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1. Introduction.

Let us consider the initial boundary value problem:

U, — A u+b(x)u,+ a(x)u=0 in R, x(0,7), (1.1
u=u,=0 on R"% {0}, (1.2)
o.u(y,0,t)=f(y,t) on R x(0, 7). (1.3)

Here R" (n>1) is the half space:
R". ={x=(y,z)eR": yeR""',zeR, z>0},
and ae L*(R"%), be C*(R"). Throughout this article we assume that
a and b are constants on {x : |x|>r}. (1.4)
We are interested in uniqueness results of a, b from the Neumann to Dirichlet map:
A(a, b): fru(y,0,t) on R""1x(0, 7).

In the case that b=0, Rakesh [6] showed that A(a, 0) uniquely determines a if T
is large enough. Some authors studied the problem stated above in the bounded domain
case instead of the half space ([2], [3]). Rakesh pointed out that the proof for the
bounded domain case does not apply to the half space one, but he succeeded to prove
the uniqueness mentioned above by using the results of x-ray transform obtained by
Hamaker, Smith, Solmon, and Wagner ([1]). In this article we show that the result of
Rakesh can be extended for the mixed problem (1.1)~(1.3) by the methods which are
used in [3]. By 4; and A;= A(a;, b;), we denote solutions and the Neumann to Dirichlet

maps to the problem (1.1)—(1.3) corresponding to a=a;, b=b; (j=1,2) respectively.
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The following is our main theorem.
THEOREM 1. For T>(n+ 1)r, suppose that A, =A,, then
a,=a, and b,=b, on R, .

In the next section, we collect some lemmas which will be used in the proof of the
theorem.

2. Lemmas.

We first state the results of the x-ray transform in [1].

LemMA 2.1 ([1]). Suppose p(x) is a bounded function on R* with compact support,
and A an infinite subset of R" bounded away from the convex hull of the support of p. If
the x-ray transform

+ oo
f pla+sw)ds=0  for any ac A and any weS*~ !,
0

then p=0.

From (1.4), a;, b; (j=1, 2) are constants (possibly different) on {x:|x|>r}. We
claim that a; =a, and b, =b, on {x : | x| >r} by the same argument in [6]. We consider
the case that the spatial dimension is equal to one.

LEMMA 2.2. Assume a;, b; (j=1, 2) are real constants, and u; (j=1, 2) satisfy
ulb—ul,+bui+au’=0 z>0, te(0, 7,
w(z,0)=ul(z,0)=0 z>0,
ui(0, t)=£(¢) te(0, 7).
If u'(0, t)=u>(0, t) for any fe C*0, T) and f#0, then a, =a, and b, =b,.
PrOOF OF LEMMA 2.2. Consider the mixed problem
Up— U, +bu,+au=0 z>0, te(0, 1),
Uz, 0)=u/(z,0)=0 z>0,
u,0,)=f(t) (0, 7).

Then the following cases occur: (1) a—5%/4>0, (2) a—b?/4<0, (3) a—b?*/4=0.
Case (1). Set

wik, z, t) = eV —bHa+®/20y (7 1) keR.

Then w solves the following problem:
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Wy— W, — Wi, =0 z>0, keR, te(0,7),
w(k, z, 0)=w(k, z,0)=0 z>0, keR,
wk,0,t)=ea-ba+®20 £y  keR, te(0,T).
It is known that w has the following representation ([8])

wik, 2 t)=—L” wall, 0, 1= /0P + 22+ %)
> Z5 2r k=02 + 22+ &<t \/(k—C)2+ZZ+€2

Thus we have

u(0, t)=e~®2y(0, 0, t)

2n
=e—(b/2)t(__ 1 )JIJ eircosta—b2/4+(b/2)(t—r)f(t_r)drde
2n ) JoJo

dcdg .

= th(r)e‘blz)(' “O@(t—r)/m)dr,
0

where m=a—b?/4, p(s)= — 2 (2," e5°°%%dh. Noting that ¢(0)= —1, ¢'(0)=0, ¢"(0)=1/2,
we obtain

t 2
4sl0, £) = —f'(t>+%f(z>+f £ {(——’;—) H(t—r)m)
[¢]
—bp'(t—nmWm +¢"(t—rm )m} dr,
., b ... ( bY m
U0, t)=—f (t)+?f () ( —2—> SO+ 2 f@)
t b _ b 2
+ J (——)f(r)e“”z’" "{(——) P((t—1)/m)
o\ 2 2
—bd'(t =1 m ) m +d"(t—r)\/m )m}dr
+ th(r)e“’/z"'”" {(—%)ch'«z —r/m)m
0

b ((t— )+ (1= P Im 3/2}dr .

If 40, t)=u?(0, t), then ul(0, t)=u2(0, t). Hence we have
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%f(r)+j'f(r)e(b“z"""{(——’})%«t—r)\/ml)
0
—bp'(t—r)/my)\/ my +¢"((t—r)\/ ml)ml}dr
b2 t B/ 22— b2 2
-2 o+ f fiopeeae=ol( 22 Y gu—ryfmz)
0

by (P + w«:—nﬁamz}dr ,

where m;=a;—b?/4, j=1, 2. From this equality, there exists a constant C, >0 such that
t
Ibl_bZHf(t)'SClJ | f(r)|dr .
0
Suppose that b; #b,, then there exists a constant C, >0 such that

If(t)IS.sz | f(r)|dr .
(4]

From Gronwall’s inequality, we see that | f(¢)| =0. This contradicts the hypothesis f#0.
So we conclude that b, =b,.

If u1(0, t)=u?(0, t), then ul(0, t)=u2/0, t). Using b, =b,, we see that the following
inequality is obtained by the same procedures in the case that b, =b,.

|m1—m2||f(t)|sC3f | f(r)lar,
0

where Cj is a positive constant. So we conclude m; =m, by the same argument used
above. From the definition m; (j=1, 2), if m; =m, and b, =b,, then we have a; =a,.
Case (2). Set

W(k, z, t)= _e(ika2/4—a+(b/2)t)u(z, t) ,

then it is easily seen that a, =a, and b, =b, by the same procedures those are used in
the Case (1).
Case (3). Set

v(z, t)=e®?"y(z, t),

then v solves the following problem:
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vtt_vzz=0 2203 tG(O, T)a
(z, 0)=v(z,0)=0 z>0,
0,0, t)=e®'f(z) te(0, 7).

It is known that v has the following representation ([8])

oz, t)= — H(t—| zl)Jt—zvz(O, ¢)dt’
0

t—z
= —J e®2 f(¢)dt’ for 1>z,

0

where H is the Heaviside function. Hence we obtain

t
u(0, )=e D0, t)= —e &2 J e®2r f(r)dr .

0

So we have

b2 —(b/2 ! 2 b ’
ul0, )= —— e O OIS ()dr + - f(0) = 1)

0

If (0, t)=u?(0, t), then ul(0, t) =u2(0, t). Hence there exists a constant C,> 0 such that

t
Ibl—bzllf(t)ISC‘;j | f(r)\dr .
o)
So we conclude b, =b, by the same procedures in the case (1). Recalling a;=b5%/4
(j=1, 2), we see that a; =a,. The proof is complete.
We need the following unique continuation result.

LEMMA 2.3. Suppose a, b are real numbers, p, I, T are positive real numbers, and
u(y, z, t) is a distribution on R"* ! satisfying

Upy—Au—u,,+bu,+au=0
on

{(y,z,t): |yl<p,0<z<l|t|<T}.
If u and u, are zero on

{(»,0,t) : |yl<p, |2|<T},
then u is zero on

{(y,2,t): |y|<p,0<z<l,2z+|t|<T}.
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PROOF OF LEMMA 2.3. As in the proof of lemma 2.2, the equation
Uy —Aju—u,, +bu,+au=0
is transformed to the following equation
We—AW—w,, —wy,=0.

So we can apply Lemma 2 in [6], then we obtain lemma 2.3.

3. Proof of theorem.

PROOF OF THEOREM 1. We first claim that @, =a, and b, =b, if | x|>r. If A, =4,
for all fe C§(R"™! x (0, 7)), then u,(0, 0, t)=u,(0, 0, t) for all fe CFR""! x (0, T)) with
suppf<{y:|y|<T} x(0, T). From the domain of dependence of u;, we see that
#,(0, 0, £)=u,(0, 0, t) for all f which are independent of y i.e. for all feC?(, T). If f
is independent of y then so are u; (j=1, 2). Hence we can apply lemma 2.2 to our case.
So we have a;=a, and b,=b, on {x:|x|>r}. From now on we may assume that
ay=a, and b; =b, on {x:|x|>r}. Set w=u; —u,. If A, =A,, then we have

Wy—Aw+b,w,+a,w=Bu,,+ Au, in R, x(0,7),
w(x, 0)=w((x, 0)=0 on R%, | : 3.1
w(y,0,8)=0, wyy,0,t)=f—f=0 on R""1x(0, 7,
where A=a,—a,, B=b,—b,. Since a;=a, and b; =b, on {x:|x|>r}, we have
Wy—Aw+b,w,+a,w=0 xeR%, |x|>r, te(0,T),
w(y,0,t)=0, w,(»,0,t)=0 |y|>r, te,T).

From (1.4), a;, b;(j=1, 2)areconstantson {x : | x|>r}. Applying lemma 2.3, we conclude
the following by the same procedures in [6]:

(3.2)

w(x, t)=0 for r<|x|<r+e¢, z>0, te(0, T*),
where e=(T—(n+ 1)r)/6, T*=T—n(r +¢). Hence, using (3.2), we obtain
wix, t)=0, Jdw(x,t)=0 for (x,t)ed0H x (0, T*). 3.3)

Here H is the hemiball H={xeR", :|x|<r}, and v is the outer normal to o H.
Assume that v(x, t) is a smooth function satisfying

vpy—Av—bv,+a,v=0 (x,t)e Hx(0, T*), 3.4
v(x, T*)=v/(x, T*)=0 xeH. 3.5

Using (3.1), (3.3) and the divergence theorem, we have
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f (Buy, + Auy)vdxdt = f w,—Aw+bw,+a w)vdxdt

Hx(0,T* Hx(0,T"
= f [wo—wo, ] dx .
H

From the initial conditions of v and w, we conclude that

(Bu,,+ Auy)vdxdt =0 . 3.6)

Hx(0,T*
To continue the proof we need the following lemma due to Isakov [2].

LemMA 3.1 ([2]). For any weS"" !, any t>0, any function ¢ € CF(R") with
suppp={xeR": x,< —¢, | x|<2e}=N,, there exist the solution u, to (1.1)~(1.2) and
the solution v to (3.4)—~(3.5) of the form

ty = Blx -+ e DI HsOMs I 00 4 r(o 1) (3.7
v=(x+ tw)e(l/z)j';bl(x+sw)dse—it(x'w+t)+R(x, t). (3.8)
Moreover

r(x,0)=r(x,0)=0 xeR% ,
r(y,0,t)=0 (y,)eR""1 x (0, T*), 3.9

ThrllL2@y <0, 7y + 17l 2y 0, 7 < C1

R(x, T*)=R/(x, T*)=0 xeH,
J0,R=0 (x,t)edH % (0, T*), (3.10)
T“R”Lz(n'; x(0,T%) ||R:“L2(n'; x(0,T*) < C,,

where C; (j=1, 2) are positive constants.

PROOF OF THEOREM 1 CONTINUED. Inserting (3.7) and (3.8) into (3.6), we have

0=it J B(x) 2(x + tw)e 1PN B:+s2)Ms gy s 4 Remainder .
Hx(0,T*)
From (3.9) and (3.10), we see that there exists a constant C >0 independent of ¢ such that

| Remainder |<C.

Hence we have
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‘ ) Remainder
0= j B(x)¢%(x + tw)e ™1/ 2)fBex+soMsgydr 1+ lim (—~——)
=+ 1T
Hx(0,T*

= f B(x)¢ 2(x + tw)e = 1/ Blx+sw)s g gy
Hx(0,T*
™ '
___J ¢2(x)( f B(x— tw)e—(l/z)jox(x—zw+sw)dsdt>dx ,
R" 0

where we used the fact that B is zero outside H. Since the class of functions ¢2(x) is
dense in L*(N,), we have

T*
j B(x — tw)e~ 1/ Blx—to+soMsgy _ () for any xe N,, any weS"" 1.
0
Now let us change the variable of integration from s to / by the relation s—¢= —/, then
t t
f B(x — tw + sw)ds = J B(x—lw)dl .
0

0

Hence

T*
0= f B(x — tw)e™ (/2 B~ lw)l gy
o

T™* d ,
=J _2_t{e"(IIZ)IoB(x—lw)dl}dt
V]

=2{1 _e—u/z)j:‘a(x—zm)az} .

Therefore we conclude that
Tt
J B(x—lw)dI=0 for any xe N,, any weS"™ 1.
0

Note that any point which is at a distance greater than 7* from some point of N, is
outside H. Since B is zero outside H, we obtain

+ o
f B(x—Ilw)dl=0 for any xe N,, any weS" 1.
0

Applying lemma 2.1, we conclude that B=b,—b, =0.
From (3.4), using B=0, we have
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0= j Au,vdxdt .

H x(0,T*)

So, by using (3.7)(3.10), we obtain

0

A(X) *(x + tw)dxdt .

Hx(0,T*

Hence, ‘by the same argument used above, we conclude that 4=a,—a,=0. This
completes the proof of our main theorem.
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