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Abstract. This paper is a continuation of the previous paper [Ta] where we studied local static bifurca-
tion theory for a class of degenerate boundary value problems for semilinear second-order elliptic differential
operators which includes as particular cases the Dirichlet and Neumann problems. This paper is devoted to
global static bifurcation theory.

Introduction and results.

Let $D$ be a bounded domain of Euclidean space $R^{N},$ $N\geq 2$ , with $C^{\infty}$ boundary $\partial D$ ;
its closure $\overline{D}=D\cup\partial D$ is an n-dimensional, compact $C^{\infty}$ manifold with boundary. We
let

Au $(x)=-\sum_{i=1}^{N}\frac{\partial}{\partial x_{i}}(\sum_{j=1}^{N}a^{ij}(x)\frac{\partial u}{\partial x_{j}}(x))+c(x)u(x)$

be a second-order, elliptic differential operator with real $C^{\infty}$ coefficients on $\overline{D}$ such that:
1) $a^{ij}(x)=a^{ji}(x),$ $x\in\overline{D},$ $1\leq i,j\leq N$, and there exists a constant $a_{0}>0$ such that

$\sum_{i,j=1}^{N}a^{ij}(x)\xi_{i}\xi_{j}\geq a_{O}|\xi|^{2}$ , $x\in\overline{D},$ $\xi\in R^{N}$ .

2) $c(x)\geq 0$ on $\overline{D}$ .
We consider the following linear elliptic boundary value problem: Given function

$f$ defined in $D$ , find a function $u$ in $D$ such that

$(^{*})$
$\left\{\begin{array}{ll}Au=f & in D,\\Bu=a\frac{\partial u}{\partial v}+bu=0 & on \partial D.\end{array}\right.$

Here:
1) $a\in C^{\infty}(\partial D)$ and $a\geq 0$ on $\partial D$ .
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2) $b\in C^{\infty}(\partial D)$ and $b\geq 0$ on $\partial D$ .
3) $\partial/\partial v$ is the conormal derivative associated with the operator $A:\partial/\partial v=$

$\sum_{i,j=1}^{N}a^{ij}n_{j}\partial/\partial x_{i}$ , where $n=(n_{1}, n_{2}, \cdots, n_{N})$ is the unit exterior normal to the boundary
$\partial D$ .

It is worth pointing out here that problem $(^{*})$ is nondegenerate (or coercive) if and
only if either $a>0$ on $\partial D$ or $a\equiv 0$ and $b>0$ on $\partial D$ . In particular, if $a\equiv 1$ and $b\equiv 0$ on
$\partial D$ (resp. $a\equiv 0$ and $b\equiv 1$ on $\partial D$), then the boundary condition $L$ is the so-called Neumann
(resp. Dirichlet) condition.

First we study problem $(^{*})$ in the framework of $L^{2}$ spaces. To do so, we associate
with problem $(^{*})$ an unbounded linear operator $\mathscr{A}$ from the Hilbert space $L^{2}(D)$

into itself as follows:
(a) The domain of definition $D(\mathscr{A})$ of $\mathscr{A}$ is the space

$D(\mathscr{A})=$ { $u\in H^{2}(D);Bu=0$ on $\partial D$}.

(b) $\mathscr{A}u=Au,$ $u\in D(\mathscr{A})$ .
Our starting point is the following (cf. [Ta, Theorem 1]):

THEOREM $0$ . Assume that the following hypotheses (H1) and (H2) are satisfied:
(H1) $b(x^{\prime})>0$ on $M=\{x^{\prime}\in\partial D;a(x^{\prime})=0\}$ .
(H2) $c(x)>0$ in $D$ .
Then the operator $\mathscr{A}$ is a nonnegative, selfadjoint operator in the space $L^{2}(D)$ .

Moreover, the spectrum of $\mathscr{A}$ is discrete and the eigenvalues of $\mathscr{A}$ havefinite multiplicities.
In particular, the first eigenvalue $\lambda_{1}$ of $\mathscr{A}$ is positive and simple, and the associated
eigenfunction $\varphi_{1}$ is positive everywhere in $D$ .

Now, as an application of Theorem $0$ , we consider global static bifurcation prob-
lems for the following nonlinear elliptic boundary value problem:

$(^{**})$
$\left\{\begin{array}{l}Au-\lambda u+h(u)=0\\Bu=a\frac{\partial u}{\partial v}+bu=0\end{array}\right.$

$inon$ $D\partial D$

.

Here $\lambda$ is a real parameter and $h(t)$ is a real-valued function on $R$ , not depending
explicitly on $x$ .

A solution $u\in C^{2}(\overline{D})$ of problem $(^{**})$ is said to be nontrivial if it does not identically
equal zero on $\overline{D}$ . We call a nontrivial solution $u$ of problem $(^{**})$ a positive solution
(resp. negative solution) if $u(x)\geq 0$ (resp. $u(x)\leq 0$) on $\overline{D}$ .

By using the bifurcation theory from a simple eigenvalue due to Crandall and
Rabinowitz [CR], we can prove that there exist precisely two nontrivial branches of
solutions of problem $(^{**})$ bifurcating at the point $(\lambda_{1},0)$ where $\lambda_{1}$ is the first eigenvalue
of $\mathscr{A}$ (cf. [Ta, Theorem 3]). The forthcoming two theorems characterize them globally.

The first theorem is a generalization of Szulkin [Sz, Theorem 1.3] to the degenerate
case:
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THEOREM 1. Let $\lambda_{1}$ be the first eigenvalue of $\mathscr{A}$ , and let $h$ be a function of class
$C^{1}$ on $R$ such that $h(O)=0$ and $h^{\prime}(O)=0$ . Assume that the derivative $h^{\prime}$ is strictly decreasing
for $t<0$ and strictly increasing for $t>0$ , and that there exist constants $k_{-}>0$ and $k_{+}>0$

such that

$\lim_{t\rightarrow-\infty}h^{\prime}(t)=k_{-}$ , $\lim_{t\rightarrow+\infty}h^{\prime}(t)=k_{+}$ .

Then the point $(\lambda_{1},0)$ is a $b\iota furcation$ point ofproblem $(^{**})$ . More precisely, the set

ofnontrivial solutions ofproblem $(^{**})$ consists of two $C^{1}$ curves F-and $\Gamma_{+}$ parametrized
respectively by $\lambda$ as follows (cf. Figure 1):

$\Gamma_{-=}\{(\lambda, u_{-}(\lambda))\in R\times C(\overline{D}) ; \lambda_{1}\leq\lambda<\lambda_{1}+k_{-}\}$ ,

$\Gamma_{+}=\{(\lambda, u_{+}(\lambda))\in R\times C(\overline{D}) ; \lambda_{1}\leq\lambda<\lambda_{1}+k_{+}\}$ .
The branch $\Gamma_{-}$ is negative and the branch $\Gamma_{+}$ is positive except at $(\lambda_{1},0)$ , and the uniform
norms $\Vert u_{-}(\lambda)\Vert$ and $\Vert u_{+}(\lambda)\Vert$ tend to $\infty$ as $\lambda\rightarrow\lambda_{1}+k_{-}$ and as $\lambda\rightarrow\lambda_{1}+k_{+}$ , respectively.
Furthermore, problem $(^{**})$ has no other positive or negative solutions for all $\lambda\geq\lambda_{1}$ .

FIGURE 1

EXAMPLE 1. For Theorem 1, we give an example of the function $h(t)$ :

$h(t)=\left\{\begin{array}{ll}k_{+}(t+1/(2t)-4/3) & for t>1 ,\\(k_{+}/6)t^{3} & for 0\leq t\leq 1 ,\\(k_{-}/6)t^{3} & for -1\leq t\leq 0 ,\\k_{-}(t+1/(2t)+4/3) & for t<-1.\end{array}\right.$

The second theorem asserts that if the function $h$ is bounded, then the bifurcation
curves “turn back” towards $\lambda_{1}$ . More precisely, we have the following generalization
of [Sz, Theorem 5.2] to the degenerate case:

THEOREM 2. Let $\lambda_{1},$ $\lambda_{2}$ be the first and second eigenvalues of $\mathscr{A}$ , respectively, and
let $h$ be a function of class $C^{1}$ on $R$ such that $h(O)=0$ and $h^{\prime}(O)=0$ . Assume that $h$ is
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bounded and that there exists a constant $k>0$ such that

$0\leq h^{\prime}(t)\leq k<\lambda_{2}-\lambda_{1}$ for all $t\in R$ .

Then the set of nontrivial solutions ofproblem $(^{**})$ , bifurcating at $(\lambda_{1},0)$ , consists of
two $C^{1}$ branches $\Gamma_{1}$ and $\Gamma_{2}$ . The branches $\Gamma_{1}$ and $\Gamma_{2}$ may be parametrized respectively
by $s$ as follows (cf. Figure 2):

$\Gamma_{1}=\{(\lambda^{1}(s), u^{1}(s))\in R\times C(\overline{D}) ; 0\leq s<\infty\}$ ,

$\Gamma_{2}=\{(\lambda^{2}(s), u^{2}(s))\in R\times C(\overline{D}) ; 0\leq s<\infty\}$ .

Here $(\lambda^{i}(0), u^{i}(0))=(\lambda_{1},0)$ and $\lambda^{i}(s)\rightarrow\lambda_{1}$ as $s\rightarrow\infty(i=1,2)$ .

FIGURE 2

EXAMPLE 2. For Theorem 2, we give an example of the function $h(t)$ :

$h(t)=\left\{\begin{array}{ll}k(-1/(2t)+2/3) & for t>1 ,\\(k/6)t^{3} & for -1\leq t\leq 1 ,\\k(-1/(2t)-2/3) & for t<-1.\end{array}\right.$

The rest of this paper is organized as follows. In Section 1 we give an existence
and uniqueness theorem for problem $(^{*})$ in the framework of Sobolev spaces of $L^{p}$ style
(Theorem 1.1) which will play an essential role in the proof of Theorem 1. In Section
2 we study problem $(^{**})$ and prove Theorems 1 and 2. Problem $(^{**})$ is reduced to the
study of an operator equation for the resolvent $K$ of problem $(^{*})$ (equation (2.1)). This
equation is solved by using the theory of positive mappings in ordered Banach spaces
(cf. [Am2], [Da]), just as in [Sz]. The essential step in the proof is Proposition 2.2
where the compactness and strong positivity of $K$ are proved.

A part of the work was done at International Centre for Mathematical Sciences
(Edinburgh, Scotland) in July 1994 while the first author was participating in the
workshop ”Elliptic Partial Differential Equations and Related Areas of Harmonic
Analysis”. He would like to thank International Centre for Mathematical Sciences for
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1. Existence and uniqueness theorem for problem $(^{*})$ .
We study problem $(^{*})$ in the framework of Sobolev spaces of $L_{p}$ style. If $k$ is a

nonnegative integer and $ 1<p<\infty$ , we define the Sobolev space

$H^{k,p}(D)=the$ space of (equivalence classes of) functions
$u\in L^{p}(D)$ whose derivatives $D^{\alpha}u,$ $|\alpha|\leq k$, in the
sense of distributions are in $L^{p}(D)$ .

Then we can obtain the following existence and uniqueness theorem for problem
$(^{*})$ (cf. [Um, Theorem 1]):

THEOREM 1.1. If hypotheses (H1) and (H2) are satisfied, then the mapping

$A:H_{B}^{k,p}(D)\rightarrow H^{k-2,p}(D)$

is an algebraic and topological isomorphism for all integer $k\geq 2$ . Here

$H_{B}^{k,p}(D)=$ { $u\in H^{k,p}(D);Bu=0$ on $\partial D$}.

2. Proof of Theorems 1 and 2.

2.1. Reduction to an operator equation. By Theorem 1.1, we can introduce a
continuous linear operator

$K:H^{k-2,p}(D)\rightarrow H_{B}^{k,p}(D)$

as follows: For any $v\in H^{k-2,p}(D)$ , the function $u=Kv\in H^{k,p}(D)$ is the unique solution
of the problem

$Au=v$ in $D$ ,
$Bu=0$ on $\partial D$ .

Then we find that problem $(^{**})$ is equivalent to the following operator equation:

(2.1) $\lambda Ku-K(h(u))=u$ in $C(\overline{D})$ .
Indeed, it suffices to note that the operator $K$ can be uniquely extended to an operator
$K:C(\overline{D})\rightarrow C^{1}(\overline{D})$ , and also an operator $K:C^{1}(\overline{D})\rightarrow C^{2}(\overline{D})$ , sinoe we have, by
Sobolev’s imbedding theorem,

$C^{k}(\overline{D})\subset H^{k,p}(D)\subset C^{k-N/p}(\overline{D})$

if$p>N$. Here we remark that, by the Ascoli-Arzel\‘a theorem, the operators $ K:C(\overline{D})\rightarrow$

$C^{1}(\overline{D})$ and $K:C^{1}(\overline{D})\rightarrow C^{2}(\overline{D})$ are compact.
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2.2. Theory of positive mappings in ordered Banach spaces. We make use of the
theory of positive operators in ordered Banach spaces to find nontrivial solutions of
equation (2.1) (cf. [Am2]).

A Banach space $X$ is called an ordered Banach space if it is an ordered set. For an
ordered Banach space $X$ having the ordering $\leq$ , the set $Q=\{x\in X;x\geq 0\}$ is called the
positive cone in $X$.

For functions $u$ and $v$ in $C(\overline{D})$ , we write $u\leq v$ if $u(x)\leq v(x)$ for all $x\in\overline{D}$ . Then the
space $C(\overline{D})$ becomes an ordered Banach space with the ordering $\leq$ . Moreover, if we
let $P=\{u\in C(\overline{D});u\geq 0\}$ , then the set $P$ is the positive cone in $C(\overline{D})$ .

Now we introduoe an ordered Banach space which is associated with the operator
$K:C(\overline{D})\rightarrow C^{1}(\overline{D})$ . To do so, we need the following:

LEMMA 2.1. Assume that hypotheses (H1) and (H2) are satisfied. If $v\in C^{1}(\overline{D})$ and
if $v\geq 0$ but $v\not\equiv O$ on $\overline{D}$ , then the function $u=Kv\in C^{2}(\overline{D})$ satisfies the following conditions:

(1) $u(x^{\prime})=0$ on $M=\{x^{\prime}\in\partial D;a(x^{\prime})=0\}$ .
(2) $u(x)>0$ on $\overline{D}\backslash M$ .
(3) For the conormal derivative $\partial u/\partial v$ of $u$, we have $(\partial u/\partial v)(x^{\prime})<0$ on $M$.

Furthermore, the operator $K:C(\overline{D})\rightarrow C(\overline{D})$ is positive, that is, $K(P)\subset P$ .
$PR\infty F$ . The lemma follows by using Theorem 1.1 and the maximum principle,

just as in the proof of [Ta, Proposition 7.5]. Indeed, it suffices to note that the operator
$K$ is nothing but the resolvent of problem $(^{*})$ . $\square $

If we let $e=K1$ , it follows from Lemma 2.1 that the function $e\in C^{2}(\overline{D})$ satisfies:

$\left\{\begin{array}{ll}e(x^{\prime})=0 & on M,\\e(x)>0 & on \overline{D}\backslash M,\\(\partial e/\partial v)(x^{\prime})<0 & on M.\end{array}\right.$

Further we let

$C_{e}(\overline{D})=$ { $u\in C(\overline{D})$ ; there is a constant $c>0$ such that $-ce\leq u\leq ce$}.
Then the space $C_{e}(\overline{D})$ is given a norm by the formula

$\Vert u\Vert_{e}=\inf\{c>0; -ce\leq u\leq ce\}$ .

It is easy to verify that the space $C_{e}(\overline{D})$ is an ordered Banach space having the positive
cone $P_{e}=C_{e}(\overline{D})\cap P$ with nonempty interior.

The next proposition, which is a generalization of [Aml, Lemma 5.3] to the
degenerate case, is the essential step in the proof of Theorem 1:

PROPOSITION 2.2. The operator $K$ maps $C(\overline{D})$ compactly into $C_{e}(\overline{D})$ . Moreover,
$K$ is strongly positive, that is, $\iota fv\in P$ and $v\not\equiv O$ on $\overline{D}$ , then the function $Kv$ is an interior
point of $P_{e}$ .
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PROOF. (i) First, by the positivity of $K$, we find that $K$ maps $C(\overline{D})$ into $C_{e}(\overline{D})$ .
Indeed, since we have $-\Vert v\Vert\leq v(x)\leq\Vert v\Vert$ on $\overline{D}$ for all $v\in C(\overline{D})$ , it follows that

$-\Vert v\Vert K1(x)\leq Kv(x)\leq\Vert v\Vert K1(x)$ on $\overline{D}$ .

This proves that $-ce\leq Kv\leq ce$ with $ c=\Vert v\Vert$ .
(ii) Next we prove that $K:C(\overline{D})\rightarrow C_{e}(\overline{D})$ is compact. To do so, we let

$C_{B}^{1}(\overline{D})=$ { $u\in C^{1}(\overline{D});Bu=0$ on $\partial D$}.
Since $K$ maps $C(\overline{D})$ compactly into $C_{B}^{1}(\overline{D})$ , it suffices to show that the inclusion map-
ping $\iota:C_{B}^{1}(\overline{D})\rightarrow C_{e}(\overline{D})$ is continuous.

(ii-a) We verify that $\iota$ maps $C_{B}^{1}(\overline{D})$ into $C_{e}(\overline{D})$ .
Let $u$ be an arbitrary function in $C_{B}^{1}(\overline{D})$ . Since we have for some neighborhood $\omega$

of $M$ in $\partial D$

$\left\{\begin{array}{ll}b>0 & in \omega,\\\partial e/\partial v<0 & in \omega,\end{array}\right.$

it follows that

$\frac{u}{e}=\frac{(-a/b)\partial u/\partial v}{(-a/b)\partial e/\partial v}=\frac{\partial u/\partial v}{\partial e/\partial v}$ in $\omega\backslash M$ .

Hence there exists a constant $c_{1}>0$ such that $|u(x^{\prime})|\leq c_{1}e(x^{\prime})$ in $\omega$ . Thus, by using
Taylor’s formula, we can find a neighborhood $W$ of $\omega$ in $D$ and a constant $c_{2}>0$ such
that $|u(x)|\leq c_{2}e(x)$ in $W$.

On the other hand, since we have, for some constant $\alpha>0,$ $ e(x)\geq\alpha$ on $\overline{D}\backslash W$, we
can find a constant $c_{3}>0$ such that $|u(x)/e(x)|\leq c_{3}$ on $\overline{D}\backslash W$.

Therefore, there exists a constant $c>0$ such that $-ce(x)\leq u(x)\leq ce(x)$ on $\overline{D}$ . This
proves that $u\in C_{e}(\overline{D})$ .

(ii-b) Now assume that

$\left\{\begin{array}{ll}u_{j}\in C_{B}^{1}(\overline{D}) & ,\\u_{j}\rightarrow u & in C_{B}^{1}(\overline{D}) ,\\u_{j}\rightarrow v & in C_{e}(\overline{D}).\end{array}\right.$

Then there exists a sequence $\{c_{j}\},$ $c_{j}\rightarrow 0$ , such that $\Vert u_{j}-v\Vert\leq c_{j}\Vert e\Vert$ . This implies that
$u_{j}\rightarrow v$ in $C(\overline{D})$ . Hence we have $u=v$ . By the closed graph theorem, it follows that the
mapping $\iota$ is continuous.

(iii) It remains to prove the strong positivity of $K$.
(iii-a) We show that, for anyv $\geq 0butv\not\equiv 0on\overline{D}$ , there exist constants $\beta>0and$

$\gamma>0$ such that

(2.2) $\beta e(x)\leq Kv(x)\leq\gamma e(x)$ on $\overline{D}$ .
By the positivity of $K$, one may modify the function $v$ in such a way that $v\in C^{1}(\overline{D})$ .
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Furthermore, since the functions $u=Kv$ and $e=K1$ vanish only on the set $M$, it suffices
to prove that there exists a neighborhood $W$ of $M$ in $D$ such that

(2.2) $\beta e(x)\leq u(x)$ in $W$ .

We recall that in a neighborhood $\omega$ of $M$ in $\partial D$ ,

$u=(-\frac{a}{b})\frac{\partial u}{\partial v}$ , $\frac{\partial u}{\partial v}<0$ in $\omega$ ,

$e=(-\frac{a}{b})\frac{\partial e}{\partial v}$ , $\frac{\partial e}{\partial v}<0$ in $\omega$ .

Thus we have for $\beta$ sufficiently small

$u(x^{\prime})-\beta e(x^{\prime})\geq 0$ , $\frac{\partial}{\partial v}(u-\beta e)(x^{\prime})<0$ in $\omega$ .

Therefore, by using Taylor’s formula, we can find a neighborhood $W$ of $M$ in $D$

such that

$u(x)-\beta e(x)\geq 0$ in $W$ .

This proves estimate (2.2).
(iii-b) Finally we show that the function $u=Kv$ is an interior point of $P_{e}$ . Take

$\epsilon=\beta/2$ , where $\beta$ is the same constant as in estimate (2.2). Then, for all functions $w\in C_{e}(\overline{D})$

satisfying $\Vert$ w-Kv $\Vert_{e}<\epsilon$ , we have by estimate (2.2)

$w\leq Kv+\epsilon e\leq(\gamma+\epsilon)e$ , $w\geq Kv-\epsilon e\geq\beta e/2$ .
This implies that $w\in P_{e}$ , that is, the function $Kv$ is an interior point of $P_{e}$ .

The proof of Proposition 2.2 is now complete. $\square $

Now let $m$ be a function in $C(\overline{D})$ such that $m(x)>0$ on $\overline{D}$ , and consider the following
eigenvalue problem for the operator $K$ :

(2.3) $K(mu)=\mu u$ in $C(\overline{D})$ .

This problem has a countable number of positive eigenvalues, $\mu_{j}(m)$ , which may ac-
cumulate only at $0$ . Hence they may be arranged in a decreasing sequence $\mu_{1}(m)\geq$

$\mu_{2}(m)\geq\cdots$ , where each eigenvalue is repeated according to its multiplicity.
In the proofofTheorem 1, we need the following two results about problem (2.3):

PROPOSITION 2.3. The largest eigenvalue $\mu_{1}(m)$ is simple, i.e., $\mu_{1}(m)>\mu_{2}(m)$ , and
has $a$ positive eigenfunction. No other eigenvalues have positive eigenfunctions.

$PR\infty F$ . Proposition 2.2 tells us that the operator $K:C(\overline{D})\rightarrow C_{e}(\overline{D})$ is strongly
positive and compact. Hence the assertions follow from an application of [Am2, Theorem
3.2]. $\square $
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PROPOSITION 2.4. If $m_{1}(x)\leq m_{2}(x)$ for all $x\in\overline{D}$ , then we have $\mu_{j}(m_{1})\leq\mu_{j}(m_{2})$ for
all $j$. If $m_{1}(x)<m_{2}(x)$ for almost all $x\in\overline{D}$ , then we have $\mu_{j}(m_{1})<\mu_{j}(m_{2})$ for all $j$.

PROOF. The proposition is an immediate consequence of the well-known minimax
property of eigenvalues. $\square $

2.3. Proof of Theorem 1. The proof of Theorem 1 is essentially the same as that
of [Sz, Theorem 1.3]; so we only give a sketch of the proof.

(i) First, by [Ta, Theorem3], we obtain that equation (2.1) (or problem $(^{*})$) has
precisely two branches of nontrivial solutions emanating from the point $(\lambda_{1},0)$ .

(ii) Secondly, by using Propositions 2.3 and 2.4, we find that the nontrivial
solutions of equation (2.1) with $\lambda_{1}<\lambda\leq\lambda_{2}$ must necessarily be positive or negative.

(iii) In order to study globally the bifurcation solution curves, we need the
following three lemmas:

LEMMA 2.5. If $u$ is a positive (or negative) solution ofequation (2.1) with $\lambda_{1}<\lambda<\infty$ ,
then $u$ is a regular point of the mapping $G(\lambda, u):R\times C(\overline{D})\rightarrow C(\overline{D})$ , given by the formula

$G(\lambda, u)=u-\lambda Ku+K(h(u))$ ,

that is, the partial Fr\’echet derivative $G_{u}(\lambda, u)$ at $u$ is invertible.

LEMMA 2.6. Equation (2.1) has a unique positive solution for each $\lambda_{1}<\lambda<\lambda_{1}+k_{+}$ .
No positive solutions exist for $\lambda\geq\lambda_{1}+k_{+}$ . The umform norm $\Vert u_{+}(\lambda)\Vert$ of the positive
solution $u_{+}(\lambda)$ tends to $\infty$ as $\lambda\rightarrow\lambda_{1}+k_{+}$ . Similar assertions are validfor negative solutions
$u_{-}(\lambda)$ , with $k_{+}$ replaced by $k_{-}$ .

LEMMA 2.7. There is a constant $\delta>0$ such that equation (2.1) has no nontrivial
solutions for $\lambda_{1}-\delta\leq\lambda\leq\lambda_{1}$ .

Lemmas 2.5, 2.6 and 2.7 are proved just as in the proof of [Sz, Lemmas 2.1, 2.2
and 2.3], by using Propositions 2.3 and 2.4 and the theory of positive mappings in
ordered Banach spaces.

(iii-a) By using Lemma 2.6, Lemma 2.5 and the implicit function theorem, we
can prove that equation (2.1) has a unique positive solution $u_{+}(\lambda)$ for all $\lambda_{1}<\lambda<\lambda_{1}+k_{+}$ ,
and that the branch $\Gamma_{+}$ of positive solutions emanating from $(\lambda_{1},0)$ is a $C^{1}$ curve given
by the formula

$\Gamma_{+}=\{(\lambda, u)\in R\times C(\overline{D});u=u_{+}(\lambda), \lambda_{1}\leq\lambda<\lambda_{1}+k_{+}\}$ .
The other branch $\Gamma_{-}$ is obtained in a similar way.

(iii-b) Furthermore, it follows from an application of Lemma 2.6 that no other
positive or negative solutions exist for $\lambda>\lambda_{1}$ , and also $\Vert u_{+}(\lambda)\Vert\rightarrow\infty$ as $\lambda\rightarrow\lambda_{1}+k_{+}$

and $\Vert u_{-}(\lambda)\Vert\rightarrow\infty$ as $\lambda\rightarrow\lambda_{1}+k_{-}$ .
(iv) Finally, Lemma 2.7 tells us that there are no nontrivial solutions at $\lambda=\lambda_{1}$ .
The proof of Theorem 1 is complete. $\square $
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2.4. Proof of Theorem 2. The proof of Theorem 2 is carried out by using the
global theory of positive mappings (cf. [Da]), just as in the proof of [Sz, Theorems
5.1 and 5.2]. $\square $
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