Токуо Ј. Матн. Vol. 19, No. 2, 1996

Fundamental Groups of Semisimple Symmetric Spaces, II

Jiro SEKIGUCHI

University of Electro-Communications (Communicated by T. Nagano)

1. Introduction.

We start this article with stating a result on fundamental groups of connected simple Lie groups. Let **g** be a real simple Lie algebra and let Σ be its restricted root system. For each $\alpha \in \Sigma$, we denote by m_{α} the multiplicity of α . Let G_{ul} be the universal linear group with Lie algebra **g**. Here the universal linear group means the analytic subgroup corresponding to **g** of the simply connected complex Lie group whose Lie algebra is the complexification of **g** (cf. [3]). Then the following holds.

THEOREM 1. (1) If $\#(\pi_1(G_{ul}))$ is not finite, then $\pi_1(G_{ul}) \simeq \mathbb{Z}$. (2) Assume that $\#(\pi_1(G_{ul}))$ is finite. Then $\pi_1(G_{ul})$ is isomorphic to 1 or \mathbb{Z}_2 . Moreover, $\pi_1(G_{ul}) \simeq \mathbb{Z}_2$ if and only if there is a root α such that $m_{\alpha} = 1$.

The author does not find any literature containing a proof of Theorem 1. But it is easy to prove it by comparing the fundamental group of G_{ul} with the restricted root system (cf. [1], [4]).

The motivation behind our study is to generalize Theorem 1 to the case of semisimple symmetric spaces. If G is a connected semisimple Lie group and if σ is its involution, the coset space G/G^{σ} is a semisimple symmetric space. In this article, we always assume that G/G^{σ} is irreducible unless otherwise stated. In [3], the author determined the fundamental group $\pi_1(G/G^{\sigma})$ in the case where the center of G is trivial. It is not clear 'to find a relation between the fundamental group of G/G^{σ} and the restricted root system Σ of the symmetric pair ($\mathbf{g}, \mathbf{g}^{\sigma}$) introduced in [2], where \mathbf{g} and \mathbf{g}^{σ} are Lie algebras of G and G^{σ} , respectively.

The purpose of this article is to show that, in the case where **g** is of exceptional type and G is its universal linear group, $\pi_1(G/G^{\sigma})$ is described in terms of the restricted root system Σ (cf. Theorem 3). This is partly a generalization of Theorem 1 to the case of semisimple symmetric spaces. The proof of Theorem 3 employed here is based on the classification. The author hopes that a statement similar to Theorem 3 holds not

Received March 13, 1995

only in exceptional case but also in classical case and that there is a proof of Theorem 3 independent of the classification.

The author thanks to Prof. T. Nagano for valuable discussion on this topic.

2. Fundamental groups of semisimple symmetric spaces.

We first introduce the notation on semisimple symmetric spaces.

Let **g** be a semisimple Lie algebra. We put $G = \text{Int}(\mathbf{g})$ and denote by G_{ul} and \tilde{G} the universal linear group and the universal covering group of G, respectively.

If σ is an involution of **g**, we denote by \mathbf{g}^{σ} its fixed point subspace in **g**. Clearly \mathbf{g}^{σ} becomes a Lie algebra and $(\mathbf{g}, \mathbf{g}^{\sigma})$ is a symmetric pair. We note that there is a maximal compact subalgebra **k** of **g** left fixed by σ (cf. [2]).

It is clear that σ is lifted to all the groups G, G_{ul} and \tilde{G} . We denote by σ the involutions on G, G_{ul} and \tilde{G} for simplicity. Let K, K_{ul} and \tilde{K} be analytic subgroups of G, G_{ul} and \tilde{G} , respectively corresponding to **k**. In particular, K and K_{ul} are σ -fixed maximal compact subgroups of G and G_{ul} , respectively.

We now mention on restricted root systems of symmetric pairs. For the details, see [2]. Let $\Sigma(\mathbf{g}, \mathbf{g}^{\sigma})$ be the restricted root system of $(\mathbf{g}, \mathbf{g}^{\sigma})$. For any root $\alpha \in \Sigma(\mathbf{g}, \mathbf{g}^{\sigma})$, we defined its signature $(m^+(\alpha), m^-(\alpha))$ and multiplicity $m(\alpha) = m^+(\alpha) + m^-(\alpha)$. It is known that the type of $\Sigma(\mathbf{g}, \mathbf{g}^{\sigma})$ is one of A_l , B_l , C_l , D_l , E_l , F_4 , G_2 and BC_l for a suitable *l*. Therefore it is possible to define the length of each root $\alpha \in \Sigma(\mathbf{g}, \mathbf{g}^{\sigma})$ as a vector. We always denote by \mathbf{g}_C the complexification of \mathbf{g} .

There are three cases:

1. All the roots of $\Sigma(\mathbf{g}, \mathbf{g}^{\sigma})$ are of the same length. In this case, every root of $\Sigma(\mathbf{g}, \mathbf{g}^{\sigma})$ is called a long root.

2. There are two kinds of lengths, say r_1 , r_2 ($r_1 < r_2$), for the roots of $\Sigma(\mathbf{g}, \mathbf{g}^{\sigma})$. In this case, we call a root of $\Sigma(\mathbf{g}, \mathbf{g}^{\sigma})$ a short root (resp., a long root) if its length is r_1 (resp., r_2).

3. There are three kinds of lengths, say r_1 , r_2 , r_3 , $(r_1 < r_2 < r_3)$, for the roots of $\Sigma(\mathbf{g}, \mathbf{g}^{\sigma})$. (Then the type of $\Sigma(\mathbf{g}, \mathbf{g}^{\sigma})$ is BC_l for a suitable l(>1).) In this case, we call a root of $\Sigma(\mathbf{g}, \mathbf{g}^{\sigma})$ a short root (resp., a middle root and a long root) if its length is r_1 (resp., r_2 and r_3).

For any root $\alpha \in \Sigma(\mathbf{g}, \mathbf{g}^{\sigma})$, we denote by G_{α} the analytic subgroup of G_{ul} corresponding to \mathbf{g}_{α} which is generated by the root spaces belonging to $\pm \alpha$. Then σ leaves G_{α} invariant. Therefore $G_{\alpha}/G_{\alpha}^{\sigma}$ is also a semisimple symmetric space.

From now on, we always assume that \mathbf{g} is simple of exceptional type.

We now state a simple lemma which is observed from Table 4 given later:

LEMMA 2. Let $(\mathbf{g}, \mathbf{g}^{\sigma})$ be an irreducible symmetric pair such that \mathbf{g}_{C} is simple of exceptional type. If $\#(\pi_{1}(G_{\alpha}/G_{\alpha}^{\sigma})) < \infty$, then $\pi_{1}(G_{\alpha}/G_{\alpha}^{\sigma}) = 1$ except the unique case: $(\mathbf{g}, \mathbf{g}^{\sigma}) \simeq (\mathbf{e}_{6(6)}, \mathbf{so}(5,5) + \mathbf{R})$ and $(\mathbf{g}_{\alpha}, \mathbf{g}_{\alpha}^{\sigma}) \simeq (\mathbf{sl}(6, \mathbf{R}), \mathbf{sl}(5, \mathbf{R}) + \mathbf{R})$. Moreover, in this case,

436

 $\pi_1(G_{\alpha}/G_{\alpha}^{\sigma}) = \mathbf{Z}_2.$

We are now in a position to state the main theorem of this article.

THEOREM 3. We assume that \mathbf{g}_{C} is simple of exceptional type. Then the fundamental group $\pi_{1}(G_{ul}/G_{ul}^{\sigma})$ is determined in the following manner.

(1) If $\#(\pi_1(G_{ul}/G_{ul}^{\sigma}))$ is not finite, then $\pi_1(G_{ul}/G_{ul}^{\sigma}) \simeq \mathbb{Z}$.

(2) If $\#(\pi_1(G_{ul}/G_{ul}^{\sigma}))$ is finite, then $\pi_1(G_{ul}/G_{ul}^{\sigma})$ is isomorphic to 1 or \mathbb{Z}_2 . Moreover, $\pi_1(G_{ul}/G_{ul}^{\sigma}) \simeq \mathbb{Z}_2$ if and only if there is a long root α of $\Sigma(\mathbf{g}, \mathbf{g}^{\sigma})$ such that $m^+(\alpha) = 0$ and $m^-(\alpha) = 1$.

The proof of Theorem 3 employed here is based on the classification.

We are going to explain the outline of the proof.

We first note that $\pi_1(G/G^{\sigma})$ is determined in [3]. For our purpose, it is necessary to compute $\pi_1(G_{ul}/G_{ul}^{\sigma})$. In almost all cases, $\pi_1(G_{ul}/G_{ul}^{\sigma})$ coincides with $\pi_1(G/G^{\sigma})$. But in some cases, it does not. We determine $\pi_1(G_{ul}/G_{ul}^{\sigma})$ for such cases in Table 2. For the proof of the conclusions of Table 2, it is necessary to determine the explicit forms of K_{ul} which are collected in Table 3. Since $\pi_1(G_{ul}/G_{ul}^{\sigma}) \simeq \pi_1(K_{ul}/K_{ul}^{\sigma})$, it is easy to compute $\pi_1(G_{ul}/G_{ul}^{\sigma})$ from the information in Table 3.

We next compute $(\mathbf{g}_{\alpha}, \mathbf{g}_{\alpha}^{\sigma})$ for all $\alpha \in \Sigma(\mathbf{g}, \mathbf{g}^{\sigma})$ such that $\alpha/2 \notin \Sigma(\mathbf{g}, \mathbf{g}^{\sigma})$ for each symmetric pair $(\mathbf{g}, \mathbf{g}^{\sigma})$. The results are collected in Table 4.

Comparing Table 1, Table 2 with Table 4, we conclude the claims of Theorem 3.

For each root $\alpha \in \Sigma(\mathbf{g}, \mathbf{g}^{\sigma})$, there is a natural group homomorphism of $\pi_1(G_{\alpha}/G_{\alpha}^{\sigma})$ to $\pi_1(G_{ul}/G_{ul}^{\sigma})$. From Table 4, we observe the following claim seems true.

CLAIM. We take a long root $\alpha \in \Sigma(\mathbf{g}, \mathbf{g}^{\sigma})$ such that $(\mathbf{g}_{\alpha}, \mathbf{g}_{\alpha}^{\sigma}) = (\mathbf{sl}(2, \mathbf{R}), \mathbf{so}(1, 1))$. Then $\pi_1(G_{\alpha}/G_{\alpha}^{\sigma}) \simeq \mathbf{Z}$ and the homomorphism $\pi_1(G_{\alpha}/G_{\alpha}^{\sigma}) \rightarrow \pi_1(G_{ul}/G_{ul}^{\sigma})$ is surjective.

The claim above suggests an idea how to construct a generator of $\pi_1(G_{ul}/G_{ul}^{\sigma})$.

The author does not know the reason why for a short or middle root $\alpha \in \Sigma(\mathbf{g}, \mathbf{g}^{\sigma})$ such that $(\mathbf{g}_{\alpha}, \mathbf{g}_{\alpha}^{\sigma}) = (\mathbf{sl}(2, \mathbf{R}), \mathbf{so}(1, 1)), \ \operatorname{Im}(\pi_1(G_{\alpha}/G_{\alpha}^{\sigma}) \to \pi_1(G_{ul}/G_{ul}^{\sigma})) = 1.$

3. Tables.

In Table 1 below, K^{σ}_{*} means a group locally isomorphic to K^{σ} .

In Table 4, we determine $(\mathbf{g}_{\alpha}, \mathbf{g}_{\alpha}^{\sigma})$ and the fundamental group $\pi_1(G_{\alpha}/G_{\alpha}^{\sigma})$ for all roots $\alpha \in \Sigma(\mathbf{g}, \mathbf{g}^{\sigma})$ such that $\alpha/2 \notin \Sigma(\mathbf{g}, \mathbf{g}^{\sigma})$. The notation (l), (m) and (s) mean that α is a long, middle and short root, respectively. In the case where $\Sigma(\mathbf{g}, \mathbf{g}^{\sigma})$ is homogeneous, we write nothing to avoid confusion. Moreover, we put $M(\alpha) = \begin{pmatrix} m^+(\alpha) & m^+(2\alpha) \\ m^-(\alpha) & m^-(2\alpha) \end{pmatrix}$.

TABLE 1

Symmetric pair	K	K *	$\pi_1(G/G^{\sigma})$
$(\mathbf{e}_{6(6)}, \mathbf{f}_{4(4)})$ $(\mathbf{e}_{6(6)}, \mathbf{su}^*(6) + \mathbf{su}(2))$	Sp(4)/Z ₂	$Sp(3) \times Sp(1)$	
$(\mathbf{e}_{6(6)}, \mathbf{so}(5,5) + \mathbf{R})$ $(\mathbf{e}_{6(6)}, \mathbf{sp}(2,2))$	$Sp(4)/\mathbb{Z}_2$	$Sp(2) \times Sp(2)$	Z ₂
$(\mathbf{e}_{6(6)}, \mathbf{sp}(4, \mathbf{R})))$ $(\mathbf{e}_{6(6)}, \mathbf{sl}(6, \mathbf{R}) + \mathbf{sl}(2, \mathbf{R}))$	$Sp(4)/\mathbb{Z}_2$	$SU(4) imes \mathbf{T}$	Z ₂
$(e_{6(2)}, so^*(10) + so(2))$	$(SU(6)/\mathbb{Z}_3 \times SU(2))/\mathbb{Z}_2$	$SU(5) \times \mathbf{T} \times \mathbf{T}$	1
$(\mathbf{e}_{6(2)}, \mathbf{so}(6,4) + \mathbf{so}(2))$ $(\mathbf{e}_{6(2)}, \mathbf{su}(2,4) + \mathbf{su}(2))$	$(SU(6)/\mathbb{Z}_3 \times SU(2))/\mathbb{Z}_2$	$SU(4) \times SU(2) \times \mathbf{T} \times \mathbf{T}$	1
$(e_{6(2)}, su(3,3) + sl(2,\mathbf{R}))$	$(SU(6)/\mathbb{Z}_3 \times SU(2))/\mathbb{Z}_2$	$SU(3) \times SU(3) \times \mathbf{T} \times \mathbf{T}$	Z ₂
$(\mathbf{e}_{6(2)}, \mathbf{sp}(3, 1))$ $(\mathbf{e}_{6(2)}, \mathbf{f}_{4(4)})$	$(SU(6)/\mathbb{Z}_3 \times SU(2))/\mathbb{Z}_2$	$Sp(3) \times SU(2)$	Z ₃
(e ₆₍₂₎ , sp(4, R))	$(SU(6)/\mathbb{Z}_3 \times SU(2))/\mathbb{Z}_2$	<i>SO</i> (6)×T	Z ₆
$(\mathbf{e}_{6(-26)}, \mathbf{su}^*(6) + \mathbf{su}(2))$ $(\mathbf{e}_{6(-26)}, \mathbf{sp}(3, 1))$	F ₄	$Sp(3) \times Sp(1)$	1
$(\mathbf{e}_{6(-26)}, \mathbf{so}(9, 1) + \mathbf{R})$ $(\mathbf{e}_{6(-26)}, \mathbf{f}_{4(-20)})$	F ₄	SO(9)	1
$(\mathbf{e}_{6(-14)}, \mathbf{f}_{4(-20)})$	$(Spin(10) \times SO(2))/\mathbb{Z}_2$	Spin(9)	Z
$(\mathbf{e}_{6(-14)}, \mathbf{so}(2,8) + \mathbf{so}(2))$	$(Spin(10) \times SO(2))/\mathbb{Z}_2$	$SO(8) \times SO(2) \times SO(2)$	1
$(\mathbf{e}_{6(-14)}, \mathbf{su}(2,4) + \mathbf{su}(2))$	$(Spin(10) \times SO(2))/\mathbb{Z}_2$	$SO(6) \times SO(4) \times SO(2)$	1
(e ₆₍₋₁₄₎ , sp(2,2))	$(Spin(10) \times SO(2))/\mathbb{Z}_2$	$Sp(2) \times Sp(2)$	Z
$(\mathbf{e}_{6(-14)}, \mathbf{su}(5,1) + \mathbf{sl}(2,\mathbf{R}))$ $(\mathbf{e}_{6(-14)}, \mathbf{so}^*(10) + \mathbf{so}(2))$	$(Spin(10) \times SO(2))/\mathbb{Z}_2$	$SU(5) \times \mathbf{T} \times \mathbf{T}$	1
$(\mathbf{e}_{7(7)}, \mathbf{so}^*(12) + \mathbf{su}(2))$ $(\mathbf{e}_{7(7)}, \mathbf{e}_{6(2)} + \mathbf{so}(2))$	$SU(8)/\mathbb{Z}_4$	$SU(6) \times SU(2) \times \mathbf{T}$	1
(e ₇₍₇₎ , su(4,4)) (e ₇₍₇₎ , so(6,6) + sl(2,R))	SU(8)/ Z 4	$SU(4) \times SU(4) \times \mathbf{T}$	Z ₂
(e ₇₍₇₎ , sl(8,R))	SU(8)/Z ₄	SO(8)	Z4
$(\mathbf{e}_{7(7)}, \mathbf{su}^*(8))$ $(\mathbf{e}_{7(7)}, \mathbf{e}_{6(6)} + \mathbf{R})$	SU(8)/ Z 4	<i>Sp</i> (4)	Z ₄
$(\mathbf{e}_{7(-5)}, \mathbf{e}_{6(-14)}, +\mathbf{so}(2))$	$(Ss(12) \times SU(2))/\mathbb{Z}_2$	$Spin(10) \times SO(2) \times \mathbf{T}$	Z ₂
$(\mathbf{e}_{7(-5)}, \mathbf{so}(8,4) + \mathbf{su}(2))$	$(Ss(12) \times SU(2))/\mathbb{Z}_2$	$SO(8) \times SO(4) \times SU(2)$	1

Symmetric pair	K	K ^o *	$\pi_1(G/G^{\sigma})$	
$(e_{7(-5)}, su(4,4))$	$(Ss(12) \times SU(2))/\mathbb{Z}_2$	$SO(6) \times SO(6) \times \mathbf{T}$	$Z_2 \times Z_2$	
$(\mathbf{e}_{7(-5)}, \mathbf{su}(6,2))$ $(\mathbf{e}_{7(-5)}, \mathbf{e}_{6(2)}, + \mathbf{so}(2))$	$(Ss(12) \times SU(2))/\mathbb{Z}_2$	$SU(6) \times SU(2) \times \mathbf{T}$	Z ₂	
$(\mathbf{e}_{7(-5)}, \mathbf{so}^{*}(12) + \mathbf{sl}(2, \mathbf{R}))$	$(Ss(12) \times SU(2))/\mathbb{Z}_2$	$SU(6) \times \mathbf{T} \times \mathbf{T}$	Z ₂	
(e ₇₍₋₂₅₎ , su*(8))	$(E_6 \times SO(2))/\mathbb{Z}_3$	Sp(4)	Z	
$(\mathbf{e}_{7(-25)}, \mathbf{so}(2,10) + \mathbf{sl}(2,\mathbf{R}))$ $(\mathbf{e}_{7(-25)}, \mathbf{e}_{6(-14)} + \mathbf{so}(2))$	$(E_6 \times SO(2))/\mathbf{Z}_3$	$SO(10) \times SO(2) \times \mathbf{T}$	1	
$(\mathbf{e}_{7(-25)}, \mathbf{su}(2,6))$ $(\mathbf{e}_{7(-25)}, \mathbf{so}^{*}(12) + \mathbf{su}(2))$	$(E_6 \times SO(2))/\mathbb{Z}_3$	$SU(6) \times SU(2) \times \mathbf{T}$	1	
$(\mathbf{e}_{7(-25)}, \mathbf{e}_{6(-26)} + \mathbf{R})$	$(E_6 \times SO(2))/\mathbf{Z}_3$	F ₄	Z	
$(\mathbf{e}_{8(8)}, \mathbf{e}_{7(-5)} + \mathbf{su}(2))$	Ss(16)	$Ss(12) \times SO(4)$	1	
(e ₈₍₈₎ , so(8,8))	Ss(16)	$SO(8) \times SO(8)$	Z ₂	
$(\mathbf{e}_{8(8)}, \mathbf{so}^{*}(16))$ $(\mathbf{e}_{8(8)}, \mathbf{e}_{7(7)} + \mathbf{sl}(2, \mathbf{R}))$	Ss(16)	$SU(8) imes \mathbf{T}$	Z ₂	
(e ₈₍₋₂₄₎ , so*(16))	$(E_7 \times SU(2))/\mathbf{Z}_2$	$SU(8) \times \mathbf{T}$	\mathbf{Z}_2	
$(\mathbf{e}_{8(-24)}, \mathbf{so}(4, 12))$ $(\mathbf{e}_{8(-24)}, \mathbf{e}_{7(-5)} + \mathbf{su}(2))$	$(E_7 \times SU(2))/Z_2$	$SO(12) \times SU(2) \times SU(2)$	1	
$(\mathbf{e}_{8(-24)}, \mathbf{e}_{7(-25)} + \mathbf{sl}(2, \mathbf{R}))$	$(E_7 \times SU(2))/\mathbf{Z}_2$	$E_6 \times \mathbf{T} \times \mathbf{T}$	Z ₂	
$(f_{4(4)}, sp(3, \mathbf{R}) + sl(2, \mathbf{R}))$	$(Sp(3) \times Sp(1))/\mathbb{Z}_2$	$SU(3) \times \mathbf{T} \times \mathbf{T}$	Z ₂	
$(\mathbf{f}_{4(4)}, \mathbf{so}(4,5))$ $(\mathbf{f}_{4(4)}, \mathbf{sp}(2,1) + \mathbf{su}(2))$	$(Sp(3) \times Sp(1))/\mathbb{Z}_2$	$Sp(2) \times Sp(1) \times Sp(1)$	1	
(f ₄₍₋₂₀₎ , so (8,1))	Spin(9)	<i>SO</i> (8)	1	
$(\mathbf{f}_{4(-20)} \mathbf{sp}(2,1) + \mathbf{su}(2))$	Spin(9)	$SO(5) \times SO(4)$	1	
$(g_{2(2)}, sl(2, \mathbf{R}) + sl(2, \mathbf{R}))$	SO(4)	$SO(2) \times SO(2)$	Z ₂	

TABLE 1 (Continued)

TABLE 2	
---------	--

symmetric pair	K _{ul}	<i>K</i> ^σ _*	$\pi_1(G/G^{\sigma})$
$(\mathbf{e}_{6(2)}, \mathbf{sp}(3, 1))$ $(\mathbf{e}_{6(2)}, \mathbf{f}_{4(4)})$	$(SU(6) \times SU(2))/\mathbb{Z}_2$	$Sp(3) \times SU(2)$	1
(e ₆₍₂₎ , sp(4,R))	$(SU(6) \times SU(2))/\mathbb{Z}_2$	$SO(6) \times T$	Z ₂
(e ₇₍₇₎ , sl(8,R))	$SU(8)/\mathbb{Z}_2$	<i>SO</i> (8)	Z ₂
$(\mathbf{e}_{7(7)}, \mathbf{su}^*(8))$ $(\mathbf{e}_{7(7)}, \mathbf{e}_{6(6)} + \mathbf{R})$	$SU(8)/\mathbb{Z}_2$	Sp(4)	Z ₂
$(\mathbf{e}_{7(-5)}, \mathbf{e}_{6(-14)} + \mathbf{so}(2))$	$(Spin(12) \times SU(2))/\mathbb{Z}_2$	$Spin(10) \times SO(2) \times \mathbf{T}$	1
$(e_{7(-5)}, su(4,4))$	$(Spin(12) \times SU(2))/\mathbb{Z}_2$	$SO(6) \times SO(6) \times T$	Z ₂
$(\mathbf{e}_{7(-5)}, \mathbf{su}(6,2))$ $(\mathbf{e}_{7(-5)}, \mathbf{e}_{6(2)} + \mathbf{so}(2))$	$(Spin(12) \times SU(2))/\mathbb{Z}_2$	$SU(6) \times SU(2) \times \mathbf{T}$	1

TABLE 3

G	K	K _{ul}	Ñ
e ₆₍₆₎	$Sp(4)/\mathbb{Z}_2$	$Sp(4)/\mathbb{Z}_2$	<i>Sp</i> (4)
e ₆₍₂₎	$(SU(6)/\mathbb{Z}_3 \times SU(2))/\mathbb{Z}_2$	$(SU(6) \times SU(2))/\mathbb{Z}_2$	$SU(6) \times SU(2)$
e ₆₍₋₂₆₎	F ₄	F ₄	F ₄
e ₇₍₇₎	SU(8)/Z ₄	$SU(8)/\mathbb{Z}_2$	<i>SU</i> (8)
e ₇₍₋₅₎	$(Ss(12) \times SU(2))/\mathbb{Z}_2$	$(Spin(12) \times SU(2))/\mathbb{Z}_2$	$Spin(12) \times SU(2)$
e ₈₍₈₎	Ss(16)	Ss(16)	Spin(16)
e ₈₍₋₂₄₎	$(E_7 \times SU(2))/\mathbb{Z}_2$	$(E_7 \times SU(2))/\mathbb{Z}_2$	$E_7 \times SU(2)$
f ₄₍₄₎	$(Sp(3) \times Sp(1))/\mathbb{Z}_2$	$(Sp(3) \times Sp(1))/\mathbb{Z}_2$	$Sp(3) \times Sp(1)$
f ₄₍₋₂₀₎	Spin(9)	Spin(9)	Spin(9)
g ₂₍₂₎	SO(4)	<i>SO</i> (4)	$SU(2) \times SU(2)$

Symmetric Pair	$M(\alpha)$	$(\mathbf{g}_{\alpha},\mathbf{g}_{\alpha}^{\sigma})$	$\pi_1(G_{\alpha}/G_{\alpha}^{\sigma})$
$(\mathbf{e}_{6(6)}, \mathbf{f}_{4(4)})$	$\begin{pmatrix} 4 & 0 \\ 4 & 0 \end{pmatrix}$	(so (5,5), so (5,4))	1
$(e_{6(6)}, su^*(6) + su(2))$	$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$	(sl(2, R), so(2))	1
	$\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$	$(\mathbf{sl}(2,\mathbf{R})+\mathbf{sl}(2,\mathbf{R}),\mathbf{sl}(2,\mathbf{R}))$	Z(s)
$(\mathbf{e}_{6(6)}, \mathbf{so}(5,5) + \mathbf{R})$	$\begin{pmatrix} 3 & 0 \\ 3 & 0 \end{pmatrix}$	(so(4,4), so(4,3))	1
	$\begin{pmatrix} 4 & 0 \\ 4 & 1 \end{pmatrix}$	$(\mathbf{sl}(6,\mathbf{R}),\mathbf{sl}(5,\mathbf{R})+\mathbf{R})$	Z ₂
(e ₆₍₆₎ , sp(2,2))	$ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} $	(sl (2, R), so (2))	1
	$ \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} $	(sl (2, R), so (1,1))	Ζ
(e ₆₍₆₎ , sp(4, R))	$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$	(sl(2,R), so(2))	. 1
	$\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$	(sl (2, R), so (1,1))	Ζ
$(\mathbf{e}_{6(6)},\mathbf{sl}(6,\mathbf{R})+\mathbf{sl}(2,\mathbf{R}))$	$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$	(sl(2, R), so(2))	1
	$\left \begin{array}{cc} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \right $	(sl (2, R), so (1,1))	Z (l)
	$\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$	$(\mathbf{sl}(2,\mathbf{R})+\mathbf{sl}(2,\mathbf{R}),\mathbf{sl}(2,\mathbf{R}))$	Z(s)
$(\mathbf{e}_{6(2)}, \mathbf{so}^*(10) + \mathbf{so}(2))$	$\begin{pmatrix} 4 & 0 \\ 2 & 0 \end{pmatrix}$	(so (5,3), so (5,2))	1
	$ \begin{pmatrix} 4 & 1 \\ 4 & 0 \end{pmatrix} $	(su(3,3), su(3,2) + so(2))	1
$(\mathbf{e}_{6(2)}, \mathbf{so}(6,4) + \mathbf{so}(2))$	$\begin{pmatrix} 2 & 0 \\ 4 & 0 \end{pmatrix}$	(so (5,3), so (4,3))	1
	$\begin{pmatrix} 4 & 1 \\ 4 & 0 \end{pmatrix}$	(su(3,3), su(3,2) + so(2))	1
$(e_{6(2)}, su(2,4) + su(2))$	$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$	(sl(2,R), so(2))	1
	$ \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix} $	(sl (2, C), su (2))	1
	$ \begin{pmatrix} 0 & 0 \\ 2 & 0 \end{pmatrix} $	(sl (2, C), su (1,1))	1

TABLE 4

Symmetric Pair	Μ(α)	$(\mathbf{g}_{\alpha},\mathbf{g}_{\alpha}^{\sigma})$	$\pi_1(G_{\alpha}/G_{\alpha}^{\sigma})$
$(e_{6(2)}, su(3,3) + sl(2,R))$	$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$	(sl(2,R), so(2))	1
	$\left \begin{array}{cc} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \right $	(sl (2, R), so (1,1))	Z (l)
	$\begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}$	(sl (2, C), su (2))	1
(e ₆₍₂₎ , sp(3,1))	$\left \begin{array}{cc} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{array} \right $	(sl (2, R), so (2))	1
	$\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$	$(\mathbf{sl}(2,\mathbf{R})+\mathbf{sl}(2,\mathbf{R}),\mathbf{sl}(2,\mathbf{R}))$	Z(s)
$(\mathbf{e}_{6(2)}, \mathbf{f}_{4(4)})$	$\begin{pmatrix} 8 & 3 \\ 8 & 5 \end{pmatrix}$	$(\mathbf{e}_{6(2)}, \mathbf{f}_{4(4)})$	1
(e ₆₍₂₎ , sp(4, R))	$\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$	(sl (2, R), so (1,1))	Z (l)
	$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$	(sl (2, R), so (2))	1
	$ \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} $	$(\mathbf{sl}(2,\mathbf{R})+\mathbf{sl}(2,\mathbf{R}),\mathbf{sl}(2,\mathbf{R}))$	Z(s)
$(e_{6(-26)}, su^*(6) + su(2))$	$\begin{pmatrix} 8 & 3 \\ 8 & 5 \end{pmatrix}$	$(e_{6(-26)}, su^*(6) + su(2))$	1
(e ₆₍₋₂₆₎ , sp(3,1))	$\begin{pmatrix} 4 & 0 \\ 4 & 0 \end{pmatrix}$	(so(5,1) + so(5,1), so(5,1))	1
$(\mathbf{e}_{6(-26)}, \mathbf{so}(9, 1) + \mathbf{R})$	$\begin{pmatrix} 8 & 7 \\ 8 & 1 \end{pmatrix}$	$(\mathbf{e}_{6(-26)}, \mathbf{so}(9, 1) + \mathbf{R})$	1
$(\mathbf{e}_{6(-26)}, \mathbf{f}_{4(-20)})$	$\begin{pmatrix} 8 & 0 \\ 0 & 0 \end{pmatrix}$	(so (9,1), so (9))	1
	$ \begin{pmatrix} 0 & 0 \\ 8 & 0 \end{pmatrix} $	(so (9,1), so (8,1))	1
$(\mathbf{e}_{6(-14)}, \mathbf{f}_{4(-20)})$	$\begin{pmatrix} 8 & 7 \\ 8 & 1 \end{pmatrix}$	$(\mathbf{e_{6(-14)}},\mathbf{f_{4(-20)}})$	Z
$(\mathbf{e}_{6(-14)}, \mathbf{so}(2,8) + \mathbf{so}(2))$	$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$	(sl (2, R), so (2))	1
	$\begin{pmatrix} 0 & 1 \\ 8 & 0 \end{pmatrix}$	(su(6,1), su(5,1) + so(2))	1
$(e_{6(-14)}, su(2,4) + su(2))$	$\begin{pmatrix} 2 & 0 \\ 4 & 0 \end{pmatrix}$	(so(7,1), so(3) + so(4,1))	1
	$\begin{pmatrix} 4 & 1 \end{pmatrix}$	(so(6,2), su(3,1) + so(2))	1

Symmetric Pair	$M(\alpha)$	$(\mathbf{g}_{\alpha},\mathbf{g}_{\alpha}^{\sigma})$	$\pi_1(G_{\alpha}/G_{\alpha})$
(e ₆₍₋₁₄₎ , sp(2,2))	$\begin{pmatrix} 3 & 0 \\ 3 & 0 \end{pmatrix}$	(so(7,1), so(4) + so(3,1))	1
	$\begin{pmatrix} 4 & 0 \\ 4 & 1 \end{pmatrix}$	(su (5,1), so (5,1))	Z(s)
$(\mathbf{e}_{6(-14)}, \mathbf{su}(5,1) + \mathbf{sl}(2,\mathbf{R}))$	$\begin{pmatrix} 4 & 0 \\ 2 & 0 \end{pmatrix}$	(so(7,1), so(5) + so(2,1))	1
	$\begin{pmatrix} 4 & 1 \\ 4 & 0 \end{pmatrix}$	(su(5,1), su(3) + su(2,1) + so(2))	1
$(e_{6(-14)}, so^{*}(10) + so(2))$	$\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$	(sl(2,R), so(1,1))	Z (m)
	$\begin{pmatrix} 8 & 1 \\ 0 & 0 \end{pmatrix}$	(su(6,1), su(6) + so(2))	1
$(\mathbf{e}_{7(7)}, \mathbf{so}^*(12) + \mathbf{su}(2))$	$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$	(sl(2,R), so(2))	1
	$\begin{pmatrix} 2 & 0 \\ 2 & 0 \end{pmatrix}$	(so (3,3), so (3,2))	1
$(\mathbf{e}_{7(7)}, \mathbf{e}_{6(2)} + \mathbf{so}(2))$	$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$	(sl(2, R), so(2))	1
	$\begin{pmatrix} 4 & 0 \\ 4 & 0 \end{pmatrix}$	(so (5,5), so (5,4))	1
(e ₇₍₇₎ , su(4,4))	$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$	(sl (2, R), so(2))	1
	$\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$	(sl(2,R), so(1,1))	Z
$(\mathbf{e}_{7(7)}, \mathbf{so}(6, 6) + \mathbf{sl}(2, \mathbf{R}))$	$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$	(sl (2, R), so (2))	1
	$\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$	(sl (2, R), so (1,1))	Z (l)
	$\begin{pmatrix} 2 & 0 \\ 2 & 0 \end{pmatrix}$	(so (3,3), so (3,2))	1
$(e_{7(7)}, sl(8, \mathbf{R}))$	$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$	(sl (2, R), so (2))	1
	$\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$	(sl(2,R), so(1,1))	Z
(e ₇₍₇₎ , su*(8))	$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$	$(\mathbf{sl}(2,\mathbf{R}),\mathbf{so}(2))$	1
	$\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$	$(\mathbf{sl}(2,\mathbf{R}),\mathbf{so}(1,1))$	Z

TABLE 4 (Continued)

TABLE	4	(Continued)
IADLL	-	(Continucu)

Symmetric Pair	$M(\alpha)$	$(\mathbf{g}_{\alpha},\mathbf{g}_{\alpha}^{\sigma})$	$\pi_1(G_a/G_a^\sigma)$
$(\mathbf{e}_{7(7)}, \mathbf{e}_{6(6)} + \mathbf{R})$	$\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$	(sl(2,R) , so (1,1))	Z (l)
	$\begin{pmatrix} 4 & 0 \\ 4 & 0 \end{pmatrix}$	(so (5,5), so (5,4))	1
$(\mathbf{e}_{7(-5)}, \mathbf{e}_{6(-14)} + \mathbf{so}(2))$	$\begin{pmatrix} 6 & 0 \\ 2 & 0 \end{pmatrix}$	(so (7,3), so (7,2))	1
	$\begin{pmatrix} 8 & 1 \\ 8 & 0 \end{pmatrix}$	$(so^{*}(12), so^{*}(10) + so(2))$	1
$(\mathbf{e}_{7(-5)}, \mathbf{so}(8,4) + \mathbf{su}(2))$	$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$	(sl (2, R), so (2))	1
	$\begin{pmatrix} 4 & 0 \\ 0 & 0 \end{pmatrix}$	(so (5,1), so (5))	1
	$\begin{pmatrix} 0 & 0 \\ 4 & 0 \end{pmatrix}$	(so (5,1), so (4,1))	1
$(\mathbf{e}_{7(-5)}, \mathbf{su}(4,4))$	$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$	(sl (2, R), so (2))	1
	$\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$	(sl (2, R), so (1,1))	Z (l)
	$\begin{pmatrix} 2 & 0 \\ 2 & 0 \end{pmatrix}$	(so(5,1), so(3) + (so(2,1))	1
(e ₇₍₋₅₎ , su(6,2))	$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$	(sl(2,R), so(2))	1
	$\begin{pmatrix} 2 & 0 \\ 2 & 0 \end{pmatrix}$	(so(5,1), so(3) + so(2,1))	1
$(\mathbf{e}_{7(-5)}, \mathbf{e}_{6(2)} + \mathbf{so}(2))$	$\begin{pmatrix} 2 & 0 \\ 6 & 0 \end{pmatrix}$	(so (3,7), so (3,6))	1
	$\begin{pmatrix} 8 & 1 \\ 8 & 0 \end{pmatrix}$	(so*(12), so*(10) + so(2))	1
$(e_{7(-5)}, so^{*}(12) + sl(2, \mathbf{R}))$	$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$	(sl (2, R), so (2))	1
	$\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$	$(\mathbf{sl}(2,\mathbf{R}),\mathbf{so}(1,1))$	Z (l)
	$\begin{pmatrix} 4 & 0 \\ 0 & 0 \end{pmatrix}$	(so (5,1), so (5))	1
(e ₇₍₋₂₅₎ , su* (8))	$\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$	(sl (2, R), so (1,1))	Z (l)
	$\begin{pmatrix} 4 & 0 \\ 4 & 0 \end{pmatrix}$	(so(9,1), so(5) + so(4,1))	1

Symmetric Pair	$M(\alpha)$	$(\mathbf{g}_{\alpha},\mathbf{g}_{\alpha}^{\sigma})$	$\pi_1(G_{\alpha}/G_{\alpha}^{\sigma})$
$(\mathbf{e}_{7(-25)}, \mathbf{so}(2,10) + \mathbf{sl}(2,\mathbf{R}))$	$\begin{pmatrix} 6 & 0 \\ 2 & 0 \end{pmatrix}$	(so(9,1), so(7) + so(2,1))	1
	$\begin{pmatrix} 8 & 1 \\ 8 & 0 \end{pmatrix}$	(so(10,2), su(5,1) + so(2))	1
$(\mathbf{e}_{7(-25)}, \mathbf{e}_{6(-14)} + \mathbf{so}(2))$	$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$	(sl (2, R), so (2))	1
	$\begin{pmatrix} 8 & 0 \\ 0 & 0 \end{pmatrix}$	(so (9,1), so (9))	1
	$\begin{pmatrix} 0 & 0 \\ 8 & 0 \end{pmatrix}$	(so (9,1), so (8,1))	1
(e ₇₍₋₂₅₎ , su(2,6))	$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$	(sl (2, R), so (2))	1
	$\begin{pmatrix} 4 & 0 \\ 4 & 0 \end{pmatrix}$	(so(9,1), so(5) + so(4,1))	1
$(e_{7(-25)}, so^{*}(12) + su(2))$	$\begin{pmatrix} 2 & 0 \\ 6 & 0 \end{pmatrix}$	(so(9,1), so(3) + so(6,1))	1
	$\begin{pmatrix} 8 & 1 \\ 8 & 0 \end{pmatrix}$	$(so^{*}(12), so^{*}(10) + so(2))$	1
$(\mathbf{e}_{7(-25)}, \mathbf{e}_{6(-26)} + \mathbf{R})$	$\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$	$(\mathbf{sl}(2,\mathbf{R}),\mathbf{so}(1,1))$	Z (l)
	$\begin{pmatrix} 8 & 0 \\ 0 & 0 \end{pmatrix}$	(so(9,1), so(9))	1
$(\mathbf{e}_{8(8)}, \mathbf{e}_{7(-5)} + \mathbf{su}(2))$	$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$	(sl(2,R), so(2))	1
	$\begin{pmatrix} 4 & 0 \\ 4 & 0 \end{pmatrix}$	(so (5,5), so (5,4))	1
(e ₈₍₈₎ , so(8,8))	$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$	(sl (2, R), so (2))	1
	$\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$	$(\mathbf{sl}(2,\mathbf{R}),\mathbf{so}(1,1))$	Z
(e ₈₍₈₎ , so*(16))	$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$	(sl (2, R), so (2))	1
•	$\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$	(sl (2, R), so (1,1))	Z
$\mathbf{e}_{8(8)}, \mathbf{e}_{7(7)} + \mathbf{sl}(2, \mathbf{R}))$	$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$	(sl (2, R), so (2))	1
	$\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$	(sl (2, R), so (1,1))	Z (1)
	$\begin{pmatrix} 4 & 0 \end{pmatrix}$	(so (5,5), so (5,4))	1

445

T	4	
Table	4	(Continued)

Symmetric Pair	$M(\alpha)$	$(\mathbf{g}_{\alpha},\mathbf{g}_{\alpha}^{\sigma})$	$\pi_1(G_a/G_a^\sigma)$
(e ₈₍₋₂₄₎ , so* (16))	$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$	(sl(2,R), so(2))	1
	$\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$	(sl (2, R), so (1,1))	Z (l)
	$\begin{pmatrix} 4 & 0 \\ 4 & 0 \end{pmatrix}$	(so(9,1), so(5) + so(4,1))	1
(e ₈₍₋₂₄₎ , so (4,12))	$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$	(sl(2,R), so(2))	1
	$\begin{pmatrix} 4 & 0 \\ 4 & 0 \end{pmatrix}$	(so(9,1), so(5) + so(4,1))	1
(e ₈₍₋₂₄₎ , e ₇₍₋₅₎ + su(2))	$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$	(sl(2,R), so(2))	1
	$\begin{pmatrix} 0 & 0 \\ 8 & 0 \end{pmatrix}$	(so (9,1), so (8,1))	1
	$\begin{pmatrix} 8 & 0 \\ 0 & 0 \end{pmatrix}$	(so (9,1), so (9))	1
(e ₈₍₋₂₄₎ , e ₇₍₋₂₅₎ +sl(2, R))	$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$	(sl(2,R), so(2))	1
	$\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$	(sl (2, R), so (1,1))	Z (l)
	$\begin{pmatrix} 8 & 0 \\ 0 & 0 \end{pmatrix}$	(so (9,1), so (9))	1
(f ₄₍₄₎ , sp(3,R) + sl(2,R))	$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$	(sl(2,R), so(2))	1
	$\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$	(sl (2, R), so (1,1))	Z (l)
	$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$	(sl(2,R), so(2))	1
(f ₄₍₄₎ , so (4,5))	$\begin{pmatrix} 4 & 3 \\ 4 & 4 \end{pmatrix}$	(f ₄₍₄₎ , so(4,5))	1
(f ₄₍₄₎ , sp(2,1) + su(2))	$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$	(sl(2,R), so(2))	1
	$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$	(sl (2, R), so (2))	1
	$\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$	(sl (2, R), so (1,1))	Z(s)
(f ₄₍₋₂₀₎ , so (8,1))	$\begin{pmatrix} 0 & 7 \\ 8 & 0 \end{pmatrix}$	(f ₄₍₋₂₀₎ , so (8,1))	1
$(\mathbf{f}_{4(-20)}, \mathbf{sp}(2, 1) + \mathbf{su}(2))$	$\begin{pmatrix} 4 & 3 \\ 4 & 4 \end{pmatrix}$	$(\mathbf{f_{4(-20)}}, \mathbf{sp}(2, 1) + \mathbf{su}(2))$	1

Symmetric Pair	$M(\alpha)$	$(\mathbf{g}_{\alpha},\mathbf{g}_{\alpha}^{\sigma})$	$\pi_1(G_{\alpha}/G_{\alpha}^{\sigma})$
$(\mathbf{g}_{2(2)},\mathbf{sl}(2,\mathbf{R})+\mathbf{sl}(2,\mathbf{R}))$	$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$	(sl(2, R), so(2))	1
		(sl (2, R), so (1,1))	Z (l)

TABLE 4 (Continued)

References

[1] S. ARAKI, On root systems and an infinitesimal classification of irreducible symmetric spaces, J. Math. Osaka City Univ. 13 (1962), 1-34.

[2] T. OSHIMA and J. SEKIGUCHI, The restricted root system of a semisimple symmetric pair, Adv. Studies Pure Math. 4 (1984), 433-497.

[3] J. SEKIGUCHI, Fundamental groups of semisimple symmetric spaces, Adv. Studies Pure Math. 14 (1988), 519–529.

[4] G. WARNER, Harmonic Analysis on Semi-Simple Groups I, Springer (1972).

Present Address: Department of Mathematics, Himeji Institute of Technology, Himeji, 671–22 Japan.