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1. Introduction.

Let $G$ be a Lie group with Lie algebra $g$ , and $H$ a closed subgroup with Lie algebra
$h$ . Let $Aut(G, H)$ be the group of automorphisms of $G$ leaving all elements of $H$ fixed,
and Inn$(G, H)$ its normal subgroup consisting of inner automorphisms.

Given a principal G-bundle $P$, let $\mathscr{C}(P)$ be the space of connections in $P$ and $\mathscr{G}(P)$

the group of gauge transformations of $P$ . The main purpose of this note is to prove
the following statement, (see Theorem 2 for more details).

Ifthe structure group $G$ of $P$ can be reduced to $H$, then the group $Aut(G, H)/Inn(G, H)$

acts on the moduli space $\mathscr{C}(P)/\mathscr{G}(P)$ , and the action isfree on the genericpart $of\mathscr{C}(P)/\mathscr{G}(P)$ .

2. Deflnitions and theorems.

In our previous paper [2] we introduced the concept of conjugate connection in
principal bundles. We first recall its definition.

Let $P$ be a principal G-bundle over a manifold $M$ with projection $\pi$ . Let $Q$ be a
principal H-subbundle of $P$ ; in general, such a subbundle $Q$ may not exist. We cover
$M$ by open sets $U_{i}$ with local sections $s_{i}$ : $U_{i}\rightarrow Q$ . Then the transition functions $a_{ij}$ are
defined by

$s_{j}(x)=s_{i}(x)a_{ij}(x)$ $x\in U_{i}\cap U_{j}$ .
It is important to take local sections ofthe subbundle $Q$ so that the $a_{ij}’ s$ are H-valued.

A connection in $P$ is given by a family of g-valued l-form $\{\omega_{i}\}$ , where each $\omega_{i}$ is
defined on $U_{i}$ and the forms $\omega_{i}$ and $\omega_{j}$ are related by (see [1; Proposition 1.4 on p. 66])

(1) $\omega_{j}=a_{ij}^{-1}\omega_{i}a_{ij}+a_{ij}^{-1}da_{ij}$ on $U_{i}\cap U_{j}$ .
Given $\sigma\in Aut(G, H)$ , we set

$\omega_{i}^{\sigma}=\sigma(\omega_{i})$ .
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Apply $\sigma$ to (1). Since $a_{ij}$ is H-valued and hence invariant by $\sigma,$
$\{\omega_{i}^{\sigma}\}$ defines a connectic

in $P$ . We call it the $\sigma$-conjugate of the connection $\{\omega_{i}\}$ relative to $Q$ . This defines a
action of $Aut(G, H)$ on the space $\mathscr{C}(P)$ of connections in $P$ .

Given a gauge transformation $\varphi\in \mathscr{G}(P)$ and an automorphism $\sigma\in Aut(G, H),$ $w$

constructed a gauge transformation $\varphi^{\sigma}$ so that $Aut(G, H)$ acts on $\mathscr{G}(P)$ as a
automorphism group. We recall the definition. A gauge transformation $\varphi$ of $P$ is
transformation of $P$ commuting with the right action of $G$ and inducing the identit
transformation on the base space $M$. With respect to a local section $s_{i}$ of $Q$ we $expre$

$\varphi$ by a map $\varphi_{i}$ : $U_{i}\rightarrow G$ as follows:

(2) $\varphi(s_{i}(x))=s_{i}(x)\varphi_{i}(x)$ $x\in U_{i}$ .

Then

(3) $\varphi_{j}(x)=a_{ij}(x)^{-1}\varphi_{i}(x)a_{ij}\langle x)$ $x\in U_{i}\cap U_{j}$ .
Conversely, a family $\{\varphi_{i}\}$ which is related by (3) defines a gauge transformation $\varphi$ of $P$ .

Applying $\sigma\in Aut(G, H)$ to (3), we obtain

$\sigma(\varphi_{j}(x))=a_{ij}(x)^{-1}\sigma(\varphi_{i}(x))a_{ij}(x)$ $x\in U_{i}\cap U_{j}$ .
Therefore, the family $\{\sigma(\varphi_{i})\}$ defines a gauge transformation of $P$, which we denote by $\varphi^{d}$

Given a connection form $\{\omega_{i}\}$ on $P$, a gauge transformation $\varphi=\{\varphi_{i}\}$ induces
new connection $\{\theta_{i}\}$ by

(4) $\theta_{i}=\varphi_{i}^{-1}\omega_{i}\varphi_{i}+\varphi_{i}^{-1}d\varphi_{i}$ .
In [2] we proved

THEOREM 1. If two connections $\{\omega_{i}\}$ and $\{\theta_{i}\}$ in $P$ are gauge equivalent under $\{$

then their $\sigma$-conjugates $\{\omega_{i}^{\sigma}\}$ and $\{\theta_{i}^{\sigma}\}$ are gauge equivalent under $\varphi^{\sigma}$ . Thus, the $gro\iota_{t}$

$Aut(G, H)$ acts on the moduli space of connections $\mathscr{C}(P)/\mathscr{G}(P)$ .

It was pointed out by M. Itoh that Inn$(G, H)$ acts trivially on $\mathscr{C}(P)/\mathscr{G}(P)$ . Thu
$Aut(G, H)/Inn(G, H)$ acts on $\mathscr{C}(P)/\mathscr{G}(P)$ . The purpose of this note is to show that th
action is generically free in the following sense.

Fix a point $u_{0}\in Q$ , and let $\Psi_{u_{O}}$ be the holonomy group of the connection $\omega$ wit
respect to the reference point $u_{0}$ . We call a connection in $P$ generic if its holonon]

group coincides with $G$ .
THEOREM 2. Let $\sigma\in Aut(G, H)$ and $\{\omega_{i}\}\in \mathscr{C}(P)$ . Assume that $\{\omega_{i}^{\sigma}\}$ is gaug

equivalent to $\{\omega_{i}\}$ under a gauge transformation $\varphi$ . If we define an element $a\in Gt$

$\varphi(u_{0})=u_{0}a$ , then,

$\sigma(g)=a^{-1}ga$ for $g\in\Psi_{u_{O}}$ .

In particular, if the holonomy group is $G$ , then $\sigma$ is the inner automorphism defined $t$
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$a^{-1}$ above.
As a consequence, $Aut(G, H)/Inn(G, H)$ acts freely on the generic part of $\mathscr{C}(P)/\mathscr{G}(P)$ .

3. Proof of Theorem 2.

We shall first show that if $\sigma\in Aut(G, H)$ is inner so that

$\sigma(g)=a^{-1}ga$ , $g\in G$ ,

then there is a gauge transformation $\varphi_{a}$ such that a connection $\{\omega_{i}\}$ and its $\sigma$-conjugate
$\{\omega_{i}^{\sigma}\}$ are gauge equivalent under $\varphi_{a}$ .

Since $\sigma$ leaves every element of $H$ fixed, $a$ commutes with every element of $H$.
Define a constant map $\varphi_{i}$ : $U_{i}\rightarrow G$ by

$\varphi_{i}(x)=a$ , $x\in U_{i}$ .

Then $\{\varphi_{i}\}$ satisfies (3) and defines a gauge transformation of $P$ , which we call $\varphi_{a}$ . Then
from (4) it is evident that $\varphi_{a}$ sends $\{\omega_{i}\}$ to $\{\omega_{i}^{\sigma}\}$ . This proves that $Aut(G, H)/Inn(G, H)$

acts on $\mathscr{C}(P)/\mathscr{G}(P)$ .
Before we start the proof of Theorem 2, we first need to express a connection $\{\omega_{i}\}$

by a globally defined g-valued l-form $\omega$ on $P$ . Identifying $U_{i}\times G$ with $\pi^{-1}(U_{i})$ by

$(x, g)\mapsto s_{i}(x)g$ , $x\in U_{i},$ $g\in G$ ,

we use $(x, g)$ as a local coordinate for $P$ . Then

(5) $\omega=g^{-1}\omega_{i}g+g^{-1}dg$ ,

so that $\omega_{i}=s_{i}^{*}(\omega)$ .
Every element $u\in P$ is of the form $u=s_{i}(x)g,$ $g\in G$ . Given $\sigma\in Aut(G, H)$ , define a

transformation $h_{\sigma}$ of $P$ by

(6) $h_{\sigma}(s_{i}(x)g)=s_{i}(x)\sigma(g)$ , $g\in G$ .

As atransformation of $U_{i}\times G,$ $h_{\sigma}$ is given by

(7) $h_{\sigma}$ : $(x, g)\mapsto(x, \sigma(g))$ .

We note that $\sigma(\omega)$ is not, in general, aconnection in P, let alone the $\sigma$-conjugate of $\omega$ .
The $\sigma$-conjugate $\omega^{\sigma}$ of $\omega$ is given by

(8) $\omega^{\sigma}=(h_{\sigma}^{-1})^{*}(\sigma(\omega))=\sigma(((h_{\sigma}^{-1})^{*}\omega))$ .

In fact, by (5) and (7)

$\omega^{\sigma}=g^{-1}\sigma(\omega_{i})g+g^{-1}dg=(h_{\sigma}^{-1})^{*}(\sigma(g^{-1}\omega_{i}g+g^{-1}dg))=(h_{\sigma}^{-1})^{*}(\sigma(\omega))$ .
We quickly recall the definition of the holonomy group. Fix points $x_{0}$ in $M$ and

$u_{0}\in Q\subset P$ such that $\pi(u_{0})=x_{0}$ . Given a curve $x(t),$ $0\leq t\leq 1$ , in $M$ with $x(O)=x_{0}$ , the
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parallel displacement of $u_{0}$ along $x(t)$ is acurve $u(t)$ in $P$ such that
(a) $\pi(u(t))=x(t)$ for $0\leq t\leq 1$ ,
(b) The velocity vector $u^{\prime}(t)$ of $u(t)$ is horizontal, i.e., $\omega(u^{\prime}(t))=0$ ,
(c) $u(0)=u_{0}$ .

Acurve $u(t)$ satisfying (a) and (b) is called ahorizontal lift of $x(t)$ .
Assume that $c=x(t),$ $0\leq t\leq 1$ , is a closed curve, i.e., $x(O)=x(1)=x_{0}$ . Let $\tilde{c}=u(t)t$

the parallel displacement of $u_{0}$ along $x(t)$ . Then $u(O)=u_{0}$ and $u(1)$ are in the same fibt
of $P$ . So, there is a unique element $\tau_{c}$ of $G$ such that $u(1)=u_{0}\tau_{c}$ . Consider all piecewif
smooth closed curves $c$ starting from and ending at $x_{0}$ . Then the set of all $\tau_{c}$ forms
subgroup of $G$ . This group, denoted by $\Psi_{uo}$ , is the holonomy group with reference to $u_{0}$ .

LEMMA 1. Let $\sigma\in Aut(G, H)$ . If a curve $u(t)$ in $P$ is horizontal with respect to
connection $\omega$ , i.e., $\omega(u^{\prime}(t))=0$ , then $h_{\sigma}(u(t))$ is horizontal with respect to $\omega^{\sigma}$ .

$p_{R\infty F}$ . By (8),

$\omega^{\sigma}(h_{\sigma}(u^{\prime}(t)))=((h_{\sigma}^{-1})^{*}(\sigma(\omega)Xh_{\sigma}(u^{\prime}(t)))=(\sigma(\omega))(h_{\sigma}^{-1}(h_{\sigma}(u^{\prime}(t)))$

$=(\sigma(\omega)Xu^{\prime}(t))=\sigma(oXu^{\prime}(t)))=0$ .
The following two lemmas are even more trivial.

LEMMA 2. Let $\varphi$ be the gauge transformation of P. If a curve $u(t)$ is $horizont/$

with respect to $\omega$ , then the curve $\varphi^{-1}(u(t))$ is horizontal with respect to $\varphi^{*}\omega,$ $ i.\epsilon$

$(\varphi^{*}\omega)(\varphi^{-1}(u(t)))=0$ .

LEMMA 3. If two curves $v(t)$ and $w(t)$ of $P$ are horizontal lifts of a curve $x(t)$ in 1
with respect to a connection $\theta$, then there is a constant element $a\in G$ such that

$w(t)=v(t)a$ for all $t$ .

Using these lemmas we shall now complete the proof of Theorem 2.
Assuming that $\omega^{\sigma}$ is gauge equivalent to $\omega$ under $\varphi$ , we set $\theta=\omega^{\sigma}=\varphi^{*}\omega$ . $L_{t}$

$c=x(t),$ $0\leq t\leq 1$ , be a closed curve in $M$. Let $u(t)$ be the horizontal lift of $x(t)$ wit
respect to $\omega$ such that $u(O)=u_{O}\in Q$ .

Then, by Lemma 2, $(\varphi^{-1}(u(t)))$ is horizontal with respect to $\theta$, and by Lemma
$h_{\sigma}(u(t))$ is horizontal with respect to $\theta$ . Since $\varphi^{-1}(u(t))$ and $h_{\sigma}(u(t))$ are lifts of $x(t)$ ,

$h_{\sigma}(u(t))=\varphi^{-1}(u(t))a(t)$ with $a(t)\in G$ .
By Lemma 3, $a(t)$ is a constant element, say $a$, of $G$ . Hence,

$h_{\sigma}(u(t))=\varphi^{-1}(u(t))a$ .

Setting $t=0,1$ , we have
$h_{\sigma}(u(0))=\varphi^{-1}(u(0))a$ ,
$h_{\sigma}(u(1))=\varphi^{-1}(u(1))a$ .
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Let $\tau_{c}\in G$ be the holonomy element defined by $c$ , i.e., $u(1)=u(0)\tau_{c}$ . Since $u(O)=u_{0}\in Q$

is fixed by $h_{\sigma}$ , we have

$h_{\sigma}(u(1))=h_{\sigma}(u(0)\tau_{c})=u(0)\sigma(\tau_{c})$ .

On the other hand, since the gauge transformation $\varphi^{-1}$ commutes with the right
action of $G$ , we have

$u(0)\sigma(\tau_{c})=h_{\sigma}(u(1))=\varphi^{-1}(u(1))a=\varphi^{-1}(u(0)\tau_{c})a$

$=(\varphi^{-1}(u(0)))\tau_{c}a=h_{\sigma}(u(0))a^{-1}\tau_{c}a=u(0)a^{-1}\tau_{c}a$ .

Hence, $\sigma(\tau_{c})=a^{-1}\tau_{c}a$ . Since every element $g$ of $\Psi_{uo}$ is of the form $\tau_{c}$ for some $c$ , we have
$\sigma(g)=a^{-1}ga$ for all $g\in\Psi_{u_{0}}$ , completing the proof of Theorem 2.

4. Example.

Consider the symmetric pair $(SO(r), SO(p)\times SO(q)),$ $p+q=r$ , which defines the
Grassmann manifold of oriented p-planes in an r-dimensional real vector space. Since
the case $p$ or $q$ is 2 is alittle exceptional in that the Grassmann manifold is a hyperquadric
and a Hermitian symmetric space, we assume that neither $p$ nor $q$ is 2. Then $Aut(SO(r)$ ,
$SO(p)\times SO(q))$ consists oftwo elements, namely, the identity and the symmetry $\sigma$ given by

$\sigma:X\mapsto I_{p,q}^{-1}XI_{p,q}$ ,

where

$I_{p,q}=\left(\begin{array}{ll}I_{p} & 0\\0 & -I_{q}\end{array}\right)$ .

The automorphism $\sigma$ of $SO(r)$ is inner if at least one of $p,$ $q$ is even. (If $p$ is even and
$q$ is odd, use $-I_{p,q}\in SO(r)$ to define $\sigma.$ )

We shall show that it is not inner if both $p$ and $q$ are odd. Let $X$ be an element
of the Lie algebra so$(r)$ . Since $r$ is even, det(X) $=p(X)^{2}$ , where $p(X)$ is the Pfaffian of $X$.
We have

$p(\sigma(X))=p({}^{t}I_{p,q}XI_{p,q})=\det(I_{p,q})p(X)=-p(X)$ .

If $\sigma$ is an inner automorphism given by some element $A\in SO(r)$ , then

$p(\sigma(X))=p({}^{t}AXA)=\det(A)p(X)=p(X)$ ,

which is a contradiction.
Thus, if $P$ is an $SO(r)$-bundle that is reducible to an $SO(p)\times SO(q)$-subbundle $Q$ ,

then the group $Z_{2}$ acts on the moduli space $\mathscr{C}(P)/\mathscr{G}(P)$ in such a way that its action on
the generic part is free.

As we pointed out in [2], $Aut(G, H)$ acts also on the moduli space of Yang-Mills
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connections, and the statement above holds also as an action on the moduli space
Yang-Mills connections.
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