# Totally Real Submanifolds in a Quaternion Projective Space\*

Shichang SHU

Xianyang Teachers' College (Communicated by T. Nagano)

Abstract. In this paper, we will obtain some new intrinsic rigidity theorems of compact totally real minimal submanifolds in a quaternion projective space. So the corresponding results due to B. Y. Chen and C. S. Houh as well as Y. B. Shen are improved.

#### 1. Introduction.

A quaternion Kaehler manifold is defined as a 4m-dimensional Riemannian manifold whose holonomy group is contained in  $Sp(m) \cdot Sp(1)$  with the additional condition for m=1 that it is a self-dual Einstein space. A quaternion projective space  $QP_{(c)}^m$  is a quaternion Kaehler manifold with constant quaternion sectional curvature c>0. A complex projective space  $CP_{(c)}^m$  with constant holomorphic sectional curvature c can be isometrically imbedded in  $QP_{(c)}^m$  as a totally geodesic submanifold. Let M be an n-dimensional Riemannian submanifolds and  $\mathcal{F}: M \to QP_{(c)}^m$  an isometric immersion of M into  $QP_{(c)}^m$ . If each tangent 2-subspace of M is mapped by  $\mathcal{F}$  into a totally real plane of  $QP_{(c)}^m$ , then M is called a totally real submanifold of  $QP_{(c)}^m$ . In [1], B. Y. Chen and C. S. Houh studied the fundamental properties of totally real submanifolds in  $QP_{(c)}^m$  and obtained some intrinsic rigidity theorems on scalar curvature and sectional curvature. In [2], Y. B. Shen obtained some intrinsic rigidity theorems and improved the theorems in [1].

Let  $\rho$  and  $\|\sigma\|^2$  denote the scalar curvature and the length square of the second fundamental form of M respectively, and  $K_c$  and Q denote the function which assigns to each point of M the infimum of the sectional curvature and Ricci curvature at that point respectively. Shen obtained the following:

THEOREM A [2, Th. 2.1]. Let M be an n-dimensional compact totally real minimal submanifold in the quaternion projective space  $QP_{(c)}^n$ . If  $\|\sigma\|^2 \leq (n+1)(3n+2)c/4(5n+2)$ ,

Received February 17, 1995 Revised June 27, 1995

<sup>\*</sup> Project supported by NSFS.

or equivalently  $\rho \ge (n-2)(5n^2+4n+1)c/4(5n+2)$ , then either (i) M is totally geodesic in  $QP_{(c)}^n$  or (ii) n=2 and M is a flat surface in  $QP_{(c)}^2$  with the parallel second fundamental form and a parallel normal subbundle of fiber dimension 4.

THEOREM B [2, Th. 3.1]. Let M be an n-dimensional compact totally real minimal submanifold in  $QP_{(c)}^n$ . If  $K_c \ge (n-2)c/8n$ , then either (i) M is totally geodesic or (ii) n=2 and M is a flat surface in  $QP_{(c)}^2$  with the parallel second fundamental form and a parallel normal subbundle of fiber dimension 4.

THEOREM C [2, Th. 3.2]. Let M be an n-dimensional compact totally real minimal submanifold in  $QP_{(c)}^n$  with  $n \ge 4$ . If  $Q \ge (n-2-n^{-1})c/4$ , then either (i) M is totally geodesic in  $QP_{(c)}^n$  or (ii) n=4 and M is a locally symmetric Einstein space which is not of constant curvature.

In this paper, we shall further study the intrinsic rigidity of compact totally real minimal submanifolds in  $QP_{(c)}^n$ . We obtain the following:

THEOREM 1. Let M be an n-dimensional compact totally real minimal submanifold in  $QP_{(c)}^n$ . If  $\|\sigma\|^2 \le (n+1)c/6$ , or equivalently  $\rho \ge (3n^2-5n-2)c/12$ , then either (i) M is totally geodesic in  $QP_{(c)}^n$  or (ii) n=2 and M is a flat surface in  $QP_{(c)}^2$  with the parallel second fundamental form and a parallel normal subbundle of fiber dimension 4.

THEOREM 2. Let M be an n-dimensional compact totally real minimal submanifold in  $QP_{(c)}^n$ . If  $K_c \ge (2n-3)c/20n$ , then M is totally geodesic in  $QP_{(c)}^n$ .

THEOREM 3. Let M be an n-dimensional compact totally real minimal submanifold in  $QP_{(c)}^n$ . If  $Q \ge (2n-3)c/10$ , then M is totally geodesic in  $QP_{(c)}^n$ .

REMARK. (i) Obviously (n+1)c/6 > (n+1)(3n+2)c/4(5n+2) (n>2). So Theorem 1 improves Theorem A when  $n \ge 3$ .

- (ii) (2n-3)c/20n < (n-2)c/8n (n>4). So Theorem 2 improves Theorem B when  $n \ge 5$ .
- (iii)  $(2n-3)c/10 < (n-2-n^{-1})c/4$  (n>5). So Theorem 3 improves Theorem C when  $n \ge 6$ . Moreover, it contains the results of n=2, 3 as well.

## 2. Basic formulas.

We give here a quick review of basic formulas about totally real submanifolds in a quaternion Kaehler manifold. For details see [1] or [2].

Let  $QP_{(c)}^n$   $(n \ge 2)$  be a 4*n*-dimensional quaternion projective space with constant quaternion sectional curvature c > 0, whose almost quaternion structures I, J and K satisfy IJ = K, JK = I, KI = J,  $I^2 = J^2 = K^2 = -1$ . Let M be an n-dimensional totally real submanifold in  $QP_{(c)}^n$ . Choose a field of orthonormal frames  $e_1, \dots, e_n$ ,  $e_{I(1)} = Ie_1, \dots, e_{I(n)} = Ie_n, e_{J(1)} = Je_1, \dots, e_{J(n)} = Je_n, e_{K(1)} = Ke_1, \dots, e_{K(n)} = Ke_n$  in  $QP_{(c)}^n$  so that, restricted to M,  $e_1, \dots, e_n$  are tangent to M. With respect to this frame field,

I, J, K have the following forms:

$$I = \begin{pmatrix} 0 & -E & 0 & 0 \\ E & 0 & 0 & 0 \\ 0 & 0 & 0 & -E \\ 0 & 0 & E & 0 \end{pmatrix}, \qquad J = \begin{pmatrix} 0 & 0 & -E & 0 \\ 0 & 0 & 0 & E \\ E & 0 & 0 & 0 \\ 0 & -E & 0 & 0 \end{pmatrix},$$

$$K = \begin{pmatrix} 0 & 0 & 0 & -E \\ 0 & 0 & -E & 0 \\ 0 & E & 0 & 0 \\ E & 0 & 0 & 0 \end{pmatrix},$$

where E stands for the identity  $(n \times n)$ -matrix. The range of indices is as follows: A, B,  $C, \dots = 1, \dots, n$ ,  $I(1), \dots, I(n), J(1), \dots, J(n), K(1), \dots, K(n)$ ; i, j,  $k \dots = 1, \dots, n$ ;  $\alpha, \beta, \gamma, \dots = I(1), \dots, I(n), J(1), \dots, J(n), K(1), \dots, K(n)$ ;  $\varphi = I, J$  or K.

Let  $\omega^A$  and  $\omega_B^A$  be the dual frame field and the connection forms with respect to the frame field chosen above. Then the structure equations of  $QP_{(c)}^n$  are

$$d\omega^{A} = -\sum \omega_{B}^{A} \wedge \omega^{B}, \qquad \omega_{B}^{A} + \omega_{A}^{B} = 0,$$

$$d\omega_{B}^{A} = -\sum \omega_{C}^{A} \wedge \omega_{B}^{C} + \frac{1}{2} \sum \bar{R}_{ABCD} \omega^{C} \wedge \omega^{D},$$
(2.1)

$$\bar{R}_{ABCD} = \frac{c}{4} (\delta_{AC} \delta_{BD} - \delta_{AD} \delta_{BC} + I_{AC} I_{BD} + I_{AD} I_{BC} + 2I_{AB} I_{CD} + J_{AC} J_{BD} 
- J_{AD} J_{BC} + 2J_{AB} J_{CD} + K_{AC} K_{BD} - K_{AD} K_{BC} + 2K_{AB} K_{CD}) .$$
(2.2)

Restricting to M, we have

$$\omega^{\alpha} = 0 , \quad \omega_{i}^{\alpha} = \sum h_{ij}^{\alpha} \omega^{j} , \quad h_{ij}^{\alpha} = h_{ji}^{\alpha} ,$$

$$h_{ik}^{\varphi(i)} = h_{ki}^{\varphi(j)} = h_{ij}^{\varphi(k)} . \tag{2.3}$$

The second fundamental form  $\sigma$  of M in  $QP_{(c)}^n$  is defined as  $\sigma = \sum h_{ij}^\alpha \omega^i \otimes \omega^j \otimes e_\alpha$ , whose length square is  $\|\sigma\|^2 = \sum_{i,j,\alpha} (h_{ij}^\alpha)^2$ . The Gauss-Codazzi-Ricci equations of M in  $QP_{(c)}^n$  are

$$R_{ijkl} = \frac{c}{4} \left( \delta_{ik} \delta_{jl} - \delta_{il} \delta_{jk} \right) + \sum_{\alpha} \left( h_{ik}^{\alpha} h_{jl}^{\alpha} - h_{il}^{\alpha} h_{jk}^{\alpha} \right), \qquad (2.4)$$

$$h_{ijk}^{\alpha} = h_{ikj}^{\alpha} , \qquad (2.5)$$

$$R_{\alpha\beta kl} = \frac{c}{4} \left( I_{\alpha k} I_{\beta l} - I_{\alpha l} I_{\beta k} + J_{\alpha k} J_{\beta l} - J_{\alpha l} J_{\beta k} + K_{\alpha k} K_{\beta l} - K_{\alpha l} K_{\beta k} \right) + \sum_{i} \left( h_{ik}^{\alpha} h_{il}^{\beta} - h_{il}^{\alpha} h_{ik}^{\beta} \right).$$
 (2.6)

Suppose M is minimal in  $QP_{(c)}^n$ , i.e.  $tr \sigma = 0$ . From (2.4),

$$R_{ij} = \frac{c}{4} (n-1)\delta_{ij} - \sum_{\alpha,k} h_{ik}^{\alpha} h_{kj}^{\alpha}, \qquad (2.7)$$

$$\rho = \frac{c}{4} n(n-1) - \|\sigma\|^2, \qquad (2.8)$$

where  $R_{ij}$  is the Ricci tensor of M. If  $H^{\alpha}$  and  $\Delta$  denote the  $(n \times n)$ -matrix  $(h_{ij}^{\alpha})$  and the Laplacian on M respectively, the following formula can be found in [1] or [2]: for any real number a,

$$\frac{1}{2} \Delta(\|\sigma\|^{2}) = \|\nabla\sigma\|^{2} + (1+a) \sum_{\alpha,i,j,k,l} h_{ij}^{\alpha}(h_{kl}^{\alpha}R_{lijk} + h_{il}^{\alpha}R_{lkjk}) + \frac{1}{2} (1-a)$$

$$\cdot \sum_{\alpha,\beta} \operatorname{tr}(H^{\alpha}H^{\beta} - H^{\beta}H^{\alpha})^{2} + a \sum_{\alpha,\beta} (\operatorname{tr}H^{\alpha}H^{\beta})^{2} - \frac{c}{4} (na-1)\|\sigma\|^{2} . \tag{2.9}$$

#### 3. Proof of main theorems.

Firstly, from [3] we have

LEMMA 3.1 [3, Th.1]. Let  $A_1$   $A_2$ ,  $\cdots$ ,  $A_p$  be symmetric  $(n \times n)$ -matrices  $(p \ge 2)$ . Denote  $S_a = \operatorname{tr} A_a^2$ ,  $S = \sum_{\alpha} S_{\alpha}$ . Then

$$\sum_{\alpha,\beta} \operatorname{tr}(A_{\alpha}A_{\beta} - A_{\beta}A_{\alpha})^{2} - \sum_{\alpha,\beta} (\operatorname{tr}A_{\alpha}A_{\beta})^{2} \ge -\frac{3}{2} S^{2}$$
(3.1)

and the equality holds if and only if one of the following conditions holds: (1)  $A_1 = A_2 = \cdots = A_p = 0$ ; (2) only two of the matrices  $A_1, A_2, \cdots, A_p$  are different from zero. Moreover, assuming  $A_1 \neq 0$ ,  $A_2 \neq 0$ ,  $A_3 = \cdots = A_p = 0$ , then  $S_1 = S_2$  and there exists an orthogonal  $(n \times n)$ -matrix T such that

$$TA_1T^t = \sqrt{\frac{S_1}{2}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ \hline 0 & 0 & 0 \end{pmatrix}, \qquad TA_2T^t = \sqrt{\frac{S_2}{2}} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ \hline 0 & 0 & 0 \end{pmatrix},$$

where  $T^t$  denotes the transposed matrix of T.

We can also establish the following lemmas.

LEMMA 3.2. Let M be an n-dimensional totally real minimal submanifold in  $QP_{(c)}^n$ . Then

$$\sum_{\alpha,\beta} \operatorname{tr}(H^{\alpha}H^{\beta} - H^{\beta}H^{\alpha})^{2} \ge [4Q - (n-1)c] \|\sigma\|^{2} + \frac{4}{n} \sum_{\alpha} [\operatorname{tr}(H^{\alpha})^{2}]^{2}.$$
 (3.2)

PROOF. For a fixed  $\alpha$ , let  $\lambda_i^{\alpha}$  be the eigenvalues of the matrix  $H^{\alpha}$  and choose  $\{e_i\}$  (tangential part of the frame fields) so that  $H^{\alpha}$  is diagonal and  $h_{ii}^{\alpha} = \lambda_i^{\alpha}$ . Then we see

from (2.7) that

$$\sum_{\substack{i\\\beta\neq\alpha}} (h_{ik}^{\beta})^2 \le \frac{c}{4} (n-1) - Q - (\lambda_k^{\alpha})^2 \quad \text{for each} \quad k.$$

Then

$$\begin{split} -\sum_{\beta} \operatorname{tr}(H^{\alpha}H^{\beta} - H^{\beta}H^{\alpha})^{2} &= \sum_{\substack{i,k \\ \beta \neq \alpha}} (h^{\beta}_{ik})^{2} (\lambda^{\alpha}_{i} - \lambda^{\alpha}_{k})^{2} \leq 4 \sum_{\substack{i,k \\ \beta \neq \alpha}} (h^{\beta}_{ik})^{2} (\lambda^{\alpha}_{k})^{2} \\ &\leq 4 \sum_{k} \left( \frac{c}{4} (n-1) - Q - (\lambda^{\alpha}_{k})^{2} \right) (\lambda^{\alpha}_{k})^{2} = \left[ (n-1)c - 4Q \right] \sum_{k} (\lambda^{\alpha}_{k})^{2} - 4 \sum_{k} (\lambda^{\alpha}_{k})^{4} \\ &\leq \left[ (n-1)c - 4Q \right] \sum_{k} (\lambda^{\alpha}_{k})^{2} - \frac{4}{n} \left( \sum_{k} (\lambda^{\alpha}_{k})^{2} \right)^{2}. \end{split}$$

Taking the sum over  $\alpha$ , we get (3.2).

LEMMA 3.3. Let M be an n-dimensional totally real submanifold in  $QP_{(c)}^n$ . Then

$$\sum_{\alpha,\beta} \operatorname{tr}[(H^{\alpha})^{2}(H^{\beta})^{2}] = \sum_{\alpha,\beta} (\operatorname{tr} H^{\alpha} H^{\beta})^{2}. \tag{3.3}$$

Proof. From (2.3), we get

$$\begin{split} \sum_{\alpha,\beta} \text{tr}[(H^{\alpha})^{2}(H^{\beta})^{2}] &= \sum_{\substack{\alpha,\beta\\l,m,n,k}} h_{kl}^{\alpha} h_{lm}^{\beta} h_{nk}^{\beta} = \sum_{\substack{\varphi,i,j\\l,m,n,k}} h_{kl}^{\varphi(i)} h_{lm}^{\varphi(i)} h_{nk}^{\varphi(j)} h_{nk}^{\varphi(j)} \\ &= \sum_{\substack{\varphi,k,m\\i,j,l,n}} h_{il}^{\varphi(k)} h_{li}^{\varphi(m)} h_{jn}^{\varphi(m)} h_{nj}^{\varphi(k)} = \sum_{\alpha,\beta} (\text{tr} H^{\alpha} H^{\beta})^{2} . \end{split}$$

LEMMA 3.4. Let M be an n-dimensional totally real minimal submanifold in  $QP_{(c)}^n$ . Then

$$-\sum_{\alpha,\beta} (\operatorname{tr} H^{\alpha} H^{\beta})^{2} \ge \|\sigma\|^{2} \left( Q - \frac{c}{4} (n-1) \right). \tag{3.4}$$

PROOF. Firstly we note that the following formula holds:

$$\sum_{\alpha,\beta} \operatorname{tr}(H^{\alpha}H^{\beta} - H^{\beta}H^{\alpha})^{2} = -2\sum_{\alpha,\beta} \left\{ \operatorname{tr}[(H^{\alpha})^{2}(H^{\beta})^{2}] - \operatorname{tr}(H^{\alpha}H^{\beta})^{2} \right\}. \tag{3.5}$$

Putting a=0 and a=1 in (2.9), we get two equalities. Taking the difference of the two, and then using (3.5), we have

$$-\sum_{\alpha,\beta} (\operatorname{tr} H^{\alpha} H^{\beta})^{2} = \sum_{\alpha,i,j,k,l} h_{ij}^{\alpha} (h_{kl}^{\alpha} R_{lijk} + h_{li}^{\alpha} R_{lkjk}) - \frac{1}{2} \sum_{\alpha,\beta} \operatorname{tr} (H^{\alpha} H^{\beta} - H^{\beta} H^{\alpha})^{2} - \frac{n}{4} c \|\sigma\|^{2}$$

$$= \sum_{\alpha,i,j,k,l} h_{ij}^{\alpha} (h_{kl}^{\alpha} R_{lijk} + h_{li}^{\alpha} R_{lkjk}) + \sum_{\alpha,\beta} \left\{ \operatorname{tr} [(H^{\alpha})^{2} (H^{\beta})^{2}] - \operatorname{tr} (H^{\alpha} H^{\beta})^{2} \right\} - \frac{n}{4} c \|\sigma\|^{2}.$$

For each fixed  $\alpha$ , choose  $\{e_i\}$  as in the proof of Lemma 3.2. Then we see  $\sum_{i,j} \lambda_i^{\alpha} \lambda_j^{\alpha} = (\operatorname{tr} H^{\alpha})^2 = 0$ . Moreover, from Lemma 3.3,  $\sum_{\alpha,\beta} \operatorname{tr}[(H^{\alpha})^2 (H^{\beta})^2] = \sum_{\alpha} (\sum_{i,j,\beta} \lambda_i^{\alpha} \lambda_j^{\alpha} h_{ii}^{\beta} h_{jj}^{\beta})$  (note that  $H_{ij}^{\beta}$  depend on  $\alpha$  here). Then, by (2.4), the above becomes:

$$\begin{split} &= \sum_{\alpha} \left( \frac{1}{2} \sum_{i,j} (\lambda_i^{\alpha} - \lambda_j^{\alpha})^2 R_{ijij} + \sum_{i,j,\beta} \lambda_i^{\alpha} \lambda_j^{\alpha} h_{ii}^{\beta} h_{jj}^{\beta} - \sum_{i,j,\beta} \lambda_i^{\alpha} \lambda_j^{\alpha} h_{ij}^{\beta} h_{ij}^{\beta} \right) - \frac{n}{4} c \|\sigma\|^2 \\ &= \sum_{\alpha} \left[ \sum_{i,j} (\lambda_i^{\alpha})^2 R_{ijij} - \sum_{i,j} \lambda_i^{\alpha} \lambda_j^{\alpha} \left( R_{ijij} + \sum_{\beta} h_{ij}^{\beta} h_{ij}^{\beta} - \sum_{\beta} h_{ii}^{\beta} h_{jj}^{\beta} \right) \right] - \frac{n}{4} c \|\sigma\|^2 \\ &= \sum_{\alpha} \sum_{i} (\lambda_i^{\alpha})^2 R_{ii} - \sum_{\alpha,i,j} \lambda_i^{\alpha} \lambda_j^{\alpha} \frac{c}{4} (\delta_{ii} \delta_{jj} - \delta_{ij} \delta_{ij}) - \frac{n}{4} c \|\sigma\|^2 \\ &\geq Q \sum_{\alpha,i} (\lambda_i^{\alpha})^2 - \frac{c}{4} \sum_{\alpha,i,j} \lambda_i^{\alpha} \lambda_j^{\alpha} + \frac{c}{4} \sum_{\alpha,i} (\lambda_i^{\alpha})^2 - \frac{n}{4} c \|\sigma\|^2 \\ &= Q \|\sigma\|^2 + \frac{c}{4} \|\sigma\|^2 - \frac{n}{4} c \|\sigma\|^2 = \left( Q - \frac{c}{4} (n-1) \right) \|\sigma\|^2 \;. \end{split}$$

LEMMA 3.5. Let M be an n-dimensional totally real submanifold in  $QP_{(c)}^n$ . Then

$$\sum_{\alpha,\beta} (\operatorname{tr} H^{\alpha} H^{\beta})^{2} + \sum_{\alpha,\beta} \operatorname{tr} (H^{\alpha} H^{\beta})^{2} \ge 0.$$
 (3.6)

**PROOF.** For a fixed  $\alpha$ , choose  $\{e_i\}$  again as in the proof of Lemma 3.2. Then

$$\operatorname{tr}[(H^{\alpha})^{2}(H^{\beta})^{2}] + \operatorname{tr}(H^{\alpha}H^{\beta})^{2} = \frac{1}{2} \sum_{k,l} (h_{kl}^{\beta})^{2} (\lambda_{k}^{\alpha} + \lambda_{l}^{\alpha})^{2} \ge 0$$
.

Taking the sum over  $\beta$ , and then  $\alpha$ , and using Lemma 3.3, we get (3.6).

It is also easy to see in [1, p. 194] that

LEMMA 3.6. Let M be an n-dimensional totally real minimal submanifold in  $QP_{(c)}^n$ . Then

$$\sum_{\alpha, i, j, k, l} h_{ij}^{\alpha}(h_{kl}^{\alpha} R_{lijk} + h_{il}^{\alpha} R_{lkjk}) \ge nK_c \|\sigma\|^2 , \qquad (3.7)$$

and the equality holds if and only if  $R_{iii} = K_c$  for all  $i, j \ (i \neq j)$ .

PROOF OF THEOREM 1. Putting a = -1 in (2.9), we get

$$\frac{1}{2} \Delta(\|\sigma\|^2) = \|\nabla\sigma\|^2 + \sum_{\alpha,\beta} \operatorname{tr}(H^{\alpha}H^{\beta} - H^{\beta}H^{\alpha})^2 - \sum_{\alpha,\beta} (\operatorname{tr}H^{\alpha}H^{\beta})^2 + \frac{c}{4}(n+1)\|\sigma\|^2 . \quad (3.8)$$

If  $\|\sigma\|^2 \le (n+1)c/6$ , then from (3.8) and Lemma 3.1, we have

$$\frac{1}{2} \Delta(\|\sigma\|^2) \ge \|\nabla\sigma\|^2 - \frac{3}{2} \|\sigma\|^4 + \frac{c}{4} (n+1) \|\sigma\|^2$$

$$= \|\nabla \sigma\|^2 + \|\sigma\|^2 \left( -\frac{3}{2} \|\sigma\|^2 + \frac{c}{4} (n+1) \right) \ge 0.$$
 (3.9)

Since M is compact, by Hopf's lemma,  $\Delta(\|\sigma\|^2) = 0$  and all equalities in (3.9) hold. Thus we have either  $\|\sigma\|^2 = 0$ , i.e., M is totally geodesic, or  $\|\sigma\|^2 = (n+1)c/6$ . Moreover, the equality in (3.1) holds, where  $A_{\alpha}$  in (3.1) should be read as  $H^{\alpha}$ .

Assume M is not totally geodesic. Then  $\|\sigma\|^2 = (n+1)c/6 \neq 0$ . By Lemma 3.1, we may assume without loss of generality that

$$H^{I(1)} = \frac{\sqrt{(n+1)c/6}}{2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ \hline 0 & 0 & 0 \end{pmatrix}, \qquad H^{I(2)} = \frac{\sqrt{(n+1)c/6}}{2} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ \hline 0 & 0 & 0 \end{pmatrix}$$

and  $H^{\alpha} = 0$  for  $\alpha \neq I(1)$ , I(2). Then, as in [4, p. 70], by simple explicit computations, we see that n = 2. In that case, our theorem coincides with Theorem A since (n+1)c/6 = (n+1)(3n+2)c/4(5n+2) if n = 2, and nothing is left to be proved.

PROOF OF THEOREM 2. Put a=2/3 in (2.9). If  $K_c \ge (2n-3)c/20n$ , using firstly (3.5) and (3.7), and then Lemmas 3.3 and 3.5, we have

$$\frac{1}{2} \Delta(\|\sigma\|^{2}) \ge \|\nabla\sigma\|^{2} + \frac{5}{3} nK_{c}\|\sigma\|^{2} - \frac{1}{3} \sum_{\alpha,\beta} \operatorname{tr}[(H^{\alpha})^{2}(H^{\beta})^{2}] 
+ \frac{1}{3} \sum_{\alpha,\beta} \operatorname{tr}(H^{\alpha}H^{\beta})^{2} + \frac{2}{3} \sum_{\alpha,\beta} (\operatorname{tr}H^{\alpha}H^{\beta})^{2} - \frac{c}{4} \left(\frac{2}{3} n - 1\right) \|\sigma\|^{2} 
\ge \|\nabla\sigma\|^{2} + \frac{1}{12} \|\sigma\|^{2} [20nK_{c} - (2n - 3)c] \ge 0.$$
(3.10)

Then, by Hopf's lemma again,  $\Delta(\|\sigma\|^2)=0$  and all equalities in (3.10) hold. Then we have either  $\|\sigma\|^2=0$ , i.e., M is totally geodesic, or  $K_c=(2n-3)c/20n$ . Moreover, the equality in (3.7) holds.

Assume M is not totally geodesic, i.e.,  $K_c = (2n-3)c/20n$ . Then it follows from Lemma 3.6 that M has constant sectional curvature  $K_c$  which is positive for  $n \ge 2$ . On the other hand, according to [1, Th. 9],  $K_c$  cannot be positive, which is a contradiction. So this case cannot occur, completing the proof.

PROOF OF THEOREM 3. Let  $Q \ge (2n-3)c/10$ . From (3.8), using Lemmas 3.2 and 3.4, we have

$$\frac{1}{2} \Delta(\|\sigma\|^2) \ge \|\nabla\sigma\|^2 + [4Q - (n-1)c] \|\sigma\|^2 + \frac{4}{n} \sum_{\alpha} [\operatorname{tr}(H^{\alpha})^2]^2 + \|\sigma\|^2 \left(Q - \frac{c}{4}(n-1)\right) + \frac{c}{4}(n+1) \|\sigma\|^2$$

$$= \|\nabla \sigma\|^{2} + \left(5Q - \frac{2n-3}{2}c\right)\|\sigma\|^{2} + \frac{4}{n}\sum_{\alpha}\left[\operatorname{tr}(H^{\alpha})^{2}\right]^{2}$$

$$\geq \|\nabla \sigma\|^{2} + \frac{1}{2}\|\sigma\|^{2}\left[10Q - (2n-3)c\right] \geq 0. \tag{3.11}$$

Then, similarly as before, we have  $\Delta(\|\sigma\|^2) = 0$  and all equalities in (3.11) hold. In particular, we get  $\sum_{\alpha} [\operatorname{tr}(H^{\alpha})^2]^2 = 0$ . Therefore, for every  $\alpha$ ,  $\operatorname{tr}(H^{\alpha})^2 = 0$ . Hence  $\|\sigma\|^2 = \sum_{\alpha} \operatorname{tr}(H^{\alpha})^2 = 0$ , i.e., M is totally geodesic in  $QP_{(c)}^n$ . This completes the proof of Theorem 3.

Give thanks to Professor Wang Xin-min for his kind help. Thanks are also due to the referee for his kind advice and opinion to this paper.

### References

- [1] B. Y. CHEN and C. S. HOUH, Totally real submanifolds of a quaternion projective space, Ann. Math. Pure Appl. 120 (1979), 185-199.
- [2] Y. B. Shen, Totally real minimal submanifolds in a quaternion projective space, Chinese Ann. Math. 14B (1993), 297-306.
- [3] A. Li and J. Li, An intrinsic rigidity theorem for minimal submanifolds in a sphere, Arch. Math. 58 (1992), 582-594.
- [4] S. S. CHERN, M. DOCARMO and S. KOBAYASHI, Minimal submanifolds of a sphere with second fundamental form of constant length, Functional Analysis and Related Fields, Springer (1970), 59-75.
- [5] Т. Ітон, On Veronese manifolds, J. Math. Soc. Japan 27 (1975), 497-506.
- [6] S. ISHIHARA, Quaternion Kaehlerian manifolds, J. Differential Geometry 9 (1974), 483-500.

Present Address:

DEPARTMENT OF MATHEMATICS, XIANYANG TEACHERS' COLLEGE, XIANYANG, SHAANXI 712000, P. R. CHINA.