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0. Introduction.

In this paper we study the hydrodynamic limit for a Markov process of a certain
spin system on Z. In the process a [0, oo)-valued spin is attached to each site of Z.
In this paper the word “energy” is often used instead of ‘“spin’ since the value is
non-negative. At random times the values of energy on each pair of adjacent sites
evolve simultaneously according to a certain law which conserves their sum. The jump
rate is the sum of the values of energy. Since the jump rate is unbounded, the construc-
tion of the process is not easy. A Markov process describing this infinite system is
constructed in [5]. The process is reversible with respect to an infinite product measure
and of gradient type.

We show that, under an appropriate scaling of lattice spacing and time, the macro-
scopic energy distribution converges to a deterministic limit which is characterized by
a non-linear diffusion equation on the one-dimensional real line: (8/0)p(t, w)="
271(0%/ow?)P(p(t, w)), (t, w)€(0, o) x R. A sufficient condition for the uniqueness of
non-negative weak solutions of this equation was given in terms of the non-linear
function P(p), p=>0, in [1], [2]. We show that, under some assumptions for our system,
P(p), p=0, satisfies this sufficient condition. To do this we make use of the Laplace
method.

The hydrodynamic limit for the corresponding model on a periodic lattice is studied
in Suzuki-Uchiyama ([6], [7]), and a non-linear diffusion equation on a torus is ob-
tained.

In Guo-Papanicolaou-Varadhan ([4]) the hydrodynamic limit for a finite system
of interacting diffusions is studied by using certain estimates deduced from an assumed
bound for entropy of initial distributions. In Fritz ([3]) the hydrodynamic limit for
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infinite systems of interacting diffusions is studied by extending the entropy arguments
of [4] to infinite systems. Namely, in [3], a priori bounds for the flow of entropy in
finite volumes are derived for infinite systems. Since the method of [3] for obtaining
the bounds depends heavily on the dynamics of the systems, it does not seem to be
applicable to our system. Our method is different from that of [3], namely, we make
use of the approximation of our infinite system by certain finite systems.

1. The model and results.

Before describing our infinite system on Z, we introduce a system on two sites.
Let X and Y be independent positive random variables with a common law having a
positive continuous density p(x), x>0. We assume

(A.D) jw x2p(x)dx < oo .

0

Let y(+ ; r) be the conditional distribution of X given X+ Y=r, r>0, namely,
pp(r—u)
J p()p(r —v)dv

0

Wdu 5 r)=

1.n(W)du .

Here 1, stands for the indicator function of a set 4. Let R, =[O0, o) and C,(R2) be
the set of bounded continuous functions on R2 =R, xR . For ¢ € C,(R2) define

Fé(x, y)=E[¢X, Y) | X+ Y=x+y]
=j¢(u,x+y—u)v(du;x+y), if x+y>0,

and I'¢(0, 0)=¢(0, 0). The generator of the Markov process on R?2 describing the
dynamics of a system on two sites is given by L:

Lo(x, )=(x+NT—D¢(x,y),  ¢eCyRY).

Here I is the identity operator. The sum x+y is conserved by the dynamics. Observ-
ing E[y(X, Y)I'¢(X, Y)]=E[E[Y(X, Y) | X+ Y]E[¢(X, Y) | X+ Y]], we see that I' is
symmetric relative to the product measure p(x)p(y)dxdy. This product measure is a
reversible measure for the Markov process with generator L.

Now we describe our infinite system on Z. Let

X=R%Z={x=(x;;ieZ): x;eR, for ieZ}.

It is a Polish space endowed with the product topology. Here x; is viewed as a value
of energy on a site i and x as a configuration of values of energy on Z. The process
we are going to study is a Markov process on ¥, in which the values of energy Xx; and
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x;+1 on each pair of adjacent sites evolve simultaneously according to the law
determined by I' at rate x;+Xx;,,;. Roughly speaking, it is a Markov process with
generator

Lo(x)= Zz L;p(x), L;p(x) =Ly i(xi5 X;1+1) »

where ¢, ;(x, y) = ¢(x) Ixi —x,x:+, =yis afunction of (x, y) with (x,)»;; +, fixed. The product

measure ®(dx) =[ | p(x;)dx;, where i runs over Z, is supposed to be a reversible measure

of the process. According to [5], we have an equilibrium Markov process on X associated

with % and with initial (therefore marginal) distribution @ under the assumption (A.1),

and a non-equilibrium Markov process on X associated with % under some additional

assumptions for p(x), x>0, and an initial distribution. '
For >0 let

(1.D X)) =(X) ; ieZ), t>0,

be a Markov process on X associated with ¢~ 2.%. The factor ¢~ 2 corresponds to speeding
up of time. (Precisely speaking, we consider the process in (1.8) below.) We are in-
terested in the limiting behavior, as £]0, of the empirical energy distribution «;:

(1.2) af(dw)=¢ Y X¥(t)d,,(dw), weR.
ieZ

Here §,, is the 5-measure at w. We regard o/, >0, as a random process taking values
in IR(R), the set of measures on R with the topology of vague convergence. We prove
under suitable conditions that, as £]0, af converges in probability to a deterministic
limit which is characterized by a certain non-linear diffusion equation.

First of all we state the result in [ 5] concerning the construction of a non-equilibrium
Markov process in our context. Let (X) denote the set of probability measures on ¥
and for any non-negative integer m define a probability measure @, on R{"™ ™ by

Oo(dx)= Y plx)dx;.

i=—m

We introduce the relative entropy of ue 2(¥) in { —m, - - -, m} with respect to @,, defined
by

j log{(du)/(d®,)} Aty , I pn <P,

00 ,. otherwise ,

H, (W)=

where u,, denotes the projection of u to R{™™ ™, Let M={— M-, M*} be a pair of
integers — M~ and M* such that M~ >1 and M* >1 and let

(1.3) XM =(XM@) ; ieZ), >0,
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be the Markov process on X generated by =) L,, where the summation is taken
over the integers i’s such that — M~ <i< M. In this process, only the values of energy
on each pair of adjacent sites in [~ M ~, M*] evolve simultaneously and the values of
energy on sites outside [—M~, M*] remain unchanged with time. Our process is
obtained as a limit of X™(¢), t1>0, as M~ —» 00, M* — 0. Let us construct X™(?), >0,
on a common probability space for all M~ >1and M™* >1 by solving certain stochastic
differential equations (abbreviated to SDE’s) associated with common Poisson random
measures following [5]. Let (2, &, P) be a probability space equipped with a suitable
filtration {&,},»o- Let {N,(dsdndf), i€ Z} be an independent family of §,-adapted Poisson
random measures on (0, o) x (0, 00) x (0, 1) with intensity measure dsdnd¢, and let
X=(X;;ieZ) be an X-valued random variable which is distributed according to
1 e Z(¥) and is F,-measurable (so is independent of {N;(-), i€ Z}). Moreover, for
r>0 let a(¢ ; r), £€(0, 1), be the inverse function of A((; r)sjf, y(du ;r), {€(0, r). For
fixed r, a(¢ ; r) is a (0, r)-valued random variable on the probability space ((0, 1), d¢)
having probability distribution y(+ ; r). For each M~ >1and M* > 1, the process X¥(?),
¢t >0, with initial distribution u° can be constructed on (L2, &, P) as the unique solution
of the SDE

(1.4) XiM(t)=Xi+l[—M‘,M+)(i).[ j {a(¢; xM(s—)
0Jo

+ XM (s—))— XM(s—)}N;(dsdnd¢)
t (XM (s—)+XM(s—) (1
+1[—M-,M+)(i—l)f J {XM,(s-)
oJo 0

—a(¢; XM ((s—)+ XM(s—))}N;- (dsdndl), ieZ, t=>0.

xgvl(s—)+xgl(s—)J'1

(1]

Now we state a theorem concerning the construction of a non-equilibrium Markov
process which is slightly modified from that of [ 5]. Let g(x), x >0, be a positive increasing
function satisfying

(A.2) lim sup g(cx)g(x) ! < oo forall ¢>0;

for example, g(x)=x%, «>0.

THEOREM A ([5]). Suppose that p(x), x>0, and u°e P(X) satisfy the following
conditions (A.3)—(A.5):
(A.3) [ e™ p(x)dx < oo for some B=2 and y>0,
(A.4) there exists C>0 such that H,(u°) < Cg(m) for all sufficiently large m, where g
is some positive increasing function satisfying (A.2),
(A.5) lim,_ g(x)x~#*~PI2E-D=0 for g in (A.4) and f=2 in (A.3).
Let My={—M;, M}, k=1, satisfy |<M; <M; <---, I<M{<M;<---and
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(A.6)
(i) there exists C>1 such that 1/C<M,)/M; <C and M}, ,<CM\ for all
sufficiently large k;,
(1) Y2 g(MHHE-UBP(MI 1B < o for g in (A4) and B=2 in (A.3)
(lim,, _, ., g(x)?/8~ 1B x =1+ 1B =0 by virtue of (A.5)).
Then for any T>0 we have

P{ for any i€ Z there exists X;(f) such that X;(t)= XM*(¢)
~ for all te[0, T] and for all sufficiently large k}=1 .

Moreover X(f) =(X(t) ; ie Z), t >0, depends neither on {M,, k> 1} satisfying (A.6) nor
on T, and is a Markov process on X whose initial distribution is u° and satisfies the SDE

(1.5)

t PXis—-)+Xi+1(s—) 1
Xi(t)in+j j j {a(¢ ; X;(s—)+ X;+1(s—))— X, (s — )} N;(dsdnd¢)
0Jo 0 ,

t Xi-1s-)+Xis—) 1
+J f j {Xi—1(5—)
0JO 0

—a(¢ 5 Xi—1(s—)+ X;(s—))}N, - 1(dsand?) , ieZ, t=0.

Before studying the limiting behavior of (1.2), we study the hydrodynamic limit
for finite systems. For ¢>0 and M={—M~, M*}, a pair of integers — M~ and M~
satisfying M~, M* >1, denote by

XM =(XM(©) ; ieZ), t>0,

the Markov process on X with initial distribution u? € 2(X) generated by #™. For each
£¢>0 we construct these processes on (Q, &, P) from the same initial value for all M~ >1
and M* >1 by solving SDE’s associated with the common Poisson random measures
N;(+), ie Z (see (1.4)). Define a process

XM =(XM(0) ; ieZ), =0,

by X#M(#) = X?M(t/e?). This is a Markov process on X speeded up, namely, with generator
LM =¢"22M and with initial distribution u2. For ¢>0 let N(¢)={— N(¢)~, N(e)*} be
a pair of integers — N(e)~ and N(e)* such that N(¢)” >1 and N(e)* >1. We assume
eN(e)* — o0 and eN(g)~ -0 as £/0. We consider the finite system X*V®(7), 1>0, and
study the limiting behavior, as ¢} 0, of the empirical energy distribution a2V®:

atNO(dwy=¢ Y. X+NO(f)5,,(dw), weR.
ieZ
To do this, we make the following assumptions (A.7)—(A.10) for p(x) and u? (e 2(¥)):

(A.7) lim,,e**p(x)=0 for all 1>0.
(A.8) (& e™p(x)dx< o for all y>0.
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(A.9) There exists C>0 such that H,,(u”)<CJe for all £>0, where n(e)=N(e)™ v
N(e)*.
(A.10) There exists C>0 such that | x?du, <C for all i¢ [ —n(e), n(¢)] and £>0.
To describe the limiting non-linear diffusion equation, we introduce some notation.
Put for AeR

M) = r eMp()dx,  w(d)=log M(3),
(0]
and for y>0
h(y)= sup {Ay— (D)} .

Then A( - ) and w( +) are a pair of conjugate convex functions and
A=h'(y) if and only if y=w’'(4).

We also know that A’( - ) and w’( - ) are smooth strictly increasing functions. For AeR
define a probability density p, on R, by

Pa(x)=M(A)~e**p(x) .

Then we have

joo xp;(x)dx=w'(1) .

0

We put for p>0
P (P)=J X 2Ph'(p)(x)dx s
0

and P(0)=0. The function P( -) is smooth and P’(p) is positive for all p>0. We make
the following assumptions (A.11) and (A.12) for P(p), p >0 (these are assumptions for
p(x), x>0):

(A.11) limsup,. , P(p)p 2 <o0.

(A.12) There exists C>2 such that 1+1/C<pP’'(p)/P(p) < C for almost all p=>0.

ReMARK 1.1. A sufficient condition for p(x), x>0, that guarantees (A.l1) is
obtained in [6]. Suppose that p(x) is of the form p(x)=e~ “®b(x), x>0, where b(x),
x>0, is bounded away from zero and infinity. If ¢( - ) is convex on some semi-infinite
interval (n, o), then (A.11) is satisfied (see [6]). The condition (A.12) is a sufficient
condition for the uniqueness of non-negative weak solutions of the non-linear diffusion
equation (1.6) appearing in the next theorem ([1], [2]). Some sufficient conditions in
terms of p(x), x>0, which ensure (A.12) will be given in Section 6. Under each of the
conditions on p(x), x>0, assumed in Proposition 6.2 and Proposition 6.3, we have
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lim,_, , P(p)p~ %=1, which clearly implies (A.11).
The result concerning the hydrodynamic limit for the finite system is as follows.

THEOREM 1.1. Suppose that all the hypotheses (A.7)—(A.12) are satisfied. Suppose
further that as €| 0 the random measure a&N® converges in probability to a non-random
measure po(w)dw in R. Then for every t>0, a®N® also converges in probability to a
non-random limit p(t, w)dw as ¢|0 and p(t, w) is a unique non-negative weak solution of
the non-linear diffusion equati’on

2

:Z,,( b=+ O P, W),

(1.6) 2 ow
p(t, W)l;'=o=p0(w) .

By a weak solution to the Cauchy problem (1.6) it is meant that both p(t, w) and
P(p(t, w)) are locally integrable on (0, o) x R and

1 [ |
<p(t, *), J>=<po, -’>+5J <P(p(s, ), J">ds,  t>0,
0

for all Je CP(R), the space of smooth functions on R with compact support. Here
{v, J) denotes the integral of a function Jby ve SUE(R) when v(dw) = p(w)dw, the integral
{v, J) is denoted also by {p, J ).

REMARK 1.2.  An example of a pair of py( * ) and u? which satisfies the conditions

in Theorem 1.1 is given below. For R,>0, let py( + ) be a positive continuous function
on R satisfying

pO(W)=J‘ xp(x)dx s W¢[—'R0, RO] ’
0
and let

,ueo (dx)= H ph'(po(ai))(xi)dxi H p(x;)dx; .

lil < Ro/e lil > Ro/e
Then this pair of py( +) and p?2 satisfies the conditions in Theorem 1.1.

In order to study the hydrodynamic limit for our infinite system, we approximate
our infinite system by certain finite systems. Let F(x), x>0, be a positive strictly in-
creasing function; the case F(x)=x% o>0, is of our interest. Let G be the inverse
function of F. For the approximation by finite systems we make the following as-
sumptions (A.13)—(A.16) for p(x), u2 and F(x):

(A.13) |2 e™ p(x)dx< oo for some f>2 and y>0.

(A.14) Forany c> 0 there exists ¢’ > 0 such that ¢cF(x) < F(c'x) for all sufficiently large x.
(A.15) lim,_  F(x)x~ @~ D>~ = o5 for f>2 in (A.13).

(A.16) There exists C>0 such that H,(u2) < CG(m) for all e>0 and m>[F(1/e)]+1,
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where [u«] denotes the integral part of ueR.

REMARK 1.3. If F(x) is of the form F(x)=x* a>0, then (A.15) implies o>
(482 —1)/(B%2—pB)>4 for B>2 in (A.13). In this case, by (A.16), the relative entropy of
initial distributions is assumed to satisfy H,(u2)<Cm?'/* for all >0 and m>[e~*]+1.

By (A.14) we have (A.2) for g=G. Moreover since

(1.7) lim G(x)x =~ PIas>-1 =

xX—= o0
by virtue of (A.15), (A.S) is satisfied by g=G. Therefore, by Theorem A, under the
assumptions (A.13)—(A.16) we obtain for each ¢>0 a Markov process

X4 =(Xi(1) ; ieZ), =0,

on X associated with ¥ whose initial distribution is u? as a limit of X*M¥(f), >0, as
k—oo, where M, ={— M, M}}, k>1,satisfy l<M <M, <---, I<SM{<M;<---
and (A.6) for g=G. For ¢>0 let K(e)={—K(¢)*, K(¢)*} be a pair of integers defined
by

K@) =[F(1/e)]+1.

Then, by (A.15) ¢K(e)* —>o0 as €]0, and by (A.16) there exists C>0 such that
Hy o+ (1) < C/e for all £>0.

The result concerning the approximation of our infinite system by finite systems
is as follows.

THEOREM 1.2. Suppose that all the hypotheses (A.13)—(A.16) are satisfied. Then
for any T>0 and R>0

im P{X: ()= X7%®(r) for all ie[—[R/e], [R/€]] and te[0, T/e*]}=1.
el0

For £¢>0 define a process
(1.8) X(O=(X:(0) ; ieZ), >0,

by X%()=X?(t/¢?). Then this is a Markov process on X associated with ¢~ 2% whose
initial distribution is u°. We study the limiting behavior of (1.2) for X%, 1>0,
in (1.8). Let Je C(R) and suppJ <[ — R, R] for some R>0. We are going to examine
the limiting behavior, as £]0, of

(1.9) (af, I>=¢ Y. JE)Xi(), 0<:<T,

li| <R/e

where T is an arbitrary positive constant. To do this, we combine Theorem 1.1 and
Theorem 1.2. By Theorem 1.2 we have for any 7>0 and R>0
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(1.10)

lim P{Xt(f)=X+X)) for all ie[ —[R/e], [R/e]] and te[0, T]}=1.

Under the conditions in Theorem 1.2 we can take N(¢)= K(¢) in Theorem 1.1, and then
we have the limiting behavior, as €0, of

(1.11) (af KO Jy=¢ Y JE)XFKO(), 0<t<T.
lil<R/e
Combining (1.10) and the limiting behavior of (1.11), we obtain the limiting behavior
of (1.9).
Our main result in this paper concerning the hydrodynamic limit for the infinite
system is as follows.

THEOREM 1.3. Suppose that all the hypotheses (A.7), (A.11), (A.12), (A.14), (A.16)
and the following (A.17)—(A.19) are satisfied:

A7) [ e pxdx< oo {for some B>2 and some y>0 ,
for B=2 and all y>0,
(A.18) lim,_  F(x)x @~V =B = for B>2 in (A.17),
(A.19) there exists C>0 such that [ xPdul <C for all i¢[—[F(1/e)]—1, [F(1/e)]+1]
and ¢>0, where f>2 is a constant in (A.17). '

Suppose further that as |0 the random measure af converges in probability to a non-
~ random measure po(w)dw in R. Then for every t>0, of also converges in probability to
a non-random limit p(t, w)dw as ¢|0 and p(t, w) is a unique non-negative weak solution
of the non-linear diffusion equation (1.6).

REMARK 1.4. By (A.16), (1.7) and noting (8% — B)/(4B>—1)<1/4 for B>2, we see
that our condition (A.16) for the relative entropy of initial distributions is stronger than
that of [3], where it is assumed to satisfy H,(u2)=0(m) as m— oo for all ¢>0. The
pair of po(+) and u? given in Remark 1.2 also gives an example which satisfies the
conditions in Theorem 1.3.

In Sections 2, 3 and 4 we prove Theorem 1.1, and in Section 5 we prove Theorem
1.2. In Section 6 we discuss some sufficient conditions for p(x), x>0, which guarantee
the condition (A.12).

2. Relative entropy and I-function for the finite system.

In this section we make some estimates of the relative entropy and the I-function
associated with #¥® which will be used for proving Theorem 1.1. To examine the
limiting behavior of af¥®, 0<t<T, we may assume T=1 without loss of generality.
For each ¢>0 and 0<r<1, denote by u!cP(X) the distribution of X>V®(f). Recall
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n(e)=N(e)~ v N(¢)*. The evolution of the process gives us a density f;={d(u)ne}/
{d®,,} at time ¢ which is characterized by the forward equation

il:: gs,N(e)ft .
ot )

Let j, be the time average of u;, namely,

1
ﬂe=J‘ ﬂatdt s

(1]
and put .7:: = {d(ﬁe)n(e)}/ {d¢n(£)} = I (1)f: dt .
Let M={—M~, M™*} be a pair of integers — M~ and M* such that M~ >1 and
M*>1, and put m=M~ v M™*. For a probability density f(x,), X, R{"™ ™, with
respect to @,,, define the I-function I,,(f) associated with ¥ by

Mt -1

L{(N= % 1™,

i=—M-

15"’m=~;-J(xi+xi+ 1)d®,, f{\/?xm.i(us Xi+ X4y —u)——\/f(x,,,)}zy(du s X+ Xiv1),

where f, 06 ) =fXw)|sizrir =y If [X:fdP, <o for all —M~ <i<M?*, then
Iy(f) < oo and we can write

LyNH=— j VLM fao, .

The functional 7,,( + ) is non-negative and convex.
Let us estimate H,,(ji,) and Iy (f;) under the assumption (A.9) according to [4].
For 0<t<1 we have

d

4
'_Hns :S—-—_I € et
dr ()(#) o2 N )(f )

in the same way as in [6]. Therefore H,. (u;) is non-increasing in ¢z. Moreover by
integrating both sides of the above inequality with respect to ¢, we obtain the following
lemma as in [6] and [7].

LEMMA 2.1. Suppose that the hypothesis (A.9) is satisfied. Then there exists C>0
such that for any ¢>0

2.1 H,(a)<Cle,
2.2) Ivo(F)<Ce.
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3. Derivation of the non-linear diffusion equation from the finite systems.

In this section we outline the proof of Theorem 1.1. Let Je C5°(R) and suppJ <
[ —R, R] for some R>0. We are going to study the limiting behavior, as /0, of

(M, Jy=¢ 3 JEDXFMO@W,  0<i<1.

lil<R/e

Define M%(¢), 0<t<1, by the relation

t

(3.1 oM, Ty =Lag™®, T+ J b (X=NO(s))ds + M(0) ,

0

where

b(x)=F>N® {e Y J(ai)x,-} .

il <R/e

Then M*(?) is a martingale and its quadratic variational process is written as

(3.2) (M (1) = It c(X=NO(s))ds
0
[R/e]
(3.3) (=Y {JEeG+1)—JE)} 0+ X1 1)
i=—[Rje+1]

(JuZV(du P XX ) — XXk 1) .

The following lemma is due to K. Uchiyama.
LemMMmA 3.1. For any t>0, M*(t) converges to 0 in probability as ¢ 0.

Proor. By (3.2) and (3.3), we have only to show that for any R>0

&2 f 1 [R%ﬂ {XNe)(1)}3dt -0  as ¢l 0 in probability .
0 i=—[R/e+1]
Considering the decomposition
1=1(XPNO1) < (8/2)*3) + 1(XFNO(0) > (5/e)*)
for 6 >0, we have for any a>0

3.9 » P{SZJI [R/%H {A‘ffﬂ(ﬂ(z)}f‘d»a}

0 i=—[R/e+ 1]

1  [R/e]l+1 “
< P{sé f Y, (XN} 2> a/z}

0 i=—[R/e+1]
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+P{t-:2 f 1 wi“ {,\"’f'”“’(t)}3I(X’,-""“’(t)>(6/s)2’3)dt>a/2}.

0 i=—[R/e+1]

Denote by E the expectation with respect to P. First let us estimate

1 [R/e}+1 . [R/e] +1
(3.5) EU > {Xf'"“’(t)}3’2dt]= f > xPda,,

0 i=—[R/e+1] i=—[Rje+1)

by making use of the entropy inequality

(3.6) J fdu<log Jef d®,+ H,(1) ,

where f is a measurable function on R{™™ " and ue#(¥). By taking n=n(c)=
N(e)~ v N(e)* and f(x,)=Y {27 , 1, x** in (3.6) and applying (A.8) and (2.1), we see
that the right-hand side of (3.5) is dominated by const.e~!. Therefore, by Chebyshev’s
inequality, the first term of the right-hand side of (3.4) is dominated by const.d/a, which
can be made arbitrarily small independent of ¢ by choosing 6 small enough.

Next we estimate the second term of the right-hand side of (3.4). Let D([0, 1] ; X)
be the set of functions on [0, 1] with values in X which are right continuous and have
left limits. Let P,o be the distribution of X=Ne)(y), 0<t<1, with initial distribution p?.
This is a probability measure on D([0, 1] ; X). Since for the process X>¥®(s), 0<r<]1,
the values of energy on sites outside [ —n(¢), n(¢)] remain unchanged with time, this
process can be regarded as a process on R{ ™"} et By «, be the distribution of the
process on R~ "@-m} with initial distribution &,,,. This is a probability measure on
D([0, 1] ; RN For X,( )€ D([0, 1] ; RY"®"D) put

Y (Xpey( *))=1 (ez r [R% 1 {x:(D}21(x,(£) > (8/2)*3)dt >£) )
0 i=—[R/e+1] 2

Then the second term of the right-hand side of (3.4) is equal to [ Y, (X, ))dP . By
making use of the entropy inequality for Poe 2(D([0, 1] ; X)), we get for any b>0

(3.7 j Y (X * ))dPug < % {log f e(b/a)y,(x..(a)(-))dﬁo"m + H, (1. 3)} .

Since {X,,(?), 0<1<1, 15'4,"(3)} is an equilibrium process, we have by Chebyshev’s
inequality

[R/e]+1

Po o Yo - D=1} <2 22 f Y x> (5/e)2P)dd,,

i=—[R/e+1]

[« o]

<const.a” lsJ x3p(x)dx .

(8/e)2/3

Moreover, by the Schwarz inequality, we have for any >0
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o) o] 1/2 0 1/2
(3.8) J x3p(x)dx < ( J x%e “mp(x)zdx) ( f e "‘mdx) :
3/e)2/3 ¥/e)2/3 ©/e)2/3

The first integral in the right-hand side of (3.8) is finite by virtue of (A.7) and (A.8),
and the second integral is dominated by const.A™ e~ 9%, Therefore, by taking suitable
A, we have

(3'9) Je(b/S)Ya(Xn(s)('))dﬁ¢"(s) S C
for some C>0 independent of ¢>0. By (3.7), (3.9) and (A.9), we get

lim sup f Y (Xpe)( " NP o<

el0

<
b 2

which can be made arbitrarily small by choosing b large enough. Hence we obtain the
desired result.

Let us examine the limiting behavior, as £|0, of [§ b,(X*"®(s))ds, the second term
of the right-hand side of (3.1). Since

bx)=- N”ZN() (x4 i e+ 1) = (o)) (xi— j wp(du 3 i+ o)

and [uy(du ; x;+x;1 1) =(x;+x;+1)/2, we have

1 N@E+t—1
b(x)=— >, xE{J(e(i+1))—2J(ei)+ J(e(i— 1)} .
2€ i= ~N@)-
By exploiting the smoothness of J and using the entropy inequality (3.6) and then (A.8)
and (2.1) as in [4], we have

t
(3.10) lim lim sup lim sup EI: J. b (XENO(s))

n-+wo I-w el0O 0

R AL ()

1 il )
n X{Z,N(a)s
2 y<rye 20+1 j=zi_l¢( HEN(O))

ds] =0,
where ¢,(x)=x%An, x>0, n>0.
Before examining the limiting behavior further, we introduce for pe[0, ) a
probability measure v, on X defined by

vp(dx)= Ilph'(p)(xi)dxi if p>0 N VO=50 if p=0 .

This v, is a reversible measure for the Markov process on X associated with & whose
average value of energy per site is p, namely, | x;v,(dX)=p, i€ Z.
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Let D[0, 1]=D([0, 1] ; M(R)) be the set of functions on [0, 1] with values in IN(R)
which are right continuous and have left limits. We equip D[0, 1] with the Skorohod
topology. The sample path «>¥®, 0 <t< 1, defines a random variable in D[0, 1]. Denote
by Q, the probability law on D[0, 1] induced by a®¥®, 0<t<1, from P.

LEMMA 3.2. The family {Q,, ¢>0} is relatively compact. Moreover if Q is a limit
point of it, then sample paths a,, 0<t<1, are continuous almost surely with respect to Q,

(3.11) Qfa. : for a.a. t, a(dw)=p(t, w)dw for some p(t,w)}=1,

and there exists C>0 such that for any a<b
1 b

(3.12) Eq[j dtJ P, w)dw] <C(b—a+1),
0 a

where E denotes the expectation with respect to Q.

ProoFr. To prove that {Q,} is relatively compact, we have only to show for any
R>0 '

lim lim sup P{ sup ¢ Y f{’"‘”’(t)ZK}:O
K—-o ¢£l0 0<t<1 |i|<R/e
and for any a>0 and Je CJ(R)

lim lim sup Q,{a. . sup | <a, JD>—<a,, J)l>a}=0 .
40 el0 O0<s,t<1
lt—s|<é

These can be shown in the same way as in [4] by (2.1) and Lemma 3.1. We also obtain

(3.11) and (3.12) in the same way as in [6] using (2.1).

We are going to prove that for every limit point Q the density function p(f) = p(z, *)
is a weak solution of (1.6), namely, for all Je CT(R)

(3.13) Q{(p(t), I>—=Lpo, I>= %I <P(p(s)), J ">dS} =1.
. V)

It is expected that in the limit the system would be locally in the equilibrium state.
Namely if we look at our process X*>V@( - ) in a microscopic neighborhood of weR at
time ¢, it would be almost in an equilibrium state vp. where the parameter p would be
identified with a macroscopic density p(t, w). For our evolution the local equilibrium
is built up in the sense expressed in the following two theorems, which will be proved
in the next section.

Let us introduce a shift transformation ® on X. For x=(x;;ieZ)e X, OxeX is
defined by

(OX);=X;+1, ieZ.
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A function ¢ of xe X is called local if it is actually a function of (x; ; | i| < K) for some
constant K< oo.

THEOREM 3.3. For any R>0 and local function ¢ on X which is bounded and
continuous .

lim lim sup f D
1= 00 el0 lil<R/e
where ¢(p) = p(x)v,(dx).

THEOREM 3.4. For any R>0

dp.=0,

1 i+l i+l
3 sew-4(5 5 x)

21+1111 1]11

i+1 1 i+[d/€}

_Zx

2141 j=i- 2[6/e]+1 j=iZ[6/8]

Once we prove Theorem 3.3 and Theorem 3.4, we obtain for any a>0

xl dﬁ£=0 .

lim lim sup lim sup j >

3|0 I-w el0 li| <R/e

(3.14) lim limlimsup Q. {| F&(a.(dw))|>a} =0,

n—w 4]0 el0
where

Fry(o(@w)) =<y, J> —<0o, I

t
&
5| 2

ez 1 - .
s (sz)¢,,(—-———a Az L= LoD i+ [6/e])]))ds ,

a.(dw)eD[O0, 1],

by (3.1), Lemma 3.1 and (3.10) in the same way as in [4]. The functionals F&5(a.(dw))
converge, as /0, to F;, ;(a.(dw)) defined by

n, 6(a (dW)) <ata J> <a0, >_—j J‘ J”(w)(bn( s([w 6 W+5])) deW
and the convergence is uniform on compact subsets of D[0, 1]. Therefore for any a>0
(3.15) limlsoup Q.{| Fr3(o.(aw)) | > a} = Q{| F, 5(o.(aw)) | > a} .

By (3.14), (3.15) and Fatou’s lemma, we obtain (3.13). Since under the assumption
(A.12) a non-negative weak solution of the non-linear diffusion equation (1.6) is unique
([1], [2]), the proof of Theorem 1.1 is complete.

4. Proof of Theorem 3.3 and Theorem 3.4.

In this section we prove Theorem 3.3 and Theorem 3.4 under the assumptions
(A7), (A.9), (A.11), (A.13) and the following (A.10) in order to apply the proof for
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proving Theorem 1.3:

(A.10") There exists C> 0 such that [xfdu? < C for all i¢ [ —n(e), n(¢)] and >0, where
n(e)=N(e)~ v N(¢)* and =2 is a constant in (A.13).

Let > 2 be a constant appearing in (A.13) throughout this section. For ¢>0, keZ and

ie Z let u®; be the probability measure on X x ¥ induced by (0'x, @i**x) from f,. Let

R>0 be fixed throughout this section. We define a probability measure u3 on X x X by

1
o X
2[R/e]+1 it<rye

LEMMA 4.1. Suppose that the hypotheses (A.9), (A.10") and (A.13) are satisfied.
Then the family {u$?),e>0,k=0, +1, £2, -} is a relatively compact subset of

P(X x X), the set of probability measures on X x X equipped with the topology of weak
convergence.

(2) —

Hex = Hek,i -

PrOOF. Let us show that there exists C>0 such that

@) [mgaasc,  [gupawasc
for all jeZ, ¢>0, and ke Z. Note that
4 J‘ 8,2 dvd 1 J j+§/e1 .

. b = xPdj, .
4.2) Yj bk (dydz) AR ) it T

For the integers j’s such that | j| <n(¢) — [R/¢], by making use of the entropy inequality
(3.6), we see that the right-hand side of (4.2) is dominated by

1 R )
—(m {log feyzg: 551“1/:] ‘ﬂd¢n(a) + Hu(a)(/"a)} s

where y is a positive constant. Therefore by (A.13) and (2.1), we obtain the first estimate
in (4.1) for these j’s. Since for 1>0 the projection of u! to R% (7@} equals that
of u?, there exists C>0 such that

(4.3) jx?dﬁa = Ix?du,? <C

for all i¢[—n(e), n(e)] and £>0 by virtue of (A.10"). Hence we also obtain the first
estimate in (4.1) for the other j’s by using (4.3) and the entropy inequality. The second
estimate in (4.1) can be shown in the same way. Hence the required result follows.

LEMMA 4.2. Suppose that the same hypotheses as in Lemma 4.1 and also (A.7) are
satisfied. Then every limit point u® of {u{3}, as €10 and | k|— oo under the restriction
that | k| <1/e, is a convex combination of v, ®Vv,,, namely,
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4.4) pP(dydz)= | v,,(dy)v,,(dz)i(dp,dp,)

2
R

Jor some probability measure t on R2. Moreover for some C>0

(4.5) J (pf +p8)i(dp,dp,)<C.
R2

Theorem 3.3 follows from Lemma 4.2 by considering the first marginal in the
expression (4.4) and then applying the law of large numbers for independent random
variables.

PrROOF OF LEMMA 4.2. We prove this lemma by following the argument in [4]
(see also [7]). Put for any integer /> 1

XO0=R{ b P={xy=(x_;, "+, %) : x;€R, for —I<i<l}.
For —I/<i<I—1 define operators L"® and L?® on C,(X¥® x X¥) by
L{O¢(y,, 2)) =(ityi+ 1){F¢)l'lz,zl,i(yis Yi+1)— 00 2)}
LEOP(y,, 2) = (2i+ 24 T BF, 20 Gis Ziw 1) — SO0 2)}

where ¢’l':'z"i(u’ v) = ¢(yl’ Zl) 'yi=u.ya+ 1=v and ¢fxslhi(u’ U) = ¢(yl’ Z,) lz.-=u,z¢+ 1=0° For HE
P(XD x X) define the I-function associated with LY® by

LY0¢ .
row=spl [ H g, gec,moxx), inf g, >0}
XD x XD ¢ yoz

The I-function associated with LZ®, denoted by I7®(y), ue P(X® x X¥), is defined in
the same way.

Let 4 be a limit point of {42} as &0 and |k|—co under the restriction that
|k|<1/e, and u® be the X® x X¥“-marginal of u®. Then for each />1 u is a limit
point of (u{?),, the X¥® x XD-marginal of u@. If 2/+1<|k|<1/s, then we have by
convexity of I/ 9( ) '

1-1 1 -1 21
IFOu@)) < IO F) <
,-=Z_z (@) 2[R/e]+1 ,-=Z_z|,|§me D 2[R/e]+1

Therefore we obtain ) ;_ ", I7®(u{®) =0 by (2.2) and Fatou’s lemma. In the same way

as above, we also obtain Y ;_' IZ®(u{®)=0. These imply that u{® is an invariant
measure for the Markov process on X® x X® generated by

1-1 'S
Lr20¢(y, 7)) E( =Z—z LYOg(. Z,))(Yz) +<-=Z‘i, LZO¢(y,, ))(Zz) .

I N(e)(];) .

Therefore we see that uf* is a convex combination of ¢ @ &%), where ¢% is the
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conditional distribution of &, conditioned on (2/+1)~! Z x;=p. Namely, we have

i=-—1

ﬂt( 2’(dy 1dz) = <p(')(dy ,)¢‘"(dz,)‘f,(dp,dp2) s

2
R:

where %, is the distribution of (py, p2)=(QRI+ 1)) ; o, RI+1D71Y,.,2) on RS
under u{?. Moreover, by the proof of Lemma 4.1, we have for some C>0

fyfum(dydz)sc, f $uDdyd<C, jeZ,

and then

J (pf +pHri(dp,dp,) <2C, I=1.
R}

Hence we obtain the lemma by using Theorem 1.3 in [6] in the same way as in [6].
We turn to proving Theorem 3.4.

ProOOF OF THEOREM 3.4. We prove this theorem by following the proof of
Theorem 7 of [7]. We have only to prove that there exists C> 0 such that for any de
©, 1)

i+l
(4.6) limsuplimsup max |e¢ Y Y x
- el0  K<|klsde) |i|<R/e 21+1, i—1
K=o
R T B (AR
— Y x; dji, < CoCPIE+1)
2041 j=iTh-1 ’

since an average over a long block of length 2[4/e]+ 1 is approximated by an average
of averages over short blocks of length 2/4+1 (see [4]). Let K=2/+1, and for any
integer k satisfying K<|k|<d/e put

i+l 1 itk+1
Yi(k)= L -
(k) 2/+1 j=§;;—1xj 2141 j=i§:k—lxl

hi(k)=(sgn Yj(k))| Yi(k) |- e+

It is easily seen that

|Y'(k) |(2m/(p+1)_ i(k)—" Z ( Xivj— t+k+j)‘
2141 =i

We only discuss the case where k>0. Considering for —/<j</ the decomposition

Xitj—Xivk+j= (Xz+, Xivr+ 1)+ Xigr41—Xiv142)

+ A (Xypkmt—2— Xiak-1-1)F Kirk—1-1— Xi4k+j) 5
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we have
@D e 3 |XiGR)Pe vag,
lil < R/e
C k—l-2 B
=1é& Z Wiidi.+ | € Z hi(k) (Xi4j—Xi 4 j+ 1)l
lil <R/e lil <R/e j=l+1
where

) 1
Wk,l,i=hll(k)‘—°"“ Z {(xi+j—xi+z+1)+(xi+k—1—1—x,i+k+j)}-
204+ 1 (=i

By the same argument as in [7], the second term of the right-hand side of (4.7)
is dominated by

- k=12 s 1/28)
23/2|:J‘8 Z { (Xij+Xisj+ 1)} ﬁd@n(s)}
+

lil<R/e Lj=1+1
5 . (B—1)/(28) k—1-2 1/2
L +
x| |e X |Yik)|PEDT A, e Y 2 IEO)
lil < R/e lil<R/e j=1+1

=232 4120 4P~ DIB 4112
Now we estimate 4, and A4; in the above. By using Hoélder’s inequality, noticing

R/e+k<(R+1)/e and then applying the entropy inequality, we have

(4.8) A, <2Pe(k—21—2)F f Y xPFd®,, <const.(5/e) .

lil <(R+1)/e
On the other hand, we have
(4.9) A3 <e(k—21—2)Iy,(f) <const.es .
Therefore by (4.7), (4.8) and (4.9), we obtain for some Cy,>0

(4.10) e 2. | Yi(k)|@PIE+Dgg,
lil<R/e
' 6-1/2B)
<le X Wk,l,idﬁa+co‘s{ e Y lY;(k)I(zﬂ)/(p+1)dﬂs} )
[i| <RJe lil <R/e

Next we show that the first term of the right-hand side of (4.10) converges to 0
uniformly in ke[K, §/¢] as we let ¢|0, K— o0 and /— o0 in this order. By Lemma 4.2,
we have

(4.11) limsup max |e¢ ) W, dii,<const. sup Silp1s p2)(dp,dp,) ,

0 Kxslkl<é i %
Keiw Ik] <d/e lit<R/e tedp(C) JR2
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where

fioued=| kW, 1)71_ S {5y=Iie )+ o1 — 2}, (Y, ()
IxX +1 jji=t

hy(y, 2)=(sgn Y,(y, 2)| Yi(y, ) [¢~ D

1 L 1 !
Y, s =" i~ A7 1 Zi,
R T Xy g2
and o 4(C) is the set of probability measures  on R2 satisfying (4.5). We see that
fi(p1, p,) converges to 0 locally uniformly in (p,, p,) as /- 00, and for some C; >0

(4.12) | fi(p1s P2) I“’“’”’SQ(fygvm(d)')-szgvpz(dz)) , I=1.

Since, by (A.11), the right-hand side of (4.12) is dominated by const.(p? + p2) for all
sufficiently large p, and p,, we have for some C'>0

supf | fi(p1, P2) 1€+ VBY(dp,dp)<C’, I=1.
RZ

tedt p(C)

Therefore the right-hand side and then the left-hand side of (4.11) converges to 0 as
/- 0. Hence, by (4.10), we obtain (4.6).

5. Proof of Theorem 1.2.

In this section we prove Theorem 1.2. Let M={—M~, M "} be a pair of integers
— M~ and M* such that M~ >1 and M* >1. Recall that for each >0 the processes
X=M(7), >0, are constructed on (2, §, P) from the same initial value for all M~ >1
and M* >1 by solving SDE’s associated with the common Poisson random measures
N;(*), i€ Z. Let us introduce the first interaction time between the i-th and the (i+1)-th
energy of the process X*M(7), 0<t< T/¢2. For any integer ie[—M~, M) put

X5M(s—)+XoM(s—)

t 1
rf'”=min{0<ts T/e? : ‘[ J N;(dsdnd&)
0JO (1]

t— (XSM(s—)+XeM(s—) (1
1] [/ o).
o Jo 0 »

where we adopt the convention that the minimum over the empty set is co.

LeMMA 5.1 (Lemma 3.3 (2) of [S]). Suppose that the hypotheses (A.13) and (A.16)
are satisfied. Then there exists C>0 such that

P{tfM<t,t*M<1}<CGM™ vM*)? P12+ CG(M™ v M*)2B- 11822118
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Sor all e>0, M={—M~, M™*} satisfying M~ v M*>[F(l/e)]+1, — M~ <i<j<M*
and t>0, where f>2 is a constant in (A.13).

PROOF OF THEOREM 1.2. Let M,={—M,, M;}}, k>1, satisfy 1<M; <M; <
, 1<M{ <M <--- and the following conditions (5.1) and (5.2):

5.1 There exists C>1 such that 1/C< M} /M; <C and M}, <CM}
for all suﬁiaently large k.

(5.2) 3 GIMI )Y (M) "W <o for B>2in (A.13).
k=1

(Note that lim, ,,, G(x)*~*/#*x~1* 16 =0 by virtue of (1.7).) Let R>0 be fixed. Since
{M,, k>1} satisfies (A.6) for g=G, we have for each £¢>0, by Theorem A,

(5.3) P{X{(1)=XpM=(¢) for all ie[—[R/e], [R/e]],
te[0, T/e?] and all sufficiently large k}=1.
For ¢>0 put
k(e)=min{k>1: M, , M} > K(e)*} .
Then we have
(5.4)
P{X;(2) # X7%(1) for some ie[—[R/e], [R/¢]] and some re[0, T/e*]}
<P{X7(2) # X;<=(1) for some ie[—[R/e], [R/e]] and some ¢ € [0, T/e*]}
+P{XPMo(1) # XpXO(r) for some ie[—[R/e], [R/e]] and some te[0, T, /e2]} .
By (5.3), the first term of the right-hand side of (5.4) is dominated by

QO

(5.5) Y. P{XpMi(5)£ XM+ () for some ie[—[R/el, [R/e]]
e and some te[0, T/e?]}.

To estimate this, we follow the argument of the proof of Theorem A (Theorem 1.2 of
[51). Divide the time interval [0, T/e2] into short pieces of length 6,=(T/e?)/[(M] A
M —[R/€])/3], where I>k(s). We apply Lemma 5.1 both for M=M,, t=46, and for
M=M,,,, t=9, Note that ¢™' <G(K(e)*) < G(My,, v M},,). Since G satisfies (A.2),
we see by (5.1) and (1.7) that there exists C>0 such that

P{tPM <6, t8M<5,} <CG(MH)* VB (M)~ 2+ 1B —M; <i<j<M},

P{epMirr <6y, t5Mi1 <8} SCG(MP Y VP (M) =2+ 18 — M <i<j<Mpy,,
foralle>0and /> k(e). Therefore, by the same argument asin [5], we get for /> k(e)
(5.6) P{XFM(0)#XMi+1 (1) for some ie[—[R/e], [R/e]] and some re[0, T/e2]}
< CG(M1+)4_ l/ﬁz(Ml+)— 1+1/8 ,
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where C is a positive constant independent of ¢ and /. By (5.6) and (5.2), we see that
(5.5) converges to 0 as €| 0.

To estimate the second term of the right-hand side of (5.4), we. divide the time
interval [0, T/¢2] into short pieces of length 6. = (T/e?)/[(K(e)* — [R/€])/3]. By applying
Lemma 5.1 both for M =K(e), t=9, and for M= M,,, t=45,, we obtain, in the same
way as above,

(5.7) P{XFMeo(f) # XKO(1) for some ie[—[R/e], [R/e]] and some te[0, T/e?]}
< CG(Mi)*~ 1/”2(M,;:e))_ 1+1/8

The right-hand side of (5.7) converges to 0 as ¢ |0 by (1.7). The proof of the theorem
is finished.

6. Uniqueness.

Under the condition (A.12), a non-negative weak solution of the non-linear diffusion
equation (1.6) is unique ([1], [2]). In this section we discuss some sufficient conditions
for p(x), x>0, which guarantee the condition (A.12). Throughout this section we assume
that p(x), x>0, is positive and continuous and satisfies jff e**p(x)dx < oo for all 1>0.
We notice that for p>0

_M'(2)
MR’

M"(A)

(6.1) M)

P(p)=

A=h'(p),

and A=h'(p) ranges from — oo to oo as p varies from 0 to oo. Put for non-negative
integer n

M, (2)= f x"e**p(x)dx , leR.
o
Using the expressions in (6.1) and noticing that for n>0 M ®(1), the n-th derivative of

M(2), is equal to M,(1), we have

PP'(p) _ Mo(HM (DM (1)—~ M1 (A)*M,(4)
P(p) MyAM,(A)*— M (A M,(3)

By (6.2) and the Schwarz inequality we obtain

(6.2)

A=h'(p), p>0.

pP'(p)
6.3
©3 P(p)

We prove that under some conditions for p(x), x>0, the ratio {pP’'(p)}/P(p) converges
to 2 as pl0 (Proposition 6.1) and as p—oo (Proposition 6.2 or Proposition 6.3).
Combining (6.3) and these propositions, we see that under both of the conditions in
Proposition 6.1 and Proposition 6.2 (or in Proposition 6.1 and Proposition 6.3) (A.12)

>1, p>0.
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is satisfied and hence a non-negative weak solution of (1.6) is unique.
We put

Y(x)=—logp(x), x>0;

namely, p(x)=e™¥™. Suppose |¥(0+)|< oo throughout this section. To examine the
limiting behaviors of {pP’(p)}/P(p) both as pl0 and as p—oo, we may assume
Y(0+)=0 because of the expression in (6.2).

PROPOSITION 6.1. Suppose that there exists C> — oo such that

(H.1) Y()=C, x>0.
Then '
lim P2®) _,
plo  P(p)

ProoF. We have only to examine the limiting behavior of the right-hand side of

(6.2) as A—» —oo0. For A<0 we have

: 1 00 n,—x—y(—x
(6.4) ‘ Mn(}')=—(—:},—)"TIJ‘O X'e V(=x/Ddx |

To examine the limiting behavior, as A— — oo, of the integral in the right-hand side of

(6.4), we can apply the dominated convergence theorem by virtue of (H.1). Therefore
we have
(6.5) lim X" X VX Ay =p! |

A= — o0 0

By (6.2), (6.4) and (6.5), we obtain the required result.

PROPOSITION 6.2.  Suppose that \ is five times continuously differentiable and that

(H.2) liminfy @(x)x~“4-2>0,
(H.3) limsup | y®(x)|x "B PW<oo, 2<k<5,

hold (y® denotes the k-th derivative of W) for some constants A and B satisfying one of
the three conditions (i) 2v (2B/3)<A<B, (i) 4B/S<A<B; 1<A<2 and (iii)) A=1,
1<B<10/9. Then

lim 220 _,

e~ P(p)

ReEMARK 6.1. Examples of y satisfying the conditions in Proposition 6.2 are given
below. Let y(x)=cx”, x>0, where ¢>0 and y> 1. Then this y satisfies the conditions
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in Proposition 6.2 for A=B=y>1. Next let ¥(x)=cx(logx)’, x>0, where ¢>0 and
y>1. Then this  satisfies the conditions for 4=1 and B>1if y>1, and for A=B=1
if y=1. In general, let m>1 be fixed and let

(6.6) Y(x)=cx"(log x)"*(loglog x)"* - - - (loglog - - - logx)"™, x>0,

where ¢>0. If y,>1 and y,eR, 1<k<m, then ¢ in (6.6) satisfies the conditions for
suitable constants 4>1 and B>1. If y,=1, y,>1 and y,eR, 2<k<m, then ¥ in (6.6)
satisfies the conditions for A=1 and B> 1.

Let /(x), x>0, be a strictly increasing and differentiable function satisfying

(H.4) lim /(x)(logx) " !=c0,
(H.5) lim sup /'(x)l(x) "1 < o0 ;

for example

(6.7) I(x)=x", y>0,
and
(6.8) I(x)=e*", a>0, O0<y<l.

PROPOSITION 6.3. Suppose that Y is five times continuously differentiable and that

(H.6) lim inf y @(x)e =41 >0 ,
(H.7) lim sup |y S(x) |e PP < o0 ,

hold for some constants A>0 and B>0 satisfying 2/3<A/B<1 and for some strictly
increasing and differentiable function I(x), x>0, satisfying (H.4) and (H.5). Then

tim PE® _,
p~o  P(p)

REMARK 6.2. Examples of ¥ satisfying the conditions in Proposition 6.3 are given
below. Let

(6.9 Y(x)=ce®™, x>0,

where b, ¢c>0 and I(x), x>0, is a function defined by (6.7) or (6.8). Then ¥ in (6.9)
satisfies the conditions in Proposition 6.3 for /(x), x>0, appearing in the right-hand side
of (6.9).

To prove Propositions 6.2 and 6.3, we are going to give the asymptotic expansions
of M,(1),0<n<3, as A— oo by making use of the Laplace method. From the expansions
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we will obtain the limiting behavior of the right-hand side of (6.2) as A—o00. If we put
for >0

Vi) =Ax—y(x), x>0,

then we have
(6.10) M, (A)= j x"e¥2¥dx .
0

Since ¥ *(x) >0 for all sufficiently large x under each of the conditions in Proposition
6.2 and Proposition 6.3, y'(x) is strictly increasing in x. Therefore for large 1>0 there
exists a unique x;>0 such that y'(x;)=4. We see that x, is the unique maximizing
point of ¥, and y{¥(x;) <0. By the assumption (0 +) =0, we have y,(x;)>0. We note
that x,—» o0 as A—co. By the Laplace method we will see that M,(1) is expanded
asymptotically as follows if we only consider the main term of the expansion:

(6.11) M) ~/7CxJe¥** a5 10,

Here C,=/2/y P(x,). If we examine the asymptotics of My()M,()M,(1), M 1A M ,(2)
and M,(A1)M,(1)? appearing in the right-hand side of (6.2) by using (6.11), then we have
the same asymptotics for all of them. So we cannot get the asymptotic behavior of the
right-hand side of (6.2) as A— 0. Therefore we need to obtain more precise estimates
on the asymptotics of M (1), 0<n<3, as A—>o0.

For 0<n<3 put

L(A)= f x"e¥AIViAgx - 150,
()

Then, by (6.10), we have
(6.12) M, () =e¥*>2L, (]) .

To examine the asymptotic behavior of L,(1) as A— oo, we apply Taylor’s theorem to
¥ 1(x). Since Yi(x;)=0, we have

(6.13) Y.(x)—y(x)=— Cy 2(x - x).)z —a,3)(x— x;.)a —a;,( @) (x—x,)*— Wix),

where
LR =Y Ok, k=34, W)= f ’ (x+'y)4_¢(5,(y)dy .

We remark that the condition (H.2) in Proposition 6.2 implies
{liminfx_.wx//’(x)x“"‘”>0, if A>1,

(6.14) :
liminf, , _ ¢'(x)(logx)" >0, if A=1,
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liminf, _, , Y(x)x~4>0, if A>1,
(6.15) { V)

liminf,_, , Y(x)(xlogx)"'>0, if A=1,
and the condition (H.3) implies
{limsupx_.wl¢'(x)|x“”‘1’<oo , if B>1,

(6.16) , .
limsup,., | ¥’'(x)|(logx) <o, if B=1.

By (6.14) we have
limsup;_ , x;4 Y4 V<00, if A>1,

(6.17) : .
lim sup;_, , (logx,)A" <00, if A=1.

On the other hand, under the conditions in Proposition 6.3 there exists C>0 such that
¥ D (x) > Ce [ (x)l(x) ™! = CeD'™]'(x) for sufficiently large x by virtue of (H.6) and
(H.5). Thus we have, in this case,

(6.18) liminfy'(x)e " 42 >0,

X
and in the same way

(6.19) lim infy (x)e~ 439> 0

XxX— o0

Moreover the condition (H.7) implies

(6.20) limsup |y ®(x)|x~C Ve B < 0, 1<k<4.

x>0

Under the conditions in Proposition 6.3 since

(6.21) lim Yy(x)x " 2=o0,

we have

(6.22) lim x,A"1=0.
A= ©

Furthermore we note that under each of the conditions in Proposition 6.2 and
Proposition 6.3 the following (6.23) and (6.24) hold:

(6.23) a,3)C2 >0, a;4Ct—>0 as A-oo,
(6.24) Cix;'—>0 as A— 0.

The following lemma concerns with the asymptotic expansions of L,(4), 0<n<3,
as A—o0.
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LEMMA 6.4. Under each of the conditions in Proposition 6.2 and Proposition 6.3,
the following assertions (1)—(4) hold.

(1) Lo()=+/7Ci+go(A)+o(C3x;?) L as Ao
) LiA)=/nCix;+go(Dx;+9,(D)+0(C3x;?) as A- .
3) L,(WH= ﬁ CxZ+ (ﬁ 12)C3 +go(A)x2 +2g,(A)x;+g2(A) +0(C3)

as A— 0.
4) L3(l)=ﬁC,,xf +(3\/;/2)Cfx,1+go(l)xf +39,(A)x} +3g,(Dx;+93(A)
+0(C3x;) as A—oo.

Here

S (_l)k : k m k—mgak+1+n—m © aktn—m,—y2
gn(A)= Z Zo m a,(3)"a,(4) " "C; Yy e Ydy

k=1 k! m= - ©
for 0<n<3, and K is a constant determined according to each of the conditions.

PrOOF. When we prove this lemma under the conditions in Proposition 6.2, we
define r, >0 for sufficiently large A by

yP(x)™, if A4>2,

(6.25) el e if 1<d4<2,
x}"i" lf A=1’

where y,, 7, and y; are positive constants such that 1/5+ {(B=3)v0}/{5(4—-2)} <
y,<1/2, 1—A4/2<y,<1—-2B/5 and B/2<y;<1-—2B/5. On the other hand, when we
want to prove this lemma under the conditions in Proposition 6.3, we must define r; >0
for sufficiently large 4 by

(6.26) ra=yPx)"",

where 7y, is a positive constant satisfying 1/5+ B/(54)<y,<1/2. Then the following
(6.27)—(6.31) hold as A — oco:

6.27) x;ir,—0,

(6.28) Ci'r,— o,

(6.29) a,3)r3 -0, a;®ri -0,

(6.30) C;%x3737-0 under the conditions in Proposition 6.2,

(6.31) Cjp2xZe(+@Blxa)ys 0 for sufficiently small >0

under the conditions in Proposition 6.3 .



166 YUKI SUZUKI

Under the conditions in Proposition 6.2 there exists k>0 such that

kx4, if A>1,

6.32 >
( ) w(x)>{xxlogx, if A=1,

for all sufficiently large x by (6.15). When we prove this lemma under the conditions
in Proposition 6.2, we define m;>0 for A>0 by

{(1+b)/rc} A DAAD  de 451,
AL if A=1,

where k is a positive constant appearing in (6.32) and b is a positive constant such
that

(6.33) ml={

(6.34) xX,<m, for all sufficiently large 4.
(See (6.17).) By (6.32) and (6.33) we have, for sufficiently large 4,
(6.35) v(x)=(1+b)ix if x>m,.

On the other hand, when we want to prove this lemma under the conditions in Proposition
6.3, we define m, >0 for A>0 by

(6.36) my=A.

In this case, by (6.21) and (6.22), we have (6.34) and (6.35) for any 5> 0.
By (6.27) and (6.34), for sufficiently large A we can divide L,(4) into the following
four parts:

(6.37) Ly (A)=RPA)+LA)+RPA)+RI(2),

Xa—ra - xatra

R '(’l)( ,1) — j xheVAX) —¥alxa) gy , Ln( l) = xMeValx) —Walxa) gy ,
0 XA=ra
ma a0

R’(.Z)( D= xMeValx)—¥alxa) gy , R '('3)( )= J xMe¥A(x)—¥alxa) gy
xatra m,

First we examine the limiting behavior of (1) as A — co. By (6.13), we have

(6.38) L(H)=LP@)+LPW),

xatra
Egl)(l) — . x"e " Ci 2(x—xa)2 —aa(3)(x—x2)3 —04(4)(x—x4)‘dx R
Xa—ra
xp+tra
E(Z)( D= x"e ~Ci(x—x)?—aa3)x—x2)° —aa(d)x— xz)‘(e Wi _ 1)dx
n .
XA—ra

Let us estimate [((1). By changing the variable of integration according to y=
C; Y(x—x,) and putting y,=Cj 'r,, we have
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Ya
(6.39) LP@=c; f (x3+Cay)e™dy

—Ya
ya
+C; j (x3+ Cppre™ (e Ve e @0 _ 1)y
—Ya
By (6.28), we note that y,— oo as A—00. Let us estimate the second term of the right-hand
side of (6.39). If | y| <y,, then we observe
(6.40) 1a,(3)Cy> |+ aChy*I<|a,(3)[ri +a;@)|r7 .
Therefore, by (6.29), we get for any K>1
K
641) eI et | = Y (—a()CEy’
k=1 k!
—a;ACEyH+O0((a;,3) Ir +la; @) |r1)**Y)  as Ao .
In addition, we note that | C,y | <r, for | y|<y,. Therefore, by (6.27) and (6.41), we see
that the second term of the right-hand side of (6.39) equals

Ya R K 1
(6.42) - C;j (x2+Ciy)e™ ZF(—aa(3)CEy3—aa(4)Ci‘y“)"dy

—Ya k=1
+0(Cx(la;A) ri +|a,( @) rH*TY) as A-—o0.

By (6.39) and (6.42), we obtain for any K> 1

(6.43) L@R)=cC, f(xz +Cy)Ye Vdy—C, f (x4 Cy)ye™dy

Iyl>ya

(—l)k ¢ k m k—mpak+1—m * ny,4k—m,—y?
+ 2 2z |, |s®ra@ e (xa+ Coy)'y ™ me™"dy

k=1 k! m= —w

S (_l)k £ k - +1- n.,4k—m,—y2
-2 ) . a,(3ma (A mCkr1m (x;+ Cy)'y ¥~ me ™Y dy

k=1 k! m=o

Iy|>ya
+0(Cixi(la;(3) Ird + | a,( @) [rHEH ) as A— .
Note that
k. —y2 Os lf kZOISOdd,
yte > dy= . . .
I¥1> 1 O(y¥~1le™3) as A—- 0, if k>01is even.

Therefore both the second and the fourth terms of the right-hand side of (6.43) are
equal to o(C3x%~?) as A— o0 for 0<n<3 under each of the conditions. Let us show
that the fifth term of the right-hand side of (6.43) is also equal to o(C3x};~2) as A—» 0
for 0<n<3 if we choose K large enough. By the definition of C, and a,(k), k=3, 4,
we have
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(6.44) Ci3x " H{Cox(| as(3) Ir3 +1ax@) [ r)* T 7}
<YBEDXZAY P Ir3 + 1Y D) [r) T

Under the conditions in Proposition 6.2 we see that there exists C>0 such that the
right-hand side of (6.44) is dominated by

Cxf+B=3=3nA- DK+ if A>2,
B—3)K + 3(K+1 :
(6.45) Cxf*+B=3K+ D(log x,)3 K+, if A=2,
. Cx€+(s—3+3yz)(l<+1) , if 1<A<2,
fo+(B—3+373)(K+1) , if A=1,

for all sufficiently large A. We note that in the case 4>2, B—3—3y,(4—2)<0, in the
case A=2, B<5/2, in the case 1<A<2, B—3+3y,<0, and in the case 4=1,
B—3+3y,<0. Therefore in each case, by choosing K large enough, (6.45) converges
to 0 as A—o00. On the other hand, under the conditions in Proposition 6.3 we see, by
using (H.6) and (6.20), that there exists C>0 such that the right-hand side of (6.44) is
dominated by

(6.46) fo +2(K+ 1)e{A+(B—3y4A)(K+ 1)H(x2)

for all sufficiently large A. Since B—3y,4 <0, (6.46) converges to 0 as A— oo for sufficiently
large K. Therefore in each case the following (6.47) holds as A— co:

(6.47)

[ EP) =/ Ci+go(D)+0(C3x7?),

LOR) =/ n Cixy+go(A)x3+9,(A) +0(Cxi )

IO =/ Cox} +(/ T [2C3 +go(W)xE +29,(A)x;+92(A) +0o(C}) ,

LPR) =/ 7 Cix3+(3/ 7 /2)Cix,+ go(A)x3 +3g,(A)x2 +3g,(A)x; +g3(A)
L + O(ngl) .

Next we estimate £(*)(1). Under the condition (H.3) in Proposition 6.2 there exists
C>0 such that

Cri(x,+r)2 3%/4, if B>S,
Cri(x,—r))B"3/4!, if B<S5,

for all sufficiently large A and xe[x;—r;, x;+r;]. By (6,27), (6.30) and (6.24), the
right-hand side of (6.48) tends to 0 as A— oo in each case. Let us estimate | W,(x) | under
the conditions in Proposition 6.3. By (H.7), there exists C>0 such that

(6.49) | W,(x)| < CrieBi=atra/g

for all sufficiently large A and xe[x;—r;, x;+r;]. By (H.5), we have

(6.48) | Wa(x)|< {
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(6.50) limsuplimsup I(x+8)l(x) " '=1.

410 xX— 0

Indeed, by (H.5) there exists C’'>0 such that

xt+d x+é

I'(y)ydy<lix)+C’ f I(y)dy

X

l(x+5)=l(x)+j

X

for sufficiently large x and 6> 0. Since /(x), x>0, is strictly increasing in x, we have

I(x+0)<Ix)+C'ol(x+9) .
Therefore (6.50) follows. Since r;—0 as A— o0, we have
(6.51) | Wi(x)| < Criet+aBix/4)

for all sufficiently large 4 and a>0 by (6.49) and (6.50). By (6.31) and (6.24), the
right-hand side of (6.51) tends to 0 as A— oo for sufficiently small a>0. Thus in each
case we have

(6.52) - le~"A®_1|=0( Wy(x)) as A-ooo.

By (6.48) and (6.30) or by (6.51) and (6.31), the right-hand side of (6.52) is equal to
o(C#x; ?) uniformly in xe[x;—r,, x;+r;] as A—oo. Therefore we get

(6.53) - P =LPA) - o(C2x7?) as Ao .
Once we prove
(6.54) LDA)=0(Cix) as A»0, 0<n<3,
we will have, by combining this with (6.53),
(6.55) L) =0(C3x272) as A—> w0, 0<n<3.
To show (6.54), let us examine the asymptotic behaviors, as A— o0, of g,(4), 0<n<3,
appearing in (6.47). Since
stf ) y*e V’dy=0 if k>1isodd,

we can express g,(4), 0<n <3, as follows:

(— 1)k 21

k , o dkm 2
) a3 a (A T CH TN s
k' m=0 2m )

K
go(D)= 3
k=1

K (1) [6e=1)/2] k , , )
ROEDY )y ( )%(3)2"' @) 2 e T I Z o
k=1 k! m=0 \2m'+1
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S (= l)k E5 k 2m’ k—2m’' ~4k—2m’'+3
g,(A)= kZ1 X Z_:o om’ a,(3)*™a,(4) C; Zak—2m+2>»
S (_l)k 32 k 2m' +1 k—2m'—1,4k—2m’'+3
g:(A)= kzl ) Zo \om a1 a,(3) a,(4) C; Zsk—2m+2 -

Therefore, by (6.23), the following (6.56) holds as A— co:
{ go(A)=0(a;(3)’CN+0(@;,(HC3),  9:(A=0(a,(3)C}),
g2(A)=0(a;(3)’C)+ 0@, HC]),  g3(A)=0(a,(3)C]) .

By (6.47), (6.56), (6.23) and (6.24), we obtain (6.54), and then (6.55).
Next we estimate R®(1), k=1, 2, 3. Since ¥ ,(x) is strictly increasing in x € (0, x;),
we have

(6.56)

R,('l)(/l) Sx;'l'* le%t(x;. —ra)—¥alxa) .

We use (6.13) for x=x,; —r;. Then, by using (6.29) and noting W,(x,—r;)—0 as A— o0,
we have

R < Cxitle ¥ P&ari/z
when C is a positive constant independent of A. Let us show
(6.57) RV =0o(C3x2"%) as A—»0, 0<n<3.
Indeed we have
(6.58) RMN)C3x7" 2 < Cxdy P (x,)%? e~ VRry2

Under the conditions in Proposition 6.2 the right-hand side of (6.58) is dominated by

C'x3+ODB=Dexpl  CrxA-DU-21} if 4>2,

(6.59) C'x}*CIPE=2 exp{ — C"(log x)*} , if A4=2,
: C'x3+CDB=Dexpl  Crx4-2+212} if 1<4<2,

C'x3+BDE=Dexp{—C"xz 1 *27}, if A=1,

for all sufficiently large A, where C’ and C” are positive constants independent of A.
Since (6.59) converges to 0 as A— oo in each case, we get (6.57) under the conditions in
Proposition 6.2. On the other hand, under the conditions in Proposition 6.3 the
right-hand side of (6.58) is dominated by

(660) Clxg(xgem(xz))3/2 exp{ —C"e1- 2y4)Al(x,1)}

for all sufficiently large A, where C’ and C” are positive constants independent of A.
Since (6.60) converges to 0 as A— o0, we get (6.57) in this case, too.
Now we examine R{®(1). Since y,(x) is strictly decreasing in x € (x,, o), we have
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R,(,z)()») < mz+ LoWalxatra)—vwatx) < Cm? +1,—yPxa)ry/2

for some C>0 independent of A. Recall that m, is defined by (6.33) or (6.36) and
A=y'(x;). Therefore, by using (6.16) or (6.20), we obtain

(6.61) RP(A)=0(C3x2™2) as A0, 0<n<3,
in the same way as we obtained (6.57).
Finally we estimate R{*(4). Since y,(x;)>0, we have

[* 0]
RP®(W) < j x"e*x V& |
m;

By (6.35) we get, for sufficiently large 4,

RPN < f x"e P4%dx < Cmjebima

ma

where C is a positive constant independent of 1. By using (6.14) or (6.18), we obtain
(6.62) RBPB(AD)=0(C3xI72) as A-oo, 0<n<3,

in the same way as we obtained (6.57). Hence, by (6.37), (6.38), (6.47), (6.55), (6.57),
(6.61) and (6.62), we obtain the required results.

PROOF OF PROPOSITION 6.2 AND ProOPOSITION 6.3. By Lemma 6.4, (6.56), (6.23)
and (6.24), we have |

LoWLy(DLy(A) — Ly Ly() =1/ 7 Cix} +0(Cix})  as A-co,
Lo(A)L,(A)?—L(AD)*L,(A)=(n \/_7;/2)Cfxf +0(Cix3?) as A—o0.
Hence, by (6.2) and (6.12), we obtain the required result in each of the propositions.
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