Neighborhood Conditions and k-Factors

Tadashi IIDA and Tsuyoshi NISHIMURA

Keio University and Shibaura Institute of Technology
(Communicated by M. Maejima)

Abstract

Let k be an integer such that $k \geq 2$, and let G be a connected graph of order n such that $n \geq$ $9 k-1-4 \sqrt{2(k-1)^{2}+2}, k n$ is even, and the minimum degree is at least k. We prove that if $\left|N_{G}(u) \cup N_{G}(v)\right| \geq$ $\frac{1}{2}(n+k-2)$ for each pair of nonadjacent vertices u, v of G, then G has a k-factor.

1. Introduction.

In this paper, we consider only finite undirected graphs without loops or multiple edges. Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. For a vertex v of G, we write $N_{G}(v)$ for the set of vertices of $V(G)$ adjacent to v, and $N_{G}[v]$ for $N_{G}(v) \cup\{v\}$. Further the degree of $v, \operatorname{deg}_{G}(v)$, is defined to be $\left|N_{G}(v)\right|$. In addition, we denote $\left|N_{G}(u) \cup N_{G}(v)\right|$ by $N(u, v)$. We define $N C$ to be $\min N(u, v)$, where the minimum is taken over all pairs of nonadjacent vertices u, v. We use $\delta(G)$ for the minimum degree. Let A and B be disjoint subsets of $V(G)$. Then $e_{G}(A, B)$ denotes the number of edges that join a vertex in A and a vertex in B. We let $G-A$ denotes the subgraph of G obtained from G by deleting the vertices in A together with the edges incident with them. A spanning subgraph F of G is called a k-factor if $\operatorname{deg}_{F}(v)=k$ for all $v \in V(G)$. If G and H are disjoint graphs, the union and the join are denoted by $G \cup H$ and $G+H$, respectively. A vertex v is often identified with the set $\{v\}$. The definition of terms not defined here can be found in [1].

Theorem 1.1. Let k be an integer such that $k \geq 2$, and let G be a connected graph of order n such that $n \geq 9 k-1-4 \sqrt{2(k-1)^{2}+2}$, $k n$ is even, and the minimum degree is at least k. If G satisfies $N C \geq \frac{1}{2}(n+k-2)$, then G has a $k-f a c t o r$.

The condition $N C \geq \frac{1}{2}(n+k-2)$ is best possible, as can be seen from the following examples.

First assume that k is even. Let $T=K_{k-1}$ with $V(T)=\left\{a_{1}, \cdots, a_{k-1}\right\}$, and $C_{i}=$ $K_{k+2 p}(p>0, i=1,2)$ with $V\left(C_{i}\right)=\left\{b_{i, 1}, \cdots, b_{i, k-1}, \cdots, b_{i, k+2 p}\right\}$. Now we define a graph

[^0]Revised October 4, 1996
G as follows:
$V(G)=V(T) \cup V\left(C_{1}\right) \cup V\left(C_{2}\right)$ and $E(G)=E(T) \cup E\left(C_{1}\right) \cup E\left(C_{2}\right) \cup\left\{a_{j} b_{i j} \mid i=1,2\right.$ and $1 \leq j \leq k-1\}$. Then G is connected and $\delta(G) \geq k$. Also G has no k-factor, because $\theta(\varnothing, T)=k \cdot 0+0 \cdot|T|-h_{G}(\varnothing, T)=-2$, where θ and h_{G} are as will be defined in the statement of Lemma 1.3 (note that $k\left|C_{i}\right|+e_{G}\left(C_{i}, T\right)=k(k+2 p)+k-1=k(k+2 p+$ $1)-1 \equiv 1(\bmod 2)$). However, for $u \in V(T)$ and $v \in C_{1}$ or C_{2} with $u v \notin E(G), N(u, v)=$ $(k-2)+(k+2 p-1)+1=(n+k-3) / 2$, and for $u \in C_{1}$ and $v \in C_{2}, N(u, v) \geq 2(k+2 p-1)>$ $(n+k-3) / 2$, and hence G satisfies $N C \geq(n+k-3) / 2$.

Next assume that k is odd. Let $p>0$ be an integer. Let $S=K_{1}, T=K_{k}$, and $C_{i}=$ $K_{k+2 p}(i=1,2)$, and define a graph G by

$$
G=S+\left(T \cup C_{1} \cup C_{2}\right)
$$

Then we have $\theta(S, T)=k+(k-1-k)|T|-h_{G}(S, T)=-2$ because $k\left|C_{i}\right|+e_{G}\left(C_{i}, T\right)=$ $k(k+2 p)+0 \equiv 1(\bmod 2)$. Also for $u, v \in T \cup C_{1} \cup C_{2}$ with $u v \notin E(G)$, we get $N(u, v) \geq$ $|S|+(|T|-1)+\left(\left|C_{2}\right|-1\right)=2 p+2 k-1=\frac{1}{2}(n+k-3)$ (since $\left.n=3 k+4 p+1\right)$.

For the special case where $k=2$, we have the following theorem, in which all conditions are best (for example, $K_{2}+\left(3 K_{2}\right)$ does not have a 2 -factor).

Theorem 1.2. Let G be a connected graph of order $n \geq 9$ such that the minimum degree is at least 2 . If $N C \geq n / 2$, then G has a 2 -factor.

We conclude this introductory section by stating a criterion for the existence of a k-factor.

Lemma 1.3 (Tutte). A graph G has $a k$-factor if and only if

$$
\theta(S, T):=k|S|+\sum_{v \in T} \operatorname{deg}_{G-S}(v)-k|T|-h_{G}(S, T) \geq 0
$$

for any disjoint subsets S, T of $V(G)$, where $h_{G}(S, T)$ denotes the number of connected components C of $G-(S \cup T)$ such that $k|C|+e_{G}(C, T) \equiv 1(\bmod 2)$. Furthermore, whether G has a k-factor or not, we have $\theta(S, T) \equiv k|V(G)|(\bmod 2)$ for any disjoint subsets S and T of $V(G)$.

2. Proof of Theorem 1.1.

First we state some numerical results which are often applied in the proof of Theorem 1.1.

Lemma 2.1. Let n, s, t, m_{1}, m_{2}, and w_{0} be nonnegative integers. Also, suppose that $m_{i} \geq 3(i=1,2)$ and $\left(m_{1}+m_{2}\right) w_{0} \leq 2(n-s-t)$. Then the following hold.
(i) If $w_{0} \geq 4$, then $m_{1}+m_{2}+s+t-2 \leq \frac{1}{2}\left(n+s+t-3 w_{0}+8\right)$.
(ii) If $w_{0} \geq 5$, then $m_{1}+m_{2}+s+t-2 \leq \frac{1}{5}\left(2 n+3 s+3 t-6 w_{0}+20\right)$.

Lemma 2.2.

$$
9 k-1-4 \sqrt{2(k-1)^{2}+2} \begin{cases}>3 k+5, & \text { for } k \geq 4 \\ >3 k+4, & \text { for } k=3 \\ =3 k+3, & \text { for } k=2\end{cases}
$$

Let k, n, G be as in Theorem 1.1, and suppose that G has no k-factor. We aim at deducing a contradiction. By Lemma 1.3, we have $\theta(S, T) \leq-2$ for some disjoint subsets S and T of $V(G)$. We have $S \cup T \neq \varnothing$ because $\theta(\varnothing, \varnothing)=0$. We choose such subsets S and T so that $|S \cup T|$ is as large as possible. Then we have the following lemma.

Lemma 2.3 ([7]). We have $\operatorname{deg}_{G-s}(u) \geq k+1$ and $e_{G}(u, T) \leq k-1$ for all vertices $u \in G-(S \cup T)$. Further we have $|C| \geq 3$ for all components C of $G-(S \cup T)$.

For convenience, we set $U:=G-(S \cup T)$ and let C_{1}, \cdots, C_{w} be the components C of U, labelled so that $\left|C_{1}\right| \leq \cdots \leq\left|C_{w}\right|$, where w denotes the number of components of U. We also let $s=|S|, t=|T|$ and $m_{i}=\left|C_{i}\right|$. Since $w \geq h_{G}(S, T)$, it follows from the inequality $\theta(S, T) \leq-2$ that

$$
\begin{equation*}
w \geq k s+\sum_{v \in T} \operatorname{deg}_{G-s}(v)-k t+2 \tag{1}
\end{equation*}
$$

Further, by Lemma 2.3, we also have

$$
\begin{equation*}
n-s-t \geq 3 w . \tag{2}
\end{equation*}
$$

Case 1. $T=\varnothing$. Since $t=0$, (1) becomes

$$
\begin{equation*}
w \geq k s+2 \tag{3}
\end{equation*}
$$

From (2) and (3), we obtain $n-s \geq 3 w \geq 3(k s+2)$. Therefore we have $s \leq(n-6) /(3 k+1)$. By (3), $w \geq 2$. Also we have

$$
m_{1}+m_{2} \leq \frac{2(n-s)}{w} \leq \frac{2(n-s)}{k s+2} \quad \text { (by (3)) }
$$

For $y_{i} \in V\left(C_{i}\right)(i=1,2), N\left(y_{1}, y_{2}\right) \leq m_{1}+m_{2}-2+s$. When $s=1$,

$$
N\left(y_{1}, y_{2}\right) \leq \frac{2(n-1)}{k+2}-2+1<\frac{1}{2} n .
$$

When $s \geq 2$,

$$
N\left(y_{1}, y_{2}\right) \leq \frac{2(n-1)}{2 k+2}-2+\frac{n-6}{3 k+1}<\frac{n}{3}-2+\frac{n}{7}<\frac{n}{2} .
$$

Thus in either case, $N\left(y_{1}, y_{2}\right)<n / 2$, which contradicts the assumption that G satisfies $N C \geq(n+k-2) / 2$.

We define h_{1} to be equal to the minimum of the degree in $G-S$ of a vertex in T, and let $x_{1} \in\left\{v \in T \mid \operatorname{deg}_{G-s}(v)=h_{1}\right\}$.

Case 2. $T \neq \varnothing$ and $h_{1} \geq k+1$. We set $w_{0}:=k s+\left(h_{1}-k\right) t+2$. Then we clearly have $w \geq w_{0}$.
Subcase 2.1. $w_{0} \geq 4$. In this subcase $t \geq 2$ or $s \geq 1$, or $h_{1} \geq k+2$. Therefore for $y_{i} \in V\left(C_{i}\right)$ ($i=1,2$), we have

$$
\begin{aligned}
N\left(y_{1}, y_{2}\right) & \leq m_{1}+m_{2}+s+t-2 \\
& \left.\leq \frac{1}{2}\left(n+s+t-3 w_{0}+8\right) \quad \text { (by Lemma } 2.1(\mathrm{i})\right) \\
& =\frac{1}{2}\left[n+s+t-3\left\{k s+\left(h_{1}-k\right) t+2\right\}+8\right] \\
& =\frac{1}{2}\left\{n+(1-3 k) s+\left(1-3 h_{1}+3 k\right) t+2\right\}<\frac{1}{2} n .
\end{aligned}
$$

This is a contradiction.
Subcase 2.2. $w_{0}=3$. Note that in this subcase $t=1$ and $s=0$ and $h_{1}=k+1$. Since $S \cup T=\left\{x_{1}\right\}$ and $\operatorname{deg}_{G-s}\left(x_{1}\right)=k+1$ by the assumptions of this subcase, it follows from Lemma 2.3 and the connectedness of G that $\left|V\left(C_{i}\right)\right| \geq k+2(i=1,2,3)$. Hence there is a vertex y_{i} in $C_{i}(i=1,2,3)$ which is not adjacent to $x_{1} \in T$. For these vertices, we have $N\left(x_{1}, y_{i}\right) \leq m_{i}-1+e_{G}\left(T, C_{i+1} \cup C_{i+2}\right)(i=1,2,3)$ (we take $C_{4}=C_{1}$ and $C_{5}=C_{2}$). Therefore

$$
\begin{aligned}
\min N\left(x_{1}, y_{i}\right) & \leq \frac{1}{3} \sum_{i=1}^{3} N\left(x_{1}, y_{i}\right) \leq \frac{1}{3} \sum_{i=1}^{3} m_{i}-1+\frac{2}{3} e_{G}(T, U) \\
& \leq \frac{1}{3}(n-1)-1+\frac{2}{3}(k+1)<\frac{1}{2}(n+k-2) \quad(\text { since } n>k+2) .
\end{aligned}
$$

Case 3. $0 \leq h_{1} \leq k$ and $T-N_{T}\left[x_{1}\right]=\varnothing$. Since $s \geq k-h_{1}$, we have $w \geq k s+\left(h_{1}-\right.$ $k) t+2 \geq\left(k-h_{1}\right)(k-t)+2 \geq 2$ (note that $t \leq h_{1}+1$). We claim that $C_{i}-N_{G}\left(x_{1}\right) \neq \varnothing$ for each $1 \leq i \leq w$. Let $1 \leq i \leq w$, and take $u \in C_{i}$. Then $k+1 \leq \operatorname{deg}_{G-s}(u) \leq\left|C_{i}\right|-1+|T|$ by Lemma 2.3. Hence by the assumptions of Case 3, $\left|N_{G-s}\left(x_{1}\right)\right|=h_{1}<k+1 \leq\left|C_{i}\right|-1+$ $|T|=\left|C_{i}\right|+\left|N_{T}\left(x_{1}\right)\right|$, which implies $C_{i}-N_{G-s}\left(x_{1}\right) \neq \varnothing$, as desired.
Subcase 3.1. $w \geq 3$. We have $n-s-t \geq 3 w \geq 3\left\{k s+\left(h_{1}-k\right) t+2\right\}$. Hence

$$
\begin{equation*}
n+\left(3 k-3 h_{1}-1\right) t-6 \geq(3 k+1) s \tag{4}
\end{equation*}
$$

Let y_{1} be a vertex of $C_{1}-N_{G}\left(x_{1}\right)$. From the hypotheses of the theorem and the assumption of this subcase, we obtain

$$
\frac{n+k-2}{2} \leq N\left(x_{1}, y_{1}\right) \leq s+h_{1}+\left|C_{1}\right|-1 \leq s+h_{1}+\frac{n-s-t}{3}-1
$$

Therefore we have

$$
\begin{equation*}
n+2 t+3 k-6 h_{1} \leq 4 s \tag{5}
\end{equation*}
$$

From (4) and (5), we have $(3 k+1)\left(n+2 t+3 k-6 h_{1}\right) \leq 4 n+4\left(3 k-3 h_{1}-1\right) t-24$. Hence

$$
\begin{aligned}
(k-1) n & \leq(6 k+2-4 t) h_{1}+(2 k-2) t-k(3 k+1)-8 \\
& \leq(6 k+2-4 t) k+(2 k-2) t-k(3 k+1)-8 \\
& =(-2 k-2) t+3 k^{2}+k-8 \leq 3 k^{2}-k-10
\end{aligned}
$$

Therefore, we obtain the following inequality which, in view of Lemma 2.2, contradicts the assumption $n \geq 9 k-1-4 \sqrt{2(k-1)^{2}+2}$:

$$
n \leq \frac{3 k^{2}-k-10}{k-1}=3 k+2-\frac{8}{k-1}<3 k+2 .
$$

Subcase 3.2. $w=2$. We divide the proof of this subcase further into two subcases.
(i) $h_{1}=k-1, t=k$ and $s=1$. Take $y_{1} \in C_{1}-N_{G}\left(x_{1}\right)$. Then

$$
N\left(x_{1}, y_{1}\right) \leq s+t-1+\left|C_{1}\right|-1 \leq k+\frac{n-(k+1)}{2}-1=\frac{1}{2}(n+k-3)
$$

This is a contradiction.
(ii) $h_{1}=k$ and $s=0$. For $i=1,2$, take $y_{i} \in C_{i}-N_{G}\left(x_{1}\right)$. Let $p_{i}=\left|N_{G}\left(x_{1}\right) \cap C_{i}\right|$ $(i=1,2)$. Then $\operatorname{deg}_{G-s}\left(x_{1}\right)=p_{1}+p_{2}+t-1=k$. Therefore, we have $p_{1}+p_{2}=k+1-t$. Moreover, we have $\left|C_{1}\right|+\left|C_{2}\right|=n-t$. Hence we get the following inequalities:

$$
\begin{aligned}
\min \left(N\left(x_{1}, y_{i}\right): i=1,2\right) & \leq \frac{1}{2}\left(N\left(x_{1}, y_{1}\right)+N\left(x_{1}, y_{2}\right)\right) \\
& \leq \frac{1}{2}\left[\left|C_{1}\right|-1+(t-1)+p_{2}+\left|C_{2}\right|-1+(t-1)+p_{1}\right] \\
& =\frac{n-t}{2}+t-2+\frac{1}{2}(k+1-t)=\frac{1}{2}(n+k-3)
\end{aligned}
$$

This is a contradiction. This concludes the discussion for the case $T-N_{T}\left[x_{1}\right]=\varnothing$.
We henceforce assume $T-N_{T}\left[x_{1}\right] \neq \varnothing$. We define h_{2} to be equal to the minimum of the degree in $G-S$ of a vertex in $T-N_{T}\left[x_{1}\right]$, and let $x_{2} \in\left\{v \in T-N_{T}\left[x_{1}\right] \mid \operatorname{deg}_{G-s}(v)=\right.$ $\left.h_{2}\right\}$. Since x_{1} and x_{2} are nonadjacent, $(n+k-2) / 2 \leq N\left(x_{1}, x_{2}\right) \leq s+h_{1}+h_{2}$, and hence

$$
\begin{equation*}
2 s \geq n+k-2\left(h_{1}+h_{2}+1\right) \tag{6}
\end{equation*}
$$

For convenience, we set $p=\left|N_{T}\left[x_{1}\right]\right|$.
Case 4. $0 \leq h_{1} \leq h_{2} \leq k-1$. In this case, we have

$$
\left(k-h_{2}\right)(n-s-t) \geq n-s-t \geq w \geq k s+\left(h_{1}-k\right) p+\left(h_{2}-k\right)(t-p)+2
$$

Since $p \leq h_{1}+1$, this implies

$$
\begin{equation*}
\left(2 k-h_{2}\right) s \leq\left(k-h_{2}\right) n+\left(h_{2}-h_{1}\right)\left(h_{1}+1\right)-2 . \tag{7}
\end{equation*}
$$

Consequently,

$$
\begin{aligned}
0 & \leq-h_{2} n+2\left(h_{2}-h_{1}\right)\left(h_{1}+1\right)-4-k\left(2 k-h_{2}\right)+2\left(2 k-h_{2}\right)\left(h_{1}+h_{2}+1\right) \quad(\text { by }(6) \text { and }(7)) \\
& \leq-4 h_{2}^{2}+(9 k-n-2) h_{2}-\left(2 k^{2}-4 k+4\right) \quad\left(\text { since } h_{1} \leq h_{2} \leq k-1\right) \\
& \leq-4 h_{2}^{2}+4 \sqrt{2(k-1)^{2}+2} h_{2}-2(k-1)^{2}-2 \quad\left(\text { since } n>9 k-2-4 \sqrt{\left.2(k-1)^{2}+2\right)}\right. \\
& =-4\left(h_{2}-\sqrt{\frac{(k-1)^{2}+1}{2}}\right)^{2} \leq 0
\end{aligned}
$$

Further we have strict inequality in the third inequality or in the last inequality according to whether $h_{2} \neq 0$ or $h_{2}=0$. This is a contradiction.

Case 5. $0 \leq h_{1} \leq k$ and $k \leq h_{2} \leq k+1$.
Subcase 5.1. $k \geq 3$. We have

$$
n-s-2 \geq n-s-t \geq 3 w \geq 3\left\{k s+\left(h_{1}-k\right) p+\left(h_{2}-k\right)(t-p)+2\right\} .
$$

Therefore, we get

$$
\begin{align*}
(3 k+1) s & \leq n-3\left(h_{1}-k\right) p-3\left(h_{2}-k\right)-8 \quad(\text { since } t \geq p+1) \\
& \leq n+3\left(k-h_{1}\right)\left(h_{1}+1\right)-3\left(h_{2}-k\right)-8 \tag{8}
\end{align*}
$$

(the second inequality follows from the assumption that $k \geq h_{1}$ and the fact that $p \leq h_{1}+1$). From (6) and (8), we obtain

$$
(3 k+1)\left\{n+k-2\left(h_{1}+h_{2}+1\right)\right\} \leq 2 n+6\left(k-h_{1}\right)\left(h_{1}+1\right)-6\left(h_{2}-k\right)-16 .
$$

Hence we have

$$
\begin{aligned}
(3 k-1) n & \leq 2(3 k+1)\left(h_{1}+h_{2}+1\right)-k(3 k+1)+6\left(k-h_{1}\right)\left(h_{1}+1\right)-6\left(h_{2}-k\right)-16 \\
& \leq 2(3 k+1)\left(h_{1}+k+2\right)-k(3 k+1)+6\left(k-h_{1}\right)\left(h_{1}+1\right)-22 \\
& \leq 2(3 k+1)(2 k+2)-3 k^{2}-k-22=9 k^{2}+15 k-18 .
\end{aligned}
$$

Therefore, we obtain $n \leq 3 k+5-12 /(3 k-1)$. This implies that

$$
n \leq \begin{cases}3 k+3 & (3 \leq k \leq 4) \\ 3 k+4 & (k \geq 5)\end{cases}
$$

In view of Lemma 2.2, this contradicts the assumption $n \geq 9 k-1-4 \sqrt{2(k-1)^{2}+2}$.
Subcase 5.2. $k=2$. By (6), we have

$$
\begin{equation*}
n \leq 2\left(s+h_{1}+h_{2}\right) . \tag{9}
\end{equation*}
$$

Further, since $t \geq p+1$, we obtain the following inequalities:

$$
\begin{aligned}
n-s-(p+1) & \geq 3 w \geq 3\left\{k s+\left(h_{1}-k\right) p+\left(h_{2}-k\right)(t-p)+2\right\} \\
& \geq 3\left\{k s+\left(h_{1}-k\right) p+\left(h_{2}-k\right)+2\right\} .
\end{aligned}
$$

Since $k=2$, this implies

$$
\begin{equation*}
n \geq 7 s+\left(3 h_{1}-5\right) p+3 h_{2}+1 \tag{10}
\end{equation*}
$$

From (9) and (10), we have $2\left(s+h_{1}+h_{2}\right) \geq 7 s+\left(3 h_{1}-5\right) p+3 h_{2}+1$. Therefore we have $5 s \leq h_{1}-\left(3 h_{1}-5\right) p-1$. When $0 \leq h_{1} \leq k-1=1$, from $p \leq h_{1}+1$, we have $5 s \leq h_{1}+(5-$ $\left.3 h_{1}\right)\left(h_{1}+1\right)-1=4$. Since s is a nonnegative integer, $s=0$. When $h_{1}=k=2$, we have $5 s \leq 2-p-1 \leq 0$ (because $p \geq 1$). Therefore, we again have $s=0$. This implies that $h_{1}=$ $k=2$ and $h_{2}=3$ because otherwise, by (9), we have $n \leq 8$, which is against our assumption $n \geq 9$. But then from (9), we get $n \leq 10$, and from (10), we get $n \geq p+3 h_{2}+1 \geq$ $3 h_{2}+2 \geq 11$. This is a contradiction.

Case 6. $0 \leq h_{1} \leq k$ and $h_{2} \geq k+2$. In this case, we have

$$
\begin{aligned}
w & \geq k s+\left(h_{1}-k\right) p+\left(h_{2}-k\right)(t-p)+2 \\
& \geq\left(k-h_{1}\right)(k-p)+2(t-p)+2 \geq 4 .
\end{aligned}
$$

Now we set $s=k-h_{1}+\varepsilon_{1}, h_{2}=k+2+\varepsilon_{2}$, and $t=p+1+\varepsilon_{3}$. Then the $\varepsilon_{i}(i=1,2,3)$ are nonnegative integers. First assume at least one of the ε_{i} is a positive integer. Then we have $w \geq 5$. For $y_{i} \in C_{i}(i=1,2)$, we have

$$
\begin{aligned}
\frac{n+k-2}{2} & \leq N\left(y_{1}, y_{2}\right) \leq m_{1}+m_{2}-2+s+t \\
& \leq \frac{1}{5}\left(2 n+3 s+3 t-6 w_{1}+20\right)
\end{aligned}
$$

(by Lemma 2.1 (ii)),
where w_{1} stands for $k s+\left(h_{1}-k\right) p+\left(h_{2}-k\right)(t-p)+2$. From the above inequalities, we obtain

$$
\begin{aligned}
n & \leq 6 s+6 t+50-5 k-12\left\{k s+\left(h_{2}-k\right) t+\left(h_{1}-h_{2}\right) p+2\right\} \\
& =-6(2 k-1) s+\left\{6-12\left(h_{2}-k\right)\right\} t+26-5 k+12\left(h_{2}-h_{1}\right) p \\
& =-6(2 k-1)\left(k-h_{1}+\varepsilon_{1}\right)+6\left(-3-2 \varepsilon_{2}\right)\left(p+1+\varepsilon_{3}\right)-5 k+26+12\left(k+2+\varepsilon_{2}-h_{1}\right) p \\
& \leq-6(2 k-1)\left(k-h_{1}+\varepsilon_{1}\right)-6\left(3+2 \varepsilon_{2}\right)\left(\varepsilon_{3}+1\right)-5 k+26+\left\{12\left(k-h_{1}\right)+6\right\}\left(h_{1}+1\right) \\
& \leq-6(2 k-1) \varepsilon_{1}-6\left(3+2 \varepsilon_{2}\right)\left(\varepsilon_{3}+1\right)-5 k+26+6(k+1) \\
& =k+14-6(2 k-1) \varepsilon_{1}-12 \varepsilon_{2} \varepsilon_{3}-12 \varepsilon_{2}-18 \varepsilon_{3} \leq k+2 .
\end{aligned}
$$

This is a contradiction. Finally, assume $\varepsilon_{1}=\varepsilon_{2}=\varepsilon_{3}=0$. Then we have $w \geq\left(k-h_{1}\right)(k-p)+$ $4 \geq 4$. For $y_{i} \in C_{i}(i=1,2)$, we have

$$
\frac{n+k-2}{2} \leq N\left(y_{1}, y_{2}\right) \leq m_{1}+m_{2}-2+s+t \leq \frac{2}{4}(n-s-t)-2+s+t
$$

Hence, we have $k-2 \leq s+t-4=k-h_{1}+p+1-4$, that is to say, $p \geq h_{1}+1$. Since $p \leq$ $h_{1}+1$, this implies $p=h_{1}+1$. So any vertex in C_{1} is independent of x_{1}. Hence if we let $y_{1} \in C_{1}$, then we have

$$
\begin{aligned}
\frac{n+k-2}{2} & \leq N\left(x_{1}, y_{1}\right) \leq s+t+\left|C_{1}\right|-1 \\
& \leq \frac{1}{4}(n+3 s+3 t-4) \quad\left(\text { since }\left|C_{1}\right| \leq \frac{1}{4}(n-s-t)\right) .
\end{aligned}
$$

Consequently, we obtain $2 n+2 k-4 \leq n+3 s+3 t-4$. Therefore,

$$
\begin{aligned}
n \leq 3 s+3 t-2 k & =3 s+3(p+1)-2 k \\
& =3\left(k-h_{1}\right)+3\left(h_{1}-2\right)-2 k \\
& =k+6<3 k+3 \quad(\text { since } k \geq 2) .
\end{aligned}
$$

This is a contradiction, and this completes the proof of Theorem 1.1.
Acknowledgment. We would like to thank the referee for his detailed suggestions which substantially improved the presentation of this paper.

References

[1] G. Chartrand and L. Lesniak, Graphs \& Digraphs. Wadsworth (1986).
[2] Y. Egawa and H. Enomoto, Sufficient conditions for the existence of k-factors, Recent Studies in Graph Theory (ed. V. Kulli), Vishwa (1989), 96-105.
[3] T. IIDA, A neighborhood condition for the existence of k-factors, Proc. JSPS Workshop on Graph Theory and Combinatorics (1993), 21-35.
[4] T. Iida and T. Nishimura, An Ore-type condition for the existence of k-factors in graphs, Graphs Combin. 7 (1991), 353-361.
[5] M. Kano and N. Tokushige, Binding numbers and f-factors of graphs, J. Combin. Theory Ser. B 54 (1992), 213-221.
[6] P. Katerinis, Minimum degree of a graphs and the existence of k-factors, Proc. Indian Acad. Sci. 94 (1985), 123-127.
[7] P. Katerinis and D. R. Woodall, Binding numbers of graphs and the existence of k-factors, Quart. J. Math. 38 (1987), 221-228.
[8] W. T. Tutte, The factors of graphs, Canad. J. Math. 4 (1952), 314-328.

Present Addresses:

Tadashi Iida
Department of Mathematics, Faculty of Science and Technology, Keio University, Hiyoshi, Конoku-ku, Yokohama, 223 Japan.

Tsuyoshi Nishimura
Department of Mathematics, Shibaura Institute of Technology, Fukasaku Ohmiya, 330 Japan.

[^0]: Received February 29, 1996

