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1. Introduction.

It is interesting to study the geometric meaning of total curvature of complete open
surfaces. The influence of the total curvature of a Riemannian plane on the Lebesgue
measure of rays were investigated first by M. Maeda [3], [4], K. Shiga [5] and later
by K. Shiohama, T. Shioya and M. Tanaka [6], etc. The author proved in [2] that a
pointed Hausdorff approximation map between connected, complete and noncompact
Riemannian 2-manifolds with finite total curvature has a natural continuous extension
to their ideal boundaries with the Tits metrics. In view of the above results it is natural
to expect that the scaling limit of such an $M$ will be a flat cone generated by the ideal
boundary $M(\infty)$ of $M$ equipped with the Tits metric $d_{\infty}$ .

Let $M$ be a connected, complete and noncompact Riemannian 2-manifold with a
finite total curvature. The Huber theorem implies that $M$ is finitely connected. A compact
set $C\subset M$ is by definition a core of $M$ iff $M\backslash Int(C)$ consists of $k$ tubes $U_{1},$ $\cdots,$ $U_{k}$

such that each $U_{i}$ is homeomorphic to $ S^{1}\times[0, \infty$ ) and such that each $\partial U_{i}$ is a piecewise
smooth simple closed curve. If $\kappa(\partial U_{i})$ is the total geodesic curvature of $\partial U_{i}$ , then the
Gauss-Bonnet theorem implies $c(C)+\sum_{i=1}^{k}\kappa(\partial U_{i})=2\pi\chi(M)$ . Moreover

$s_{i}:=\kappa(\partial U_{i})-c(U_{i})$

is nonnegative and independent of the choice of tubes having the same end as $U_{i}$ and

$2\pi\chi(M)-c(M)=\sum_{i=1}^{k}s_{i}$ .

In [9] T. Shioya proved that $M$ admits an ideal boundary $M(\infty)$ with the Tits metric
$d_{\infty}$ such that $(M(\infty), d_{\infty})$ is the union of circles with lengths $s_{1},$ $\cdots,$ $s_{k}$ .

Let $d$ be the distance function induced from the Riemannian metric of $M$. We
denote by $(M_{t};0)$ for an arbitrary fixed point $0\in M$ and for $t>0$ the scaling by $t$ of the
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pointed metric space $(M, d;0)$, and we write

$(M_{t};0):=(M, d/t;0)$ .
Our result is stated as

THEOREM 1.1. The pointed Hausdorff limit of $(M_{t};0)$ as $ t\rightarrow\infty$ is isometric to the
flat cones $K(M(\infty), d_{\infty};0^{*})$ having the same vertices at $o^{*}$ and generated by the ideal
bounkry of $M$.

Here $K(M(\infty), d_{\infty};0^{*})$ is the union of $k$ flat cones $K(U_{1}(\infty),d_{\infty};0^{*}),$ $\cdots$ ,
$K(U4\infty),$ $d_{\infty};0^{*}$) such that each $K(U_{i}(\infty), d_{\infty};0‘‘)$ is generated by $(U_{t}(\infty), d_{\infty})$ which is
the circle of length $s_{i}$ and has its vertex at $0^{*}$ .

Theorem 1.1 provides simple and intuitive consequences which have been proved
in [7] and [8]. Let $Rp;t$) be the metric t-ball around $p\in M$ and $S(p;t):=$

$\{x\in M:d(x, p)=t\}$ . Let $A(t)$ and $L\langle t$ ) be the area and the length of fl $p;t$ ) and $S(p;t)$

respectively. Theorem 1.1 implies that the scaling limits of $Rp;t$) and $S(p;t)$ are the
unit ball and unit circle around $o^{*}$ of $K(M(\infty), d_{\infty};0^{*})$ . Let $S_{p}(1)\subset T_{p}M$ be the unit
circle and $\mu$ the Lebesgue measure of $S_{p}(1)$ . Let $A_{p}\subset S_{p}(1)$ be the set of all unit vectors
tangent to rays from $p$ . Noticing that both $\lim_{\iota\rightarrow\infty}L(t)^{2}/A(t)$ and $\mu(A_{p})$ are scaling
invariant, we see that the following Corollary 1.2 is direct from Theorem 1.1.

COROLLARY 1.2. Let $M$ be as in Theorem 1.1. Then

$\lim_{t\rightarrow\infty}\frac{L(t)^{2}}{A(t)}=2(2\pi\chi(M)-4M))$

and

$\lim_{j\rightarrow\infty}\mu(A_{p_{j}})=s_{t}$

for all divergent sequence $\{p_{j}\}\subset U_{i}$ .
For the notion of (pointed) Hausdorff lin$\dot{u}t$, see [1].
I would like to express my thanks to Professor K. Shiohama for his valuable advices

and his encouragement.

2. Preliminaries.

If $M$ is as in our Theorem 1.1 we observe, by taking the scaling limit, that a core
$C$ shrinks to a point, say, $0^{*}$ . The pointed Hausdorff limit of $(M_{t};0)$ at $ t\rightarrow\infty$ is obtained
by taking the limit $ t\rightarrow\infty$ in the scaling by $t$ of the pointed metric space $(M, d;0)$ . We
want to show that the Hausdorfflimit ofeach $U_{i}$ is the flat cone generated by $(U_{t}(\infty), d_{\infty})$,
which is a circle of length $s_{i}$ . Because each $U_{i}$ can be embedded isometrically into a
Riemannian plane having total curvature $2\pi-s_{t}$ , we only need to consider a Riemannian
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plane $M$ with finite total curvature.
From now on let $M$ be a Riemannian plane with finite total curvature. We define

the ideal boundary $M(\infty)$ of a Riemannian plane $M$ and the Tits metric $d_{\infty}$ of $M(\infty)$ .
Let $\gamma,$

$\sigma:[0, \infty$ ) $\rightarrow M$ be arbitrary rays and $D(\gamma, \sigma)\subset M$ be the half plane bounded by $\gamma$ ,
$\sigma$ and a piecewise smooth curve $c$ joining points on $\gamma$ and $\sigma$ such that $c$ intersects
orthogonally to $\gamma$ and $\sigma$ . Then $D(\sigma, \gamma)=M\backslash D(\gamma, \sigma)$ . We put

(2.1) $L(\gamma, \sigma):=-c(D(\gamma, \sigma))-k(\partial D(\gamma, \sigma))$

where $c(D(\gamma, \sigma))$ is the total curvature of $D(\gamma, \sigma)$ and $\kappa(\partial\alpha\gamma, \sigma))$ is the total geodesic
curvature of $c$ . Notice that $L(\gamma, \sigma)$ does not depend on the choice of the curve $c$ . We
also define $L\langle\sigma,$

$\gamma$) by the same way. It is proved in [10] that if $\gamma$ is asymptotic to $\sigma$ ,
then $L\langle\gamma,$ $\sigma$) $=0$ . Two rays $\gamma$ and $\sigma$ are called equivalent if $L(\gamma, \sigma)=0$ or $L\langle\sigma,$

$\gamma$) $=0$ . We
denote the equivalent class of a ray $\gamma$ by $\gamma(\infty)$ and the set of all equivalent classes by
$M(\infty)$ which is called the ideal boundary of $M$. The Tits metric $d_{\infty}$ of $M(\infty)$ is given

$d_{\infty}(x, y)=\min\{L\langle\gamma, \sigma), L(\sigma, \gamma)\}$ , $x,$ $y\in M(\infty)$

such that $\gamma(\infty)=x$ and $\sigma(\infty)=y$ respectively. The following facts proved by T. Shioya
[10] and used here will be prepared. These facts are valid not only for Riemannian
planes but for more general Riemannian 2-manifolds. Let $M$ be a finitely connected
compact complete noncompact Riemannian 2-manifold having finite total curvature
with one end.

FACT 1. $(M(\infty), d_{\infty})$ is isometric to a circle of the total length $2\pi\chi(M)-c(M)$ . In
particular, $M(\infty)$ is a single point if $c(M)=2\pi\chi(M)$ .

FACT 2.

$\lim_{t\rightarrow\infty}\frac{L(S(p,t)\cap D(\gamma,\sigma))}{t}=L\langle\gamma,$ $\sigma$).

FACT 3. If $D(\gamma, \sigma)$ dose not have any ray emanating from $p$, then

$\lim_{t\wedge\infty}\frac{L(S(p,t)\cap D(\gamma,\sigma))}{t}=0$ .

FACT 4.

$d_{\infty}(\gamma(\infty), \sigma(\infty))=\min\{\lim_{t\rightarrow\infty}\frac{L(S(p,t)\cap D(\gamma,\sigma))}{t},\lim_{t\rightarrow\infty}\frac{L(S(p,t)\cap D(\sigma,\gamma))}{t}\}$ .

3. Proof of Theorem 1.1.

As stated at the beginning of Preliminaries, we only need for the proof of Theorem
1.1 to show that the Hausdorff limit of $U_{i}$ is the cone $K(U_{i}(\infty), d_{\infty};0^{*})$ . This is equivalent
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to show that a Riemannian plane $M$ with finite total curvature has its scaling limit
$K(M(\infty), d_{\infty};0^{*})$ . Rays on $M$ are still rays on $M_{t}$ for all $t>0$ , and $A_{p}$ for every fixed
$p\in M$ leaves invariant under the scaling of metrics. Metrics $\rho_{t}$ on $A_{p}$ are induced in
Lemma 3.1 such that $\lim_{t\rightarrow\infty}(A_{p}, \rho_{t})$ is isometric to $(M(\infty), d_{\infty})$ . We then conclude the
proof of Theorem 1.1 by showing in Proposition 3.2 that the pointed Hausdorff limit
of $(M_{t};0)$ at $ t\rightarrow\infty$ is isometric to $K(A_{p}, \rho_{\infty};p)$ . We induce a metric $\rho_{t}$ on $A_{p}$ by

$\rho_{t}(\dot{\gamma}(0),\dot{\sigma}(0)):=\min\{\frac{L(S(p,t)\cap D(\gamma,\sigma))}{t},$ $\frac{L\langle S(p,t)\cap D(\sigma,\gamma))}{t}\}$

where $\gamma$ and $\sigma$ are rays emanating from $p$ .
LEMMA 3.1. The limit $(A_{p}, \rho_{\infty})$ of $(A_{p}, \rho_{t})$ as $ t\rightarrow\infty$ is isometric to $(M(\infty), d_{\infty})$ .
$PR\infty F$ . From Fact 2, we see that $(A_{p}, \rho_{t})$ has a limit as $ t\rightarrow\infty$ . We have a natural

correspondence between $A_{p}$ and $M(\infty)$ by assigning $u\in A_{p}$ to $\gamma(\infty)$, where $\gamma$ is a ray
from $p$ with $\dot{\gamma}(0)=u$ . For $x,$ $y\in M(\infty)$ , let $\gamma(\infty)=x$ and $\sigma(\infty)=y$ . From Fact 4, we get

$\rho_{\infty}(\dot{\gamma}(0),\dot{\sigma}(0))=\min\{\lim_{t\rightarrow\infty}\frac{L(S(p,t)\cap D(\gamma,\sigma))}{t},\lim_{t\rightarrow\infty}\frac{L\langle S(p,t)\cap D(\sigma,\gamma))}{t}\}$

$=d_{\infty}(\gamma(\infty), \sigma(\infty))=d_{\infty}(x, y)$ .
PROPOSITION 3.2. For a base point $0\in M$ and for an arbitrary fixed point $p$, the

pointed Hausdorff limit of $(M_{t};0)$ as $ t\rightarrow\infty$ is isometric to the cone $K(A_{p}, \rho_{\infty};p)$ with the
vertex at $p$ generated by $(A_{p}, \rho_{\infty})$ .

$PR\infty F$ . For arbitrary points $x,y\in K(A_{p}, \rho_{\infty};p)$ , there exist $u,$ $v\in A_{p}$ and $a,$ $b>0$

such that $x=au$ and $y=bv$ respectively. On the cone $K(A_{p}, \rho_{\infty};p)$ we have
$\rho_{\infty}(x, y)^{2}=a^{2}+b^{2}-2ab$ cos $\rho_{\infty}(u, v)$ .

On the other hand, for sufficiently large $t>0$ we take rays $\gamma$ and $\sigma$ emanating from $p$

such that $\dot{\gamma}(0)=u$ and $\dot{\sigma}(0)=v$ on $M_{t}$ . Let $\tau_{t}$ be a minimizing geodesic joining $\gamma(ta)$ and
$\sigma(tb)$, where we assume $a<b$ . Let $D_{t}$ be a disk bounded by the triangle whose vertices
are at $p,$ $\gamma(ta)$ and $\sigma(ta)$ . If

$\alpha_{\iota}:=\angle(p, \gamma(ta),$ $\sigma(ta))$ and $\beta_{t}:=\angle(p, \sigma(ta),$ $\gamma(ta))$ ,

then $\lim_{t\rightarrow\infty}\alpha_{t}=\lim_{t\rightarrow\infty}\beta_{t}$ holds, see T. Shioya [10]. From Gauss-Bonnet theorem for
$D_{t}$ we get

$\alpha_{t}+\beta_{t}+\angle(u, v)-\pi=c(D_{t})$ .
Setting $\lim_{t\rightarrow\infty}D_{t}=D_{\infty},$ $(2.1)$ gives

$I(\gamma, \sigma)=-c(D_{\infty})+L(u, v)$ ,

and we obtain
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$\omega:=\lim_{\rightarrow t\infty}\alpha_{t}=\lim_{t\rightarrow\infty}\beta_{t}=\neq\{\pi-(\angle(u, v)-c(D_{\infty}))\}=\neq(\pi-\rho_{\infty}(u, v))$
.

Moreover, we have

$\lim_{t\rightarrow\infty}\frac{d(\gamma(ta),\sigma(ta))}{t}=2a$ cos $\omega=2a\sin\frac{\rho_{\infty}(u,v)}{2}$ .

The triangle $\Delta(\gamma(ta), \sigma(ta),$ $\sigma(tb))$ on $M_{t}$ converges as $ t\rightarrow\infty$ to a plane triangle with two
edge lengths $b-a,$ $2a$ sin $\rho_{\infty}(u,v)/2$ making an angle $\pi-\omega$ between them. Thus we get

$\lim_{t\rightarrow\infty}d_{t}(\gamma(ta), \sigma(tb))^{2}=(b-a)^{2}+4a^{2}$ sin2 $\frac{\rho_{\infty}(u,v)}{2}4a(b-a)$ sin $\frac{\rho_{\infty}(u,v)}{2}\cos(\pi-\omega)$

$=a^{2}+b^{2}-2$ab cos $\rho_{\infty}(u, v)$ .

Noticing that for an arbitrary fixed point $p\in M\lim_{t\rightarrow\infty}(1/t)40,$ $p$) $=0$ , we complete the
proof.

References

[1] M. GROMOV, J. LAFONTAINB and P. PANSU, Structures M\’etriques pour les Vari\’et\’es Riemanniennes,

Cedic-Nathan, Paris (1980).
[2] Y. KUBO, The extension ofpointed Hausdorff approximation maps to the ideal boundaries ofcomplete

open surfaces, Japanese J. Math. 19 (1993), 343-351.
[3] M. MAEDA, On existence of rays, Sci. Rep. Yokohama Nat. Univ. Sect. I 26 (1979), 1A.

[4] M. MAEDA, A geometric significance of total curvature on complete open surfaces, Geometry of
Geodesics and Related Topics, Advanced Studies in Pure Math. 3 (1984), Kinokumiya, 451458.

[5] K. SHIGA, On a relation between the total curvature and the measure of rays, T\^ohoku Math. J. 36
(1984), 149-157.

[6] K. SHIOHAMA, T. SHIOYA and M. TANAKA, Mass of rays on complete open surfaces, Pacific J. Math.
143 (1990), 349-358.

[7] K. SHIOHAMA, Total curvature and minimal areas of complete open surfaces, Proc. Amer. Math. Soc.
94 (1985), 310-316.

[8] K. SHIOHAMA, An integral formula for the measure of rays on complete open surfaces, J. Differential
Geom. 23 (1986), 197-205.

[9] T. SHIOYA, The ideal boundaries and global geometric properties of complete open surfaces, Nagoya
Math. J. 120 (1990), 181-204.

[10] T. SHIOYA, The ideal boundaries of complete open surfaces, T\^ohoku Math. J. 43 (1991), 37-59.

Present Address:
DEPARTMENT OF MATHEMATICS, JAPAN WOMEN’S UNIVERSITY,

MEJIRODAI, BUNKYO-KU, TOKYO, 112 JAPAN.


