))+\tau(m_{n}, x_{n};l_{n})$
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$+2\frac{\langle m_{n},x_{n}\rangle}{\langle x_{n},l_{n}\rangle}\varphi_{1}(K_{n};\chi(K_{1}, \cdots, K_{n-1};M))$ .

By the inductive hypothesis and Lemma 3.4, we have

$\lambda(\chi(L;M))=\lambda(M)+\sum_{\iota=1}^{n-1}\tau(m_{i}, x_{i};l_{i})+2\sum L^{\prime}\subset K_{1},\cdots,K_{n-1}(\prod_{i\in L},$ $\frac{\langle m_{i},x_{i}\rangle}{\langle x_{i},l_{i}\rangle})\varphi_{1}(L^{\prime};M)$

$+\tau(m_{n}, x_{n};l_{n})+2\frac{\langle m_{n},x_{n}\rangle}{\langle x_{n},l_{n}\rangle}(,\sum.,(\prod_{i\in L},$ $\frac{\langle m_{i},x_{i}\rangle}{\langle x_{i},l_{i}\rangle})\varphi_{1}(L^{\prime}, K_{n};M))$

$=\lambda(M)+\sum_{i=1}^{n}\tau(m_{i}, x_{\iota};l_{i})+2\sum_{L’\subset L}(\prod_{i\in L},$ $\frac{\langle m_{i},l_{i}\rangle}{\langle x_{i},l_{i}\rangle})\varphi_{1}(L^{\prime};M)$ .

Finally, using Lemma 3.6, we see that only sublinks having less than four components
will contribute to the sum. $\square $

Suppose that some components of $L$ are not null-homologous. In Section 3, we
considered alink $L^{\prime}=\{K_{1}^{\prime}, \cdots, K_{n}^{\prime}\}$ such that each component of $L^{\prime}$ is null-homologous.
(See the description before Proposition 3.5.) We called this a link associated to $L$ . We
can assume that the longitude $l_{i}$ of $K_{i}$ consists of $d_{i}$ parallel curves on $\partial N(K_{i})$ . Then
using Proposition 2.3 and Lemma 3.5, and proceeding the same as the proof ofTheorem
4.1, we obtain the next theorem.

THEOREM 4.2. Let $L=\{(K_{1}, x_{1}), \cdots, (K_{n}, x_{n})\}$ be aframedoriented link in a rational
homology sphere $M$ with $lk(K_{i}, K_{j};M)=0$ for all $i\neq j$ . Let $L^{\prime}=\{K_{1}^{\prime}, \cdots, K_{n}^{\prime}\}$ be a link
associated to L. Let $m_{i}$ be a meridian of $K_{i}$ and $l_{i}$ be a longitude of $K_{i}$ . If $l_{i}$ is represented
by $d_{i}$ parallel curves, then the Walker invariant of $\chi(L;M)$ is given by

$\lambda(\chi(L;M))=\lambda(M)+\sum_{i=1}^{n}\tau(m_{i}, x_{i};l_{i})+2,\sum_{L\subset L},$ $(\prod_{i\in L^{\prime}},$ $\frac{\langle m_{i},x_{i}\rangle}{\langle m_{i},l_{i}\rangle\langle x_{i},l_{i}\rangle})\varphi_{1}(L^{\prime\prime};M)$

$+\frac{1}{12}\sum_{i=1}^{n}\frac{\langle m_{i},x_{i}\rangle}{\langle m_{i},l_{i}\rangle\langle x_{i},l_{i}\rangle}(d_{i}^{2}-1)$ .

Actually, the sum need only be taken over those sublinks of $L^{\prime}$ having less than four
componen $ts$ .

$PR\infty F$ . $WecanprovethistheoremassameasTheorem4.1$ . $\square $
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