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Abstract. Let $k$ be an integer such that $k\geq 2$ , and let $G$ be a connected graph of order $n$ such that $ n\geq$

$9k-1-4\sqrt{2(k-1)^{2}+2},$ $kn$ is even, and the minimum degree is at least $k$ . We prove that $if|N_{G}(u)\cup N_{G}(v)|\geq$

$+(n+k-2)$ for each pair of nonadjacent vertices $u,$ $v$ of $G$, then $G$ has a k-factor.

1. Introduction.

In this paper, we consider only finite undirected graphs without loops or multiple
edges. Let $G$ be a graph with vertex set $V(G)$ and edge set $E(G)$ . For a vertex $v$ of $G$,
we write $N_{G}(v)$ for the set of vertices of $V(G)$ adjacent to $v$ , and $N_{G}[v]$ for $N_{G}(v)\cup\{v\}$ .
Further the degree of $v,$ $\deg_{G}(v)$ , is defined to be $|N_{G}(v)|$ . In addition, we denote
$|N_{G}(u)\cup N_{G}(v)|$ by $N(u, v)$ . We define $NC$ to be min $N(u, v)$ , where the minimum is taken
over all pairs of nonadjacent vertices $u,$ $v$ . We use $\delta(G)$ for the minimum degree. Let
$A$ and $B$ be disjoint subsets of $V(G)$ . Then $e_{G}(A, B)$ denotes the number of edges that
join a vertex in $A$ and a vertex in $B$ . We let $G-A$ denotes the subgraph of $G$ obtained
from $G$ by deleting the vertices in $A$ together with the edges incident with them. A
spanning subgraph $F$ of $G$ is called a k-factor if $\deg_{F}(v)=k$ for all $v\in V(G)$ . If $G$ and $H$

are disjoint graphs, the union and thejoin are denoted by $GuH$ and $G+H$, respectively.
A vertex $v$ is often identified with the set $\{v\}$ . The definition of terms not defined here
can be found in [1].

THEOREM 1.1. Let $k$ be an integer such that $k\geq 2$ , and let $G$ be a connected graph
of order $n$ such that $n\geq 9k-1-4\sqrt{2(k-1)^{2}+2},$ $kn$ is even, and the minimum degree is
at least $k$. If $G$ satisfies $NC\geq\neq(n+k-2)$, then $G$ has a k-factor.

The condition $NC\geq\neq(n+k-2)$ is best possible, as can be seen from the following
examples.

First assume that $k$ is even. Let $T=K_{k-1}$ with $V(T)=\{a_{1}, \cdots, a_{k-1}\}$ , and $C_{i}=$

$K_{k+2p}(p>0, i=1,2)$ with $V(C_{i})=\{b_{i,1}, \cdots, b_{i,k-1}, \cdots, b_{i,k+2p}\}$ . Now we define a graph
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$G$ as follows:
$V(G)=V(T)uV(C_{1})uV(C_{2})$ and $E(G)=E(T)uE(C_{1})\cup E(C_{2})u\{a_{j}b_{ij}|i=1,2an($

$1\leq j\leq k-1\}$ . Then $G$ is connected and $\delta(G)\geq k$ . Also $G$ has no k-factor, becaus $($

$\theta(\emptyset, T)=k\cdot 0+0\cdot|T|-h_{G}(\emptyset, T)=-2$ , where $\theta$ and $h_{G}$ are as will be defined $iI$

the statement of Lemma 1.3 (note that $k|C_{i}|+e_{G}(C_{i}, T)=k(k+2p)+k-1=k(k+2p+$

$1)-1\equiv 1$ (mod2)). However, for $u\in V(T)$ and $v\in C_{1}$ or $C_{2}$ with $uv\not\in E(G),$ $N(u, v)=$

$(k-2)+(k+2p-1)+1=(n+k-3)/2$ , and for $u\in C_{1}$ and $v\in C_{2},$ $N(u, v)\geq 2(k+2p-1)>$

$(n+k-3)/2$ , and hence $G$ satisfies $NC\geq(n+k-3)/2$ .
Next assume that $k$ is odd. Let $p>0$ be an integer. Let $S=K_{1},$ $T=K_{k}$ , and $C_{i}=$

$K_{k+2p}(i=1,2)$, and define a graph $G$ by

$G=S+(T\cup C_{1}\cup C_{2})$ .

Then we have $\theta(S, T)=k+(k-1-k)|T|-h_{G}(S, T)=-2$ because $k|C_{i}|+e_{G}(C_{i}, T)=$

$k(k+2p)+0\equiv 1(mod 2)$ . Also for $u,$ $v\in T\cup C_{1}\cup C_{2}$ with $uv\not\in E(G)$ , we get $ N(u, v)\geq$

$|S|+(|T|-1)+(|C_{2}|-1)=2p+2k-1=+(n+k-3)$ (since $n=3k+4p+1$).

For the special case where $k=2$ , we have the following theorem, in which al
conditions are best (for example, $K_{2}+(3K_{2})$ does not have a 2-factor).

THEOREM 1.2. Let $G$ be a connected graph of order $n\geq 9$ such that the minimun
degree is at least 2. If $NC\geq n/2$ , then $G$ has a 2-factor.

We conclude this introductory section by stating a criterion for the existence of $\dot{t}$

k-factor.

LEMMA 1.3 (Tutte). A graph $G$ has a k-factor $\iota f$ and only if

$\theta(S, T):=k|S|+\sum_{v\in T}\deg_{G-S}(v)-k|T|-h_{G}(S, T)\geq 0$

for any disjoint subsets $S,$ $T$ of $V(G)$, where $h_{G}(S, T)$ denotes the number of $connecte_{l}$

components $C$ of $G-(S\cup T)$ such that $k|C|+e_{G}(C, T)\equiv 1(mod 2)$ . Furthermore, whethe
$G$ has a k-factor or not, we have $\theta(S, T)\equiv k|V(G)|(mod 2)$ for any disjoint subsets $San_{(}$

$T$ of $V(G)$ .

2. Proof of Theorem 1.1.

First we state some numerical results which are often applied in the proof $0$

Theorem 1.1.

LEMMA 2.1. Let $n,$ $s,$ $t,$ $m_{1},$ $m_{2}$ , and $w_{0}$ be nonnegative integers. Also, suppose tha
$m_{i}\geq 3(i=1,2)$ and $(m_{1}+m_{2})w_{O}\leq 2(n-s-t)$ . Then the following hold.

(i) If $w_{0}\geq 4$ , then $m_{1}+m_{2}+s+t-2\leq+(n+s+t-3w_{0}+8)$ .
(ii) If $w_{0}\geq 5$ , then $m_{1}+m_{2}+s+t-2\leq\frac{1}{5}(2n+3s+3t-6w_{0}+20)$ .
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LEMMA 2.2.

$9k-1-4\sqrt{2(k-1)^{2}+2}\left\{\begin{array}{l}>3k+5,for\\>3k+4,for\\=3k+3,for\end{array}\right.$ $k=2k=3k\geq 4$

.
Let $k,$ $n,$ $G$ be as in Theorem 1.1, and suppose that $G$ has no k-factor. We aim at

deducing a contradiction. By Lemma 1.3, we have $\theta(S, T)\leq-2$ for some disjoint subsets
$S$ and $T$ of $V(G)$ . We have $ S\cup T\neq\emptyset$ because $\theta(\emptyset, \emptyset)=0$ . We choose such subsets $S$

and $T$ so that $|S\cup T|$ is as large as possible. Then we have the following lemma.

LEMMA 2.3 ([7]). We have $\deg_{G-S}(u)\geq k+1$ and $e_{G}(u, T)\leq k-1$ for all vertices
$u\in G-(S\cup T)$ . Further we have $|C|\geq 3$ for all components $C$ of $G-(S\cup T)$ .

For convenience, we set $U:=G-(S\cup T)$ and let $C_{1},$ $\cdots,$ $C_{w}$ be the components
$C$ of $U$, labelled so that $|C_{1}|\leq\cdots\leq|C_{w}|$ , where $w$ denotes the number of components
of $U$. We also let $s=|S|,$ $t=|T|$ and $m_{i}=|C_{i}|$ . Since $w\geq h_{G}(S, T)$ , it follows from the
inequality $\theta(S, T)\leq-2$ that

$w\geq ks+\sum_{v\in T}\deg_{G-S}(v)-kt+2$ . (1)

Further, by Lemma 2.3, we also have
$n-s-t\geq 3w$ . (2)

Case 1. $ T=\emptyset$ . Since $t=0,$ (1) becomes
$w\geq ks+2$ . (3)

From (2) and (3), we obtain $n-s\geq 3w\geq 3(ks+2)$ . Therefore we have $s\leq(n-6)/(3k+1)$ .
By (3), $w\geq 2$ . Also we have

$m_{1}+m_{2}\leq\frac{2(n-s)}{w}\leq\frac{2(n-s)}{ks+2}$ (by (3)).

For $y_{i}\in V(C_{i})(i=1,2),$ $N(y_{1}, y_{2})\leq m_{1}+m_{2}-2+s$ . When $s=1$ ,

$N(y_{1}, y_{2})\leq\frac{2(n-1)}{k+2}2+1<\frac{1}{2}n$ .

When $s\geq 2$ ,

$N(y_{1}, y_{2})\leq\frac{2(n-1)}{2k+2}2+\frac{n-6}{3k+1}<\frac{n}{3}-2+\frac{n}{7}<\frac{n}{2}$ .

Thus in either case, $N(y_{1}, y_{2})<n/2$ , which contradicts the assumption that $G$ satisfies
$NC\geq(n+k-2)/2$ .

We define $h_{1}$ to be equal to the minimum of the degree in $G-S$ of a vertex in $T$,
and let $x_{1}\in\{v\in T|\deg_{G-S}(v)=h_{1}\}$ .
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Case 2. $ T\neq\emptyset$ and $h_{1}\geq k+1$ . We set $w_{0}$ $:=ks+(h_{1}-k)t+2$ . Then we $clear]_{1}$.
have $w\geq w_{0}$ .
Subcase 2.1. $w_{0}\geq 4$ . In this subcase $t\geq 2$ or $s\geq 1$ , or $h_{1}\geq k+2$ . Therefore for $y_{i}\in V(C_{i}$

$(i=1,2)$ , we have

$N(y_{1}, y_{2})\leq m_{1}+m_{2}+s+t-2$

$\leq+(n+s+t-3w_{0}+8)$ (by Lemma 2.1 $(i)$)

$=+[n+s+t-3\{ks+(h_{1}-k)t+2\}+8]$

$=*\{n+(1-3k)s+(1-3h_{1}+3k)t+2\}<*n$ .

This is a contradiction.
Subcase 2.2. $w_{0}=3$ . Note that in this subcase $t=1$ and $s=0$ and $h_{1}=k+1$ . $Sinc($

$S\cup T=\{x_{1}\}$ and $\deg_{G-S}(x_{1})=k+1$ by the assumptions of this subcase, it follows fron
Lemma 2.3 and the connectedness of $G$ that $|V(C_{i})|\geq k+2(i=1,2,3)$ . Hence ther$($

is a vertex $y_{i}$ in $C_{i}(i=1,2,3)$ which is not adjacent to $x_{1}\in T$. For these vertices, $Wt$

have $N(x_{1}, y_{i})\leq m_{i}-1+e_{G}(T, C_{i+1}\cup C_{i+2})(i=1,2,3)$ (we take $C_{4}=C_{1}$ and $C_{5}=C_{2}$)
Therefore

min $N(x_{1}, y_{i})\leq\frac{1}{3}\sum_{i=1}^{3}N(x_{1}, y_{i})\leq\frac{1}{3}\sum_{i=1}^{3}m_{i}-1+\frac{2}{3}e_{G}(T, U)$

$\leq\frac{1}{3}(n-1)-1+\frac{2}{3}(k+1)<\frac{1}{2}(n+k-2)$ (since $n>k+2$).

Case 3. $0\leq h_{1}\leq k$ and $ T-N_{T}[x_{1}]=\emptyset$ . Sinoe $s\geq k-h_{1}$ , we have $w\geq ks+(h_{1}-$

$k)t+2\geq(k-h_{1})(k-t)+2\geq 2$ (note that $t\leq h_{1}+1$ ). We claim that $C_{i}-N_{G}(x_{1})\neq\emptyset fo^{1}$

each $1\leq i\leq w$ . Let $1\leq i\leq w$ , and take $u\in C_{i}$ . Then $ k+1\leq\deg_{G-S}(u)\leq|C_{i}|-1+|T|b\tau$.
Lemma 2.3. Hence by the assumptions of Case 3, $|N_{G-S}(x_{1})|=h_{1}<k+1\leq|C_{i}|-1+$

$|T|=|C_{i}|+|N_{T}(x_{1})|$ , which implies $ C_{i}-N_{G-S}(x_{1})\neq\emptyset$ , as desired.
Subcase 3.1. $w\geq 3$ . We have $n-s-t\geq 3w\geq 3\{ks+(h_{1}-k)t+2\}$ . Hence

$n+(3k-3h_{1}-1)t-6\geq(3k+1)s$ . (4

Let $y_{1}$ be a vertex of $C_{1}-N_{G}(x_{1})$ . From the hypotheses of the theorem and the as
sumption of this subcase, we obtain

$\frac{n+k-2}{2}\leq N(x_{1}, y_{1})\leq s+h_{1}+|C_{1}|-1\leq s+h_{1}+\frac{n-s-t}{3}1$ .

Therefore we have

$n+2t+3k-6h_{1}\leq 4s$ . (5

From (4) and (5), we have $(3k+1Xn+2t+3k-6h_{1})\leq 4n+4(3k-3h_{1}-1)t-24$ . Hence
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$(k-1)n\leq(6k+2-4t)h_{1}+(2k-2)t-k(3k+1)-8$

$\leq(6k+2-4t)k+(2k-2)t-k(3k+1)-8$

$=(-2k-2)t+3k^{2}+k-8\leq 3k^{2}-k-10$ .

Therefore, we obtain the following inequality which, in view of Lemma 2.2, contradicts
the assumption $n\geq 9k-1-4\sqrt{2(k-1)^{2}+2}$ :

$n\leq\frac{3k^{2}-k-10}{k-1}=3k+2-\frac{8}{k-1}<3k+2$ .

Subcase 3.2. $w=2$ . We divide the proof of this subcase further into two subcases.
(i) $h_{1}=k-1,$ $t=k$ and $s=1$ . Take $y_{1}\in C_{1}-N_{G}(x_{1})$ . Then

$N(x_{1}, y_{1})\leq s+t-1+|C_{1}|-1\leq k+\frac{n-(k+1)}{2}1=\frac{1}{2}(n+k-3)$ .

This is a contradiction.
(ii) $h_{1}=k$ and $s=0$ . For $i=1,2$ , take $y_{i}\in C_{i}-N_{G}(x_{1})$ . Let $p_{i}=|N_{G}(x_{1})\cap C_{i}|$

$(i=1,2)$ . Then $\deg_{G-S}(x_{1})=p_{1}+p_{2}+t-1=k$ . Therefore, we have $p_{1}+p_{2}=k+1-t$ .
Moreover, we have $|C_{1}|+|C_{2}|=n-t$ . Hence we get the following inequalities:

$\min(N(x_{1}, y_{i});i=1,2)\leq\frac{1}{2}(N(x_{1}, y_{1})+N(x_{1}, y_{2}))$

$\leq\frac{1}{2}[|C_{1}|-1+(t-1)+p_{2}+|C_{2}|-1+(t-1)+p_{1}]$

$=\frac{n-t}{2}+t-2+\frac{1}{2}(k+1-t)=\frac{1}{2}(n+k-3)$ .

This is a contradiction. This concludes the discussion for the case $ T-N_{T}[x_{1}]=\emptyset$ .
We henceforce assume $ T-N_{T}[x_{1}]\neq\emptyset$ . We define $h_{2}$ to be equal to the minimum

of the degree in $G-S$ of a vertex in $T-N_{T}[x_{1}]$ , and let $x_{2}\in\{v\in T-N_{T}[x_{1}]|\deg_{G-S}(v)=$

$h_{2}\}$ . Since $x_{1}$ and $x_{2}$ are nonadjacent, $(n+k-2)/2\leq N(x_{1}, x_{2})\leq s+h_{1}+h_{2}$ , and hence

$2s\geq n+k-2(h_{1}+h_{2}+1)$ . (6)

For convenience, we set $p=|N_{T}[x_{1}]|$ .
Case 4. $0\leq h_{1}\leq h_{2}\leq k-1$ . In this case, we have

$(k-h_{2})(n-s-t)\geq n-s-t\geq w\geq ks+(h_{1}-k)p+(h_{2}-k)(t-p)+2$ .

Since $p\leq h_{1}+1$ , this implies

$(2k-h_{2})s\leq(k-h_{2})n+(h_{2}-h_{1})(h_{1}+1)-2$ . (7)

Consequently,
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$0\leq-h_{2}n+2(h_{2}-h_{1}Xh_{1}+1)-4-k(2k-h_{2})+2(2k-h_{2}Xh_{1}+h_{2}+1)$ (by (6) and (7))

$\leq-4h_{2}^{2}+(9k-n-2)h_{2}-(2k^{2}-4k+4)$ (since $h_{1}\leq h_{2}\leq k-1$ )

$\leq-4h_{2}^{2}+4\sqrt{2(k-1)^{2}+2}h_{2}-2(k-1)^{2}-2$ (since $n>9k-2-4\sqrt{2(k-1)^{2}+2)}$

$=-4(h_{2}-\sqrt{\frac{(k-1)^{2}+1}{2}})^{2}\leq 0$ .

Further we have strict inequality in the third inequality or in the last inequality accordin5
to whether $h_{2}\neq 0$ or $h_{2}=0$ . This is a contradiction.

Case 5. $0\leq h_{1}\leq k$ and $k\leq h_{2}\leq k+1$ .
Subcase 5.1. $k\geq 3$ . We have

$n-s-2\geq n-s-t\geq 3w\geq 3\{ks+(h_{1}-k)p+(h_{2}-kXt-p)+2\}$ .
Therefore, we get

$(3k+1)s\leq n-3(h_{1}-k)p-3(h_{2}-k)-8$ (since $t\geq p+1$ )

$\leq n+3(k-h_{1}Xh_{1}+1)-3(h_{2}-k)-8$ (8

(the second inequality follows from the assumption that $k\geq h_{1}$ and the fact $tha$ )

$p\leq h_{1}+1)$ . From (6) and (8), we obtain

$(3k+1)\{n+k-2(h_{1}+h_{2}+1)\}\leq 2n+6(k-h_{1}Xh_{1}+1)-qh_{2}-k)-16$ .

Hence we have

$(3k-1)n\leq 2(3k+1)(h_{1}+h_{2}+1)-k(3k+1)+6(k-h_{1}Xh_{1}+1)-6(h_{2}-k)-16$

$\leq 2(3k+1)(h_{1}+k+2)-k(3k+1)+6(k-h_{1})(h_{1}+1)-22$

$\leq 2(3k+1)(2k+2)-3k^{2}-k-22=9k^{2}+15k-18$ .
Therefore, we obtain $n\leq 3k+5-12/(3k-1)$ . This implies that

$n\leq\{_{3k}^{3k}I_{4}^{3}$ $(k\geq 5)(3\leq k\leq 4)$

In view of Lemma 2.2, this contradicts the assumption $n\geq 9k-1-4\sqrt{2(k-1)^{2}+2}$ .
Subcase 5.2. $k=2$ . By (6), we have

$n\leq 2(s+h_{1}+h_{2})$ . (9)

Further, since $t\geq p+1$ , we obtain the following inequalities:

$n-s-(p+1)\geq 3w\geq 3\{ks+(h_{1}-k)p+(h_{2}-kXt-p)+2\}$

$\geq 3\{ks+(h_{1}-k)p+(h_{2}-k)+2\}$ .

Since $k=2$ , this implies
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$n\geq 7s+(3h_{1}-5)p+3h_{2}+1$ . (10)

From (9) and (10), we have $2(s+h_{1}+h_{2})\geq 7s+(3h_{1}-5)p+3h_{2}+1$ . Therefore we have
$5s\leq h_{1}-(3h_{1}-5)p-1$ . When $0\leq h_{1}\leq k-1=1$ , from $p\leq h_{1}+1$ , we have $5s\leq h_{1}+(5-$

$3h_{1})(h_{1}+1)-1=4$ . Since $s$ is a nonnegative integer, $s=0$ . When $h_{1}=k=2$ , we have
$5s\leq 2-p-1\leq 0$ (because $p\geq 1$ ). Therefore, we again have $s=0$ . This implies that $h_{1}=$

$k=2$ and $h_{2}=3$ because otherwise, by (9), we have $n\leq 8$ , which is against our assump-
tion $n\geq 9$ . But then from (9), we get $n\leq 10$ , and from (10), we get $ n\geq p+3h_{2}+1\geq$

$3h_{2}+2\geq 11$ . This is a contradiction.
Case 6. $0\leq h_{1}\leq k$ and $h_{2}\geq k+2$ . In this case, we have

$w\geq ks+(h_{1}-k)p+(h_{2}-k)(t-p)+2$

$\geq(k-h_{1})(k-p)+2(t-p)+2\geq 4$ .

Now we set $s=k-h_{1}+\epsilon_{1},$ $h_{2}=k+2+\epsilon_{2}$ , and $t=p+1+\epsilon_{3}$ . Then the $\epsilon_{i}(i=1,2,3)$ are
nonnegative integers. First assume at least one of the $\epsilon_{i}$ is a positive integer. Then we
have $w\geq 5$ . For $y_{i}\in C_{i}(i=1,2)$, we have

$\frac{n+k-2}{2}\leq N(y_{1}, y_{2})\leq m_{1}+m_{2}-2+s+t$

$\leq\frac{1}{5}(2n+3s+3t-6w_{1}+20)$ (by Lemma 2.1 (ii)) ,

where $w_{1}$ stands for $ks+(h_{1}-k)p+(h_{2}-k)(t-p)+2$ . From the above inequalities, we
obtain

$n\leq 6s+6t+50-5k-12\{ks+(h_{2}-k)t+(h_{1}-h_{2})p+2\}$

$=-6(2k-1)s+\{6-12(h_{2}-k)\}t+26-5k+12(h_{2}-h_{1})p$

$=-6(2k-1)(k-h_{1}+\epsilon_{1})+6(-3-2\epsilon_{2})(p+1+\epsilon_{3})-5k+26+12(k+2+\epsilon_{2}-h_{1})p$

$\leq-6(2k-1)(k-h_{1}+\epsilon_{1})-6(3+2\epsilon_{2})(\epsilon_{3}+1)-5k+26+\{12(k-h_{1})+6\}(h_{1}+1)$

$\leq-6(2k-1)\epsilon_{1}-6(3+2\epsilon_{2})(\epsilon_{3}+1)-5k+26+6(k+1)$

$=k+14-6(2k-1)\epsilon_{1}-12\epsilon_{2}\epsilon_{3}-12\epsilon_{2}-18\epsilon_{3}\leq k+2$ .

This is a contradiction. Finally, assume $\epsilon_{1}=\epsilon_{2}=\epsilon_{3}=0$ . Then we have $w\geq(k-h_{1})(k-p)+$

$4\geq 4$ . For $y_{i}\in C_{i}(i=1,2)$ , we have

$\frac{n+k-2}{2}\leq N(y_{1}, y_{2})\leq m_{1}+m_{2}-2+s+t\leq\frac{2}{4}(n-s-t)-2+s+t$ .

Hence, we have $k-2\leq s+t-4=k-h_{1}+p+1-4$ , that is to say, $p\geq h_{1}+1$ . Since $ p\leq$

$h_{1}+1$ , this implies $p=h_{1}+1$ . So any vertex in $C_{1}$ is independent of $x_{1}$ . Hence if we let
$y_{1}\in C_{1}$ , then we have
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$\frac{n+k-2}{2}\leq N(x_{1}, y_{1})\leq s+t+|C_{1}|-1$

$\leq\frac{1}{4}(n+3s+3t-4)$ (since $|C_{1}|\leq\frac{1}{4}(n-s-t)$).

Consequently, we obtain $2n+2k-4\leq n+3s+3t-4$ . Therefore,

$n\leq 3s+3t-2k=3s+3(p+1)-2k=3(k-h_{1})+3(h_{1}-2)-2k$

$=k+6<3k+3$ (since $k\geq 2$).

This is a contradiction, and this completes the proof of Theorem 1.1.

ACKNOWLEDGMENT. We would like to thank the referee for his detailed sugges-
tions which substantially improved the presentation of this paper.

References

[1] G. CHARTRAND and L. LESNIAK, Graphs&Digraphs. Wadsworth (1986).
[2] Y. EGAWA and H. ENOMOTO, Sufficient conditions for the existence ofk-factors, Recent Studies in Graph

Theory (ed. V. Kulli), Vishwa (1989), 96-105.
[3] T. IIDA, A neighborhood condition for the existence of k-factors, Proc. JSPS Workshop on Graph

Theory and Combinatorics (1993), 21-35.
[4] T. IIDA and T. NISHIMURA, An Ore-type condition for the existence of k-factors in graphs, Graphs

Combin. 7 (1991), 353-361.
[5] M. KANO and N. TOKUSHIGE, Binding numbers and $f$-factors of graphs, J. Combin. Theory Ser. B54

(1992), 213-221.
[6] P. KATERINIS, Minimum degree of a graphs and the existence of k-factors, Proc. Indian Acad. Sci. 94

(1985), 123-127.
[7] P. KATERINIS and D. R. $W\infty DALL$, Binding numbers of graphs and the existence of k-factors, Quart.

J. Math. 38 (1987), 221-228.
[8] W. T. TUTTE, The factors of graphs, Canad. J. Math. 4 (1952), 314-328.

Present Addresses:
TADASHI IIDA
DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE AND TECHNOLOGY, KEIO UNIVERSITY,
HIYOSHI, KOHOKU-KU, YOKOHAMA, 223 JAPAN.

TSUYOSHI NISHIMURA
DEPARTMENT OF MATHEMATICS, SHIBAURA INSTITUTE OF TECHNOLOGY,
FUKASAKU OHMIYA, 330 JAPAN.


