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1. Introduction.

Let us consider the generalized Thomas-Fermi differential equation
(1.1) x"=P@)x'**,  '=dldt, xz0

where o is a nonzero real constant and x! ** denotes a nonnegative-valued branch.

In the papers [5], [6] Saito succeeded in investigating the asymptotic behavior of
solutions of (1.1) where P(t)=¢**"2 (1 is a positive constant) with the aid of a
transformation

(1.2) y=vy@)¢@), z=ty’
which transforms (1.1) to a first order algebraic differential equation

(13) dz _ —MA+De?y? +Q2A+ Dayz— (1~ o)z + AA+ D>y
. dy -_— .

oayz

In (1.2), Y(2)=[A(A+1)]¥*t~* is a particular solution of (1.1) and ¢(z) is an arbitrary
solution of (1.1). Moreover in [8], [9] we considered the case P(t)= +e** where 1 is
a real constant, using a transformation in a form similar to (1.2) such as

y=y@)"o(t)*, z=y'

where Y(t)= £ A*%e~*. This transforms (1.1) to a first order algebraic differential
equation also.

Since the coefficients of y’ in the two transformations above differ, we consider a
more general transformation

(1.4 y=y(@)"*o(ty*,  z=0()"
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where (), 6(¢) are sufficiently smooth functions. We call this Saito’s transformation.
The purpose of this paper is to determine P(¢) of (1.1) such that we can transform (1.1)
to a first order algebraic differential equation. In determining this, y(z), 6(z) will be
suitably chosen. This purpose will be achieved in §2. From the conclusion of that section,
we shall find that the four differential equations

xn= +tpx1+a , xu= +ealtx1+a
whose importance is stated in [1] have the form of P(r) specified in section 2 so as to
satisfy our purpose. Therefore x” = —t#x!** can be treated in the same way as in the
papers [5], [6] and so on, while we have already dealt with the other three differential
equations. So, following the form of the differential equation given in [5], let us consider
in section 3 this equation in the form

(1.5) x"=—h"2xlte

where a, A are positive constants.
Recently there appeared many papers (cf. [4] and its references) where the positive
radial solutions of the partial differential equation

(1.6) Au+K(| x )u?=0, xeR", p>1
are considered. Such solutions satisfy
(r* u,),+r"" 1K(r)u?=0

where r=|x|. Let us make a change of letters t=r, x=u, p=1+a taking account of
(1.1). Then from a simple calculation we get

1.7 x"+(n—1)/t)x'+ Kx!**=0.
Put c=n—1. Then from (1.7) we get
(1.8) x" +(c/O)x'+ Kx'*t*=0 (t=0).

Applying the determination of P(¢) in (1.1) to (1.8), we shall determine the function K
of (1.6) in section 2 so that (1.8) can be transformed to a first order algebraic differ-
ential equation by (1.4). For K so determined, the arguments of [5] through [10] would
make the asymptotic behavior of the positive radial solutions of (1.5) easier to inves-
tigate.

2. The determination of the generalized Thomas-Fermi differential equations by
Saito’s transformation.

First we suppose
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2.1) 0(t)>0 .

For brevity we omit the variable z. Now we transform (1.1) by (1.4). From (1.4) we
have ¢ =yy'/*. Differentiating this, we obtain

¢ =y 'y + (1 ayyy 01y’
¢" =y "y %+ 2/a) 'y Py 4 (1fa)(1/2) — Dy 1D =2 (p')? + (/o) y 0~ 1y
However since ¢ satisfies (1..1), ¢ =Pyl*t*yt/m*+1 Therefore we get
Ly =aPYS —a Ty =20 Yy — ()~ Dy T ()

Substituting y’=60"1z, we obtain

Y =aPYyt—ah Yy =24 0Tz — (1) - 1)y~ 07222

Hence we get
Z’=0'y'+0y"=0"10"z+a0PyY*y* —aby " y"y
=2y~ Wz~ ((1/m)—1)0" 1y~ 122,
From y’=07"1z and this fact, we conclude that
dz/dy=2z'[y'={(a—1)z% + (0’ — 20y~ y")yz
+a202PYyy3—a?0%y Yy} ayz .
If the coefficients of the polynomial of y, z between the braces are constants, then there
exist constants c,, ¢,, ¢; such that

2.2) 6’ —20y W'=c,,

(2.3) 0’Py*=c,,

2.9 0%~ YW =c,.
From (2.2)

Y'=((0"—c1)/20) .
Solve this. Then noticing (2.1), we get
2.5)  W=c,0'2J(0)
where ¢, is a constant and

J(@)=exp(—c,/2) J (1/0)dt .

However J'(6)=(—c,/20)J(6). Consequently
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Y’ =(ca/2)0™ 1O —cy)(O),
Y =(cy/HO32{—0'(0'—cy)+200" —c,(0" —cy)}J(6) .
Thus we get
(2.6) 02y~ 1y ={—(0)*+200"+c?}/4.

Substitute this into (2.4). Then —(8’)%+ 200" =4c;—c3. Differentiating both sides, we
obtain 6" =0. Namely

2.7 O=pt>+qt+r

where p, g, r are real constants.
It follows from (2.5) and (2.7) that

(2.8) Y =cy(pt®+qt+r)'?exp(—c,/2) J‘(l/(pt2 +qt+r))dt .

Furthermore from (2.3), (2.7) and (2.8)
2.9) P=c,07 %

=c,c7 % (pt?+qt+r)" 2" Pexplac,/2) J(l/(ptz +qt+r))dt.

Conversely if 6, y, P are given as (2.7), (2.8), (2.9) respectively, then (2.2) and
(2.3) are evidently valid. Moreover we have (2.6). Therefore from (2.4) and (2.7) it
follows that

(2.10) c3=(—q*+4pr+c?)/4.

Thus (1.1) with (2.9) can be transformed by (1.4) with (2.8) into a first order algebraic
differential equation

@2.11) dz  (a—1)z2+ac,yz+a2c,y3—a?cyy? .

dy ayz
Summarizing these, we have

THEOREM A. If (1.1) can be transformed by (1.4) into a first order algebraic
differential equation, then P(t) has the form (2.9). Furthermore 0(t), Y(t) are determined
as (2.7), (2.8) respectively. In this case, (1.1) is transformed into (2.11) by (1.4).

If <0, then the same conclusion follows. Actually it suffices to put 0= —8,
5 1 = —C 1.
Rewriting (2.9) by using 0, we get

P=c,c;*07 2" “exp(ac,/2) j(l/@)dt .
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Moreover we have

W =02 exp(—cy/2) J(l/@)dt .

Now we have five cases: (i) 6 is a constant, (ii) 0 is a linear function of ¢, (iii) the
quadratic equation =0 has two different real roots, (iv) the quadratic equation =0
has the multiple root, (v) the quadratic equation 6 =0 has imaginary roots. Here we
obtain P(¢) more explicitly in every one of these cases.
In case of (i), we have P(z)=ye” where y=c,c; %0~ >~ 2, g=uc,/26.
Suppose =gt +r in case of (ii). Then P(t)=y(qt+r)° where
y=0ccs®,  o=—2—(a/2)+(ac,/29) .

Here { is a constant with |{|=1 which appears in removing | |. It may be necessary
to recall that the primitive function of 1/x is given by log| x| for real x.
If the case (iii) occurs, then we put

O=plt—=CYe—n)  (E#n).
Thus we have
P()=y(t—&) 27 @D¥My—y) =27 @2 n
where y=_{c,c3°p™ ", u=uc,/2p(§—n).
In the case (iv), we put 6=p(t— &)%. So we get
PO =y(t—&)™* el ~9
where

Y=cci’p TP, o= —acy/2p.

Finally we consider the case (v). Then we put 08 =p{(t—&)*+n?}. Therefore
P(t)=’)7{(t——f)2 +nZ}—2—-(a/2)eatan“‘(t—§)/r1
where
~2-@2) |

Y=0C2,°Pp c=uc/2pn .

Let us determine the function K of (1.6) so that the transformation (1.4) turns (1.8)
to a first order algebraic differential equation. First we let the term (c/f)x’ vanish. For
this, we put s=¢!"¢if c# 1. Then from (1.8) we get

(2.12) , d*x/ds?>+(1—c) " 2s2/A-Kx1**=0 .
If c=1, then we put s=logt. In this case, we have

(2.13) d?x/ds? +e*Kx'**=0 .
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Since (2.12), (2.13) have the form contained in (1.1), we use Theorem A. Notice
that c=1 is equivalent to n=2, because c=n—1. Then from the above discussions,
(1.8) can be transformed to a first order algebraic differential equation through (1.4) if
K has the following form: Corresponding to every case of (i) through (v), we have

(i) K@=yt°~? (n=2)
___(n__2)2,yt—2n+2eat2‘" (n§3),

(ii) K(@)=yt" *(qlogt+r) (n=2)
=(n—-2*p7 2" g2 ™"+ (n23),

(i) K(2)=yt"*(logt—¢) ™2~ @ " Klogt—n)~ 2~ @K (n=2)
=(n_2)2,yt—2n+2(t2—n_é)—2—(a/2)+u(t2—n_")—2—(a/2)—u (ng3),

(iv) K(t)=yt~ X(logt— &)™+ 2eo/lest=0) (n=2)
=(n_2)2yt—2n+2(t2—n__é)—4—aea/(t2‘"—§) (M;3),

(V) K(t)=yt"2{(logt—é)2+r,2}"2"°‘/2)e""“_"’°""5’/" (n=2)

=(n_2)2.yt—2n+2{(t2—n_¢)2+n2}—2—(¢/2)eatan"(12"‘—¢)/n (ng3) ,

where —7y is replaced by y. If we change n—1 for c in these, then we obtain the form
of K corresponding to (1.8) where c is any constant which is not necessarily a positive
integer.

3. The application.

Let us consider the nonlinear differential equation (1.5) in the domain 0 <7< o0,
0< x<o0. First we transform (1.5) to (1.3). In (2.9), take

3.1 3 *=—1,
(3.2) p=r=0, gq=1.
Then we have
P=—t"2"@exp(ac,/2)logt= — €1~ D=/2-2
Comparing this with (1.5), we take (c; —1)/2=4, namely
(3.3) ' cy=2A+1.
Moreover comparing (1.3) with (2.11), we find that c, is suitably chosen and
(34 ca=c3=AMi+1).

From (3.2), we get 6=t. Furthermore from (3.1), (3.4) we obtain c;*= —1/A(A+1).
Hence from (2.5)

W =(— 1/AA+ 1))t~ %2 exp(a(24+ 1)/2) logt =(— 1/A(A+ 1))t** .
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Now from (1.4) we have the transformation
(3.5 y=(—=1A+1))?P(t), z=1y'.

Also (2.10) is satisfied by (3.1)—(3.4). Hence this transforms (1.5) to (1.3).
Since >0, we get y <0. It follows from (3.5) that we get

3.6) y lz=a(A+1t¢’'/P).

Moreover let ¢(f) be any positive solution of (1.5) whose domain will be denoted by
(o', w) where 0w’ <w < 0.

Now we consider the case #—w. Then we have the following possibilities:

(1) O<w<oo, lim,,, ¢(t)= o0,

(ii) O0<w<oo, lim,_,¢(t)=0,

(i) w=o0, lim,, , ¢(t)= o0,

(iv) w=o0, lim,,,¢(t)=c (>0),

(v) w=oo0,lim,,,¢()=0.
In the cases (i), (iii), (iv), we get lim,,,y= —oo. Furthermore in the case (ii),
lim,_,y=0.

If z is a fixed value in (1.3), then dz/dy=0 is valid on the discrete values of y.
Therefore the solution z=z(y) has the inverse function y = y(z). If we put {=1/y, then

ac —alz
dz — A+ D +2A+ Dol 2z—(1— o) 322 + AA+ a2

Now suppose that y is unbounded. Then from (3.7) {=01i.e. y=o0. This is a contradic-
tion. Thus y is bounded.

This means that the cases (i), (iii), (iv) cannot take place. Since lim,_,, ¢(¢)=0 in
the cases (ii), (v), there exists a positive constant T such that ¢'(T)<O0. If t> T, then
there exists a constant R such that ¢’(f) < R<0 since ¢"(¢)<0. Consequently if ¢(z) is
continuable up to ¢= oo, then we have a contradiction ¢(1)—HT)<R(t—T)— — 0 as
t— 0. Hence we obtain :

(3.7)

O<w< o, lim ¢(z)=0.
[ 2l ]
Moreover since (ii) takes place, lim,_,y=0.
As t—w’, the solution ¢(¢) is bounded. Actually we get ¢"(t)<0. Hence if t<r1,
then ¢'(¢)= ¢'(r). Integrating both sides of this from ¢ to 7,

¢)— ()2 P (t)z—1).

However if ¢(¢) is unbounded as r—»w’, then ¢(t)—¢(¢) is unbounded below. This
contradicts the above inequality.
Here let us show the unique existence of a solution ¢(¢) of (1.5) such that
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(3.8) lim¢(z)=0, limg¢'(t)=b, b>0.
t—0 t—=0

Moreover let us obtain the analytical expression of this. If this exists, then we get
lim¢/¢p(t)=lim 1/¢'(z)=1/b
t=+0 t=0

from 1"Hospital’s theorem. Therefore from (3.6)

limy=0, limy 'z=0(i+1), limz=0.
t—0

t—0 t—0
Thus we put v=y~ 'z—a(4+1). Hence we obtain

dv M+ Da2y —av—v?

(3:9) dy  ay{v+oa(d+1)}

or equivalently the 2-dimensional autonomous system

dylds=(+ Da?y +ayv
(3.10) lylds=(A+ Do’y +ay )
dvjds= A+ Da?y—av—v?.

The coefficient matrix of the linear terms of (3.10) is equal to
[(l+ o ? 0 :|
A+ Da? —a.
Since a, A are positive, the eigenvalues satisfy —a<O0<(4+ 1)a2. Consequently
(y,v)=(0,0) is a saddle point of (3.10). In this case (3.10) has only two solutions

tending to (0, 0) of the form

(3.11) y=ay(Ce** %)+ a)(Cet* D)2 4 - - -
: v=b1(Ce‘“ 1)“2’)+b2(Ce“+ 1)a2s)2 4
as s— — o0, and

3.12) y=a,(Ce™*)+ay(Ce™*)>+ - - -
v=>b,(Ce”*)+b,(Ce *)*+ - - -
as s— o0 where C is a constant. Substituting (3.11) into (3.10),
byja,=AA+Da/{(A+1)a+1}.
Hence from (3.11)
v=[AA+ Da/{(A+Da+1}]y+---.
Returning to the original variables,

ty'=a(A+1)y[1+{A/(A+ Da+1)}y+---].
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Solving this, we get

—y= 2 aDr*** Yy, a;=1

n=1

where D is a constant. Therefore from (3.5)
$O)={AA+D}DYer Y a D1y, go=1.
n=0

From this we get
¢'0)={AMA+1)}*De=p .
Namely we have D=54%1(A+1). Consequently

(.13) BO)=bt 5 a{EAA+ )R g
n=0

Here notice that y=0, v=>5,(Ce™*)+ - - - satisfies (3.10). Namely (3.12) is equal to this.
Thus from (3.12) no solution of (3.9) can be obtained. Therefore the solution of (1.5)
satisfying (3.8) is given only by (3.13).

Next, with the aid of the referee’s comment, let us show that if

3.149) lim ¢(2)=0,

t—0

then ¢'() is bounded. From (3.14), there exists 7> 0 such that ¢'(7)>0. Since ¢"(¢) <0,
we get

(3.15) ¢'(1)2¢'(T)>0
if 0<t<T. On the other hand, from (1.5) and (3.14) we get
_¢n(t)=ta).—2¢(t)1 +a< tu—zd)(t)l +a< Cltu—z

where C; is some positive constant and u is a positive irrational constant such that
p<min{l, aA}. Hence for some positive constant § we have

¢,
1

—¢'O)+¢'()= (@ t=o"71

by integrating the above inequality from ¢ to J (0 <7< J). Hence there exists a positive
constant C such that ¢'(¢r)< C'##~ 1. Integrating this again, ¢(¢)< C{t* where C/ is a
constant. Thus

—§ (1) <1*72P(1) TE< C2 2

In case of 2u <1, repeat the above procedure. Taking m=[1/u], this procedure can be
repeated m times, since mu <1 <(m+ 1)u. Thus we obtain
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YOSCot™, = ¢ (NS Cpyyt™+ 72

where C2., C,.+, are constants. Consequently for 0 <7<

Ch+1 - _
— (o +o'(t S__'"—_ 6(m+l)u l_t(m+1)u 1 .
PO+ OB )
Hence ¢’(¢) is bounded as ¢t—0.
From the above discussions, the asymptotic behavior of solutions of (1.5) has the
following three possibilities:

(i) >0, lim,., ¢()=0,
(ii) ’'=0, lim,, ., ¢(t)=0,
(i) w’'=0, lim, ., ¢(t)=a>0.
In every one of these cases, w is finite and lim,_,, ¢(t)=0. Therefore from (3.6)

limy=0, limy~!

t—~ow t—-w

Z=—00.

Actually ¢'(w)=0 is impossible, since ¢"(t)<0. Similarly in the case (i),

lim y=0, limy !'z=00.

t— o’ t—=w’
As is stated above, in the case (ii)

lim y=0, limy lz=a(i+1), limz=0.

toow’ t—o’ t>o’
In the case (ii)

limy=0, limy 'z=qai, limz=0,

t—w’ t— o’ t—~w’
since if ¢’ diverges, then ’'Hospital’s theorem implies

’ ” _qxA—2 4 1+a
fim g = tim ® " —tim— %" _tim = @ " _jim mgireo.
1-0 -0 1/t =0 —1/t? -0 —1/t? 1-0

(y, z) is a solution of the 2-dimensional autonomous system

dylds=ayz

3.16
(3.16) dzlds= — AA+ Da2y? + A+ Doyz—(1 —a)z2 + M(A+ Da?y? .

Orbits of this cannot intersect each other. If the point (y,, zo) of the yz-plane is given
arbitrarily, then from (3.5) we obtain the solution ¢(¢) of (1.5) corresponding to (y,, Zo)-
In any of the cases (i)—(iii), we have

lim y=0, limy=0.

t— o’ toow
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Therefore every orbit of (3.16) intersects perpendicularly with the y-axis at a point.
Moreover this tends to the nonnegative part of the z-axis as s——oo and to the
nonpositive part of the z-axis as s— o0, in a monotonic way with respect to y, since z
has the definite sign. As is shown above, there exists uniquely an orbit of (3.16) tending
to the origin with y~'z—a(4+1). Suppose that this orbit intersects with the y-axis at
(¥4 0). Here give the initial condition
0<T<w, x(T)=A4(>0), x'(T)=B
to (1.5). Then from (3.5), (3.6) we have
WD)=(—YMA+1)T*4%,  2T)=ay(T)A+ TB/A).

Fix T, A. Then ¥(7) is fixed. Also z(T) is a decreasing function of B. If y, <y(T)<0,
then 0 <4 <a, where

a,={AA+ 1} TH—y ).

Draw a phase portrait of (3.16). If we put a point (y,, z,) inside the region surrounded
by the unique orbit obtained in the case (ii) and by the z-axis, then the case (iii) takes
place. If we put (y,, z,) outside this region, then the case (i) takes place. Consequently
we get

THEOREM B. If0<A<a,, then there exist B,, B, (— o < B, <B, < ) such that
B< B, or B> B, implies

w'>0, lim ¢(r)=0,

t— o’

B=B, or B=B, implies

=0, lim¢)=0,

t-w’

and B, < B< B, implies

o'=0, lim ¢(t)=a>0.

t—~ o’

If A=a,, then there exists By such that B+# B, implies

w'>0, lim ¢(2)=0,

t-w’

B= B, implies

w'=0, lim¢()=0.

t— o’

If A>a,, then
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©'>0, lim ¢(r)=0.
t—w’

For every (A, B), we get

O<w<, lim ¢(¢)=0.

=0

Now let us obtain an analytical expression of ¢(¢) in the case (iii). Since y~ lzal,
we put v=y~ 'z—al. Then we get

dv _ av—v?+AA+1)a’y
dy ay(v+ al) ’

In a neighborhood of (y, v)=(0, 0), we get a Briot-Bouquet differential equation
dv v
—=A+)y+——=+---.
Yy (A+1)y )
If we put n= —y, then
dv v
— ==+ —+ .
e (4+1)n )

Therefore we obtain

(317) V= z vmnﬂm{" 1/m‘(h logn + F)}" ’ Vo1 = 1

m+n>0

where A, I' are constants and #=0 if 1/al is not an integer. Returning to the original
variables, we get

ylz—ad= Y, Omn™{n'*Yhlogn+I)}",

m+n>0

ty'=—tn'=—nlad+ Y Onn"{n'**(hlogn+I)}"].

m+n>0

Thus we have

m+n>0

(1/001)[(1/'1)+ > Watt™ Hn' N 1Ogn+n}"] '=1t.
Integrating both sides, we obtain

rl[1+ Y. Cmat™{n'**hlogn+I )}"]=(Dt)"“1

m+n>0

where D is a constant. Hence Smith’s lemma (cf. Lemma 1 of [6], [7]) implies that
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11=(Dt)°‘"|:1+ y ém,,(Dt)“""{Dt(hlog(Dt)“‘+I’)}”].

m+n>0

It follows from (3.5) that
(3.18) $(1)={AA+ D)} Vor it

={/1(,1+1)}1/“Dl[1+ 3 y,,,,,(Dt)“""{Dt(hlog(Dt)“‘+I‘)}":|.

m+n>0
Since ¢(¢) tends to a as t—0, we get {A(A+1)}*D*=a, i.e.,
(3.19) D=a"J{AA+ 1)} 1ot

Consequently we obtain

(3.20) ¢(t)=a[1+ > y,,,,,(Dz)“m{Dt(ﬁ1ogt+f*)}"]

m+n>0

where D is given by (3.19), A=alh and ['=aihlogD+T. If aA> 1, then the term of the
lowest order of (3.17) is given by I'n'/**, Therefore from (3.6) it follows that

F=limy= Y% =limy~ Y4 yp~1z—al)
n—0 n—0

=lim {A(A+ 1)} 1/24 = 1d(e) A (2)/ (1)
t—0 )

= {MA+ 1)} V*ab/at + /D

where b=lim,_, ¢'(t). Since 1/aA is not an integer in this case, 4 is equal to 0. Hence

(3.21) ¢(t)=a[1 + Y @A+ 1)}t“*)'"((ab/a)t)"] .

m+n>0

Notice that these discussions are given in [5], [6] for the equation x” =¢**"2x**,

Let us determine the analytical expression of ¢(¢) around ¢t =w. From (3.6) we get

limy=0, limy~lz=—oc0.
t—=w t—w

Thus we put w=yz~!, n= —y. Then we obtain a Briot-Bouquet differentiavl equation

d
'17w—=—w—-—(22+ Dw2 4+ AA+ Daw3 + A(A+ Danw? .
n o

Hence

W= 3 Wud™DnM,  wor=1,Wpo=0

m+n>0
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where D is a constant. Following the discussions of §5 of [6],

(3.22) ¢(t)=C(w—t)[1+ > qb,,,,,(w—t)"'(w—t)“":l

m+n>0

where I'= —1/D, C=(I'Jaw** ) {A(A+ 1)}/
Similarly if 0 <’ < o0, lim,_, . ¢(¢)=0, then we obtain

(3.23) ¢(t)=C(¢— w')[l + 2 Omlt—)(— w’)“”]

m+n>0

where I'=1/D, C=(IJaw **Y){AA+ 1)} 1=,
Namely the analytical expressions of ¢(z) is given as follows:

THEOREM C. If 0<A<a,, B<B, or 0<A<a,, B>B, or A=a,, B#B, or
A>a,, then (3.23) is valid. If 0<A<a,, B=B, or 0<A<a,, B=B, or A=a,, B=B,,
then (3.13) is valid. If 0<A<a,, B, <B<B,, then (3.20) is valid and especially in the
case when aA>1, (3.21) is valid. For every (A, B), (3.22) is valid.

Finally let us consider the case when 7’=0, namely when the initial condition is
given as

3.29) x(0)=A(>0), x'(0)=B.

If aA>1, then there exists the unique solution satisfying this for any (A4, B). This is
represented as (3.21) where a= A4, b= B. Actually this is obtained from the orbit (y, z)
of the 2-dimensional autonomous system (3.16) such that (y, z)—(0,0), y~ 1z —>al.
Suppose 0 <ad < 1. From (3.20), we have

d()=a{l +y,0D*t**+---} .
Differentiating this, we see that

¢'(t)=ay oD adt®* 14 -

¢"(t)=ay,oDad(@A—1)t**"2 4 - - -,

Substituting these into (1.5), we get

ay, oD aMad—1)= —alte,
Namely we obtain

V10D = —a*lal(ai—1).
Thus ¢’(z) tends to oo as t— 0, since
'()=(a"* /(1 —adt " 4

Similarly if aA=1, then
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¢'(t)y=—a'**logt+ -,
since we have
o(t)=a[l+7y,,Dt(hlogt+T)+ -]

from (3.20) in this case. Therefore ¢'(¢) tends to co as 1 — 0. Now we conclude that the
initial value problem (1.5) with (3.24) has no solution if 0<al<1.
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