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Abstract. In this paper, we will obtain some new intrinsic rigidity theorems of compact totally real
minimal submanifolds in a quaternion projective space. So the corresponding results due to B Y. Chen and
C. S. Houh as well as Y. B. Shen are improved.

1. Introduction.

A quaternion Kaehler manifold is defined as a 4m-dimensional Riemannian
manifold whose holonomy group is contained in Sp(m)- Sp(1) with the additional
condition for m=1 that it is a self-dual Einstein space. A quaternion projective space
QP is a quaternion Kaehler manifold with constant quaternion sectional curvature
¢>0. A complex projective space CPg, with constant holomorphic sectional curvature
¢ can be isometrically imbedded in QP7, as a totally geodesic submanifold. Let M be
an n-dimensional Riemannian submanifolds and & : M — QPP an isometric immersion
of M into QPF,. If each tangent 2-subspace of M is mapped by & into a totally real
plane of QP(;,, then M is called a totally real submanifold of OPF,. In[1], B. Y. Chen
and C. S. Houh studied the fundamental properties of totally real submanifolds in QPy,
and obtained some intrinsic rigidity theorems on scalar curvature and sectional curvature.
In [2], Y. B. Shen obtained some intrinsic rigidity theorems and improved the theorems
in [1].

Let p and |o]|*> denote the scalar curvature and the length square of the second
fundamental form of M respectively, and K, and Q denote the function which assigns
to each point of M the infimum of the sectional curvature and Ricci curvature at that
point respectively. Shen obtained the following:

THEOREM A [2, Th. 2.1]. Let M be an n-dimensional compact totally real minimal
submanifold in the quaternion projective space QP},. If lloll?<(n+ 1)3n+2)c/4(5n+2),
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or equivalently p>(n—2)(5n?+4n+ 1)c/4(5n+2), then either (i) M is totally geodesic in
QPY, or (ii) n=2 and M is a flat surface in QPZ, with the parallel second fundamental
Jform and a parallel normal subbundle of fiber dimension 4.

THEOREM B [2, Th. 3.1]. Let M be an n-dimensional compact totally real minimal
submanifold in QPy,. If K.>(n—2)c/8n, then either (1) M is totally geodesic or (ii) n=2
and M is a flat surface in QP2 with the parallel second fundamental form and a parallel
normal subbundle of fiber dimension 4.

THEOREM C [2, Th. 3.2]. Let M be an n-dimensional compact totally real minimal
submanifold in QP}, withn>4. If Q>(n—2—n"")c/4, then either (i) M is totally geodesic
in QP or (ii) n=4 and M is a locally symmetric Einstein space which is not of constant
curvature.

In this paper, we shall further study the intrinsic rigidity of compact totally real
minimal submanifolds in QP{,,. We obtain the following:

THEOREM 1. Let M be an n-dimensional compact totally real minimal submanifold
in QP If |lo||?<(n+ 1)c/6, or equivalently p>(3n?—5n—2)c/12, then either (i) M is
totally geodesic in QP or (ii)) n=2 and M is a flat surface in QPZ, with the parallel
second fundamental form and a parallel normal subbundle of fiber dimension 4.

THEOREM 2. Let M be an n-dimensional compact totally real minimal submanifold
in QPG If K.>(2n—3)c/20n, then M is totally geodesic in QPy,.

THEOREM 3. Let M be an n-dimensional compact totally real minimal submanifold
in QPG If Q>(2n—3)c/10, then M is totally geodesic in QP¢,.

REMARK. (i) Obviously (n+1)c/6>(n+ 1)(3n+2)c/4(5n+2)(n>2). So Theorem 1
improves Theorem A when n>3.

(1)) (2n—3)c/20n<(n—2)c/8n (n>4). So Theorem 2 improves Theorem B when
n>3S.
@) (2n—3)c/10<(n—2—n"")¢/4 (n>5). So Theorem 3 improves Theorem C
when n> 6. Moreover, it contains the results of n=2, 3 as well.

2. Basic formulas.

We give here a quick review of basic formulas about totally real submanifolds in
a quaternion Kaehler manifold. For details see [1] or [2].

Let QP{, (n>2) be a 4n-dimensional quaternion projective space with constant
quaternion sectional curvature ¢>0, whose almost quaternion structures 7, J and K
satisfy IJ=K, JK=1, KI=J, I>?=J%*=K?= —1. Let M be an n-dimensional totally
real submanifold in QP{,. Choose a field of orthonormal frames e,, ---,e,,
eyy=1Iey, -, exm=1le,, e;qy=Jey, ", e;m=Je, exqy=Ke,, -, exn,=Ke, in QPy,
so that, restricted to M, ey, - - -, e, are tangent to M. With respect to this frame field,
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I, J, K have the following forms:

0 —E 0 O 0 0 —E O
1= E 0 0 O I 0 O 0 E
1o 0o 0 —E |’ “|E o o0 0]
0 0 E O 0 —E 0 O
0 0 0 -—E
0 0 —E O
=loe o o |’
E 0 0 0
where E stands for the identity (n x n)-matrix. The range of indices is as follows: 4, B,
C’...=1,...’n, 1(1)’,I(n)’ J(l),,J(n), K(l)’.,K(n); i,j, k...=1’...,n;
a By, - =IQ), -, I(n), J(1), - -, J(n), K(1), - - -, K(n); ¢=1, J or K.

Let w* and wj be the dual frame field and the connection forms with respect to
the frame field chosen above. Then the structure equations of QP(, are

dot= -~ ofrw?, wf+wt=0,
2.1
1 —
- c

RABCD = Z‘ (5AC63D - 5AD53C + IACIBD + IADIBC + 2IABICD + JACJBD

- JADJBC + 2JABJCD + KACKBD - KADKBC + 2KABKCD) . (2'2)
Restricting to M, we have

P =h§D=hg® . (2.3)

The second fundamental form o of M in QP%, is defined as 6=) hf;0' @ v/ ®e,,
whose length square is [[o[|?=Y, ; (h%)*. The Gauss-Codazzi-Ricci equations of M
in QPy, are

i, j,a
c -4 [ 4 a a
Rijkl‘—"_4— (Oudji—0405)+ > (h% S—hih%) , (2.4)

hix=hg;, (2.5)

c
Ropi=— Uudgr— Lulg+ T pr— T J i
4

+ K Kp — K Kpi) + Z (h&hb—h5h%) . (2.6)
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Suppose M is minimal in QP¢,, i.e. tro =0. From (2.4),
c
Rij=7 (n— 1)5.'1'— Eh?k :j s 2.7
¢ 2
p=7n(n—1)—lldll , (2.8)

where R;; is the Ricci tensor of M. If H* and A denote the (n x n)-matrix (k%) and the
Laplacian on M respectively, the following formula can be found in [1] or [2]: for any
real number a,

1 1
—Z—A(I|GI|2)=IIV0|I2+(1+G) Y hij(hiRuu+hg Rys)+— (1—a)

a,i,j,k,l 2

- Y t(H*H? — HPH? +a Y (tr H*HP)? — % (na—1)|lo|)? . 2.9)
a, B a,f

3. ' Proof of main theorems.

Firstly, from [3] we have

LemMa 3.1 [3, Th.1]. Let A, A,, -, A, be symmetric (nx n)-matrices (p>2).
Denote S,=trA2, S=)_S,. Then

3

I tr(AAp—AgA) — Y (trd,A,)? > -5 S2 3.1

a,p a,p
and the equality holds if and only if one of the following conditions holds: (1) A, =
Ay=---=A4,=0; (2) only two of the matrices Ay, A,, - - -, A, are different from zero.
Moreover, assuming A,#0, A, #0, Ay=---=A,=0, then S; =S, and there exists an
orthogonal (n x n)-matrix T such that

1 0 0 1
0 0

TAth= Sl O —1 , TAZT'= S2 1 O
V 2 o |o V 2 0 |o

where T* denotes the transposed matrix of T.

We can also establish the following lemmas.

LEMMA 3.2. Let M be an n-dimensional totally real minimal submanifold in Q P,.
Then

Y. t(H*H? — HPH*)? > [4Q — (n— 1)c]||o||2 +—4n— Y. [tr(H??12. (.2)
a,p a

ProoF. For a fixed a, let A} be the eigenvalues of the matrix H* and choose {e;}
(tangential part of the frame fields) so that H* is diagonal and hf;=A{. Then we see
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from (2.7) that
Zi(hfk)zs%(n—l)—Q—(Az)z for each k.
ol
Then
—Ztr(H“Hﬂ HH = 3, (W) - 29" <4 IUARCE

p;ea paea

S4; (—3— n—1)-Q —(,1;)2>(/1;)2 =[(n—1)c—4Q] Zkl(li)z —4;(%)4

4 2
< e—401T 01— (u?)

Taking the sum over a, we get (3.2).

LEMMA 3.3. Let M be an n-dimensional totally real submanifold in QPy,. Then
Y u[(HH*H?)*]= 3 (tr H*H)* . (3.3)
a, B a. B

Proor. From (2.3), we get
Zﬁtr[(H")Z(H”)z]= Z R hi bl = Y hEPhEPREDRED

a,p @i, J
l,m,n,k l,m,n .k

= Y hEORgmpempeO = Y (tr H*H?)? .
klm a, B
i,j,l,n

LEMMA 3.4. Let M be an n-dimensional totally real minimal submanifold in Q Py,.
Then

_Y @rH*H?)?> ||a||2(Q —% (n— 1)) . (3.4)
a, B

Proor. Firstly we note that the following formula holds:
Y t(H*Hf — HPH*? = —2 Y {tr[(H*)*(H?)*]—tr(H*H*)*} . 3.5
a, p a, p

Putting a=0 and a=1 in (2.9), we get two equalities. Taking the difference of the

two, and then using (3.5), we have

1 ' n
— Y (trH*H?*= Y, h:f,(hz,Rz,-,-ﬁha-Rzk,-k)——z- Y tr(H*H? — HPH")? Y cllal|?
d,ﬂ a,

a,i, j,k,l

> hii(h& Ry + hi Rycp) + Z {tr[(H*)*(H?)*] - —tr(H*H?)*} —— C"O'“z

a,i, j.k,l
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14

(trH*)?>=0. Moreover, from Lemma 3.3, Za,ﬁtr[(H“)z(H”)z] =Za(zi,j gAEASHERY,)
(note that H% depend on « here). Then, by (2.4), the above becomes:

For each fixed a, choose {e;} as in the proof of Lemma 3.2. Then we see Y ATAY=

1
=Z<—Z(A?—17)2R.-ﬁ,~+ > AIAShERE— Y i?zihé',-hé’,-)—icuauz
2 \2 3j i,j,B i,j.B 4

h
=Z|:_Z('1?)2Rijij_ Z’l”?(Rijij'*‘ %:h?jh?j_ Zhﬁhfj)]—j; cllo|l?
-4 i, J 7]

B

C n
=LY AN*Ry— . AMAT—H{8ubyy—by0y)— - cllo|?
a i a,i, j

C C n
2Q2(4)°~7 2 A+ 2 AN~ clo)?

@i, j 4 o
C n C
=Q||0||2+7 IIGHZ—Z CIIGII2=<Q—7('1—1)) lol?.
LEMMA 3.5. Let M be an n-diménsional totally real submanifold in QPY,,. Then
Zﬂ(trH“H")2+ Zﬁtr(H“Hﬂ)zzo. (3.6)
ProOF. For a fixed a, choose {¢;} again as in the proof of Lemma 3.2. Then
tr[(H*)?(H?)*] + tr(H*H?)* = %; (h8)*(As+A7)2=0.

Taking the sum over f, and then a, and using Lemma 3.3, we get (3.6).
It is also easy to see in [1, p. 194] that

LEMMA 3.6. Let M be an n-dimensional totally real minimal submanifold in QPg,.
Then

Z h?j(hlelijk"'h?llejk)—>—an"0”2 > 3.7
@i Jok, 1
and the equality holds if and only if R;j;=K, for all i, j (i #j)).

PROOF OF THEOREM 1. Putting a= —1 in (2.9), we get
1
5 Alel®)=|Val*+ X tr(H*HF —HPH*? — Y (trH"H”)2+%(n+ Dlal?. (3.8)
a,p a,p
If [lo]|><(n+ 1)c/6, then from (3.8) and Lemma 3.1, we have

1 3 c
— Ao = |IVo|? == lo|* +—(n+1 2
5 (lell*)=1IVell > lall 4( Mall
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=HV6HZ+IIGH"(—%||0’||2+%(n+1)>20- (3.9)

Since M is compact, by Hopf’s lemma, A(||¢||?)=0 and all equalities in (3.9) hold. Thus
we have either ||o||>=0, i.e., M is totally geodesic, or |g|?=(n+ 1)c/6. Moreover, the
equality in (3.1) holds, where A4, in (3.1) should be read as H".

Assume M is not totally geodesic. Then |g||2=(n+1)c/6#0. By Lemma 3.1, we
may assume without loss of generality that

1 0 0 1
0 0
HIO— Y (n+1)c/6 0 -1 T V(n+1)c/6 1 0 l
2 o |o) 2 0 | o

and H*=0 for a# I(1), I(2). Then, as in [4, p. 70], by simple explicit computations, we
sec that n=2. In that case, our theorem coincides with Theorem A since (n+ 1)c/6=
(n+1)3n+2)c/4(5n+2) if n=2, and nothing is left to be proved.

PROOF OF THEOREM 2. Put a=2/3 in (2.9). If K,>(2n—3)c/20n, using firstly (3.5)
and (3.7), and then Lemmas 3.3 and 3.5, we have

1 1
EA(HGHZ)Z Vo +% nkK.|a|? Y > tr[(H*(H?)*]
a B
+i > tr(H*H?)? +-2— Y (tr H*HF)? £ (3 n— 1) o2
3 a, p 3 a, B 4 3
2||V0'Hz+é|la||2[20an—(2n—3)c]20. (3.10)

Then, by Hopf’s lemma again, A(|¢]|?)=0 and all equalities in (3.10) hold. Then we
have either |o||?>=0, i.e., M is totally geodesic, or K ,=(2n—3)c/20n. Moreover, the
equality in (3.7) holds. '

Assume M is not totally geodesic, i.e., K,=(2n—3)c/20n. Then it follows from
Lemma 3.6 that M has constant sectional curvature K, which is positive for n>2. On
the other hand, according to [1, Th. 9], K, cannot be positive, which is a contradiction.
So this case cannot occur, completing the proof.

PROOF OF THEOREM 3. Let Q>(2n—3)c/10. From (3.8), using Lemmas 3.2 and
3.4, we have

4
%A(Ilallz)z IVo|?+[4Q—(n—1)c]lo||? +72 [tr(H")?]?

+||a||2<Q—§(n—1))+§(n+1)||a||2
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- IIVa||2+(5Q—2nZ——36) nan2+%2[tr(H“)212

2||Va|l2+%Ilallz[lOQ—(2n—3)c]20. (3.11)

Then, similarly as before, we have A(|¢||?)=0 and all equalities in (3.11) hold. In par-
ticular, we get ) [tr(H%)*]*=0. Therefore, for every «, tr(H%)?=0. Hence lo||? =
Y tr(H*?= 0,i.e., M is totally geodesicin QP¢,. This completes the proof of Theorem 3.

Give thanks to Professor Wang Xin-min for his kind help. Thanks are also due to
the referee for his kind advice and opinion to this paper.
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