
TOKYO J. MATH.
VOL. 20, No. 2, 1997

Convolution Operators on Holomorphic Dirichlet Series

L\^E Hai Kh\^oi

Hanoi Institute of Information Technology
(Communicated by Ma. Kato)

Abstract. The present note deals with convolution operators $\mathcal{L}_{\mu}$ on the class of holomorphic multiple
Dirichlet series in bounded convex domains in $C^{n}$ . A surjectivity criterion for this operator is obtained.
Moreover, the explicit formula for a particular solution $c$ of the equation $\mathcal{L}_{\mu}c=d$ for a given right-hand side
$d$ is given.

1. Introduction.

Let $\Omega$ be a bounded convex domain and $K$ a convex compact set in $C^{n}$ . We denote
by $\mathcal{O}(\Omega)$ the space of holomorphic functions in $\Omega$ with the compact-open topology, i.e.,
the topology of uniform convergence on compact subsets of $\Omega$ , and by $\mathcal{O}(K)$ the space
of germs of functions holomorphic on $K$ endowed with the topology of inductive limit:
$\mathcal{O}(K)=\lim$ ind $\mathcal{O}(\omega),$ $\omega$ being open neighbourhoods of $K$. As is well-known each nonzero
analytic functional $\mu\in \mathcal{O}(C^{n})^{*}$ carried by $K$ (or equivalently, $\mu\in \mathcal{O}(K)^{*}$) defines a
continuous linear convolution operator $M_{\mu}$ : $\mathcal{O}(\Omega+K)\rightarrow \mathcal{O}(\Omega)$ which is given by

(1.1) $ M_{\mu}[f](\zeta)=\langle\mu, z\mapsto f(z+\zeta)\rangle$ , $\zeta\in\Omega$ .

Convolution operators in spaces of holomorphic functions in convex domains of
$C^{n}$ have been studied by many mathematicians. First results on a surjectivity of the
convolution operator $M_{\mu}$ were obtained by Ehrenpreis [3] and Malgrange [13] for the
case when $\Omega=C^{n}$ . Later, Martineau [14] considered a particular case of (1.1), when
$K=\{0\}$ , i.e., a differential operator of infinite order, and showed that for any convex
domain $\Omega$ in $C^{n}$ it is surjective. For different general cases of $\Omega$ and $K$ some sufficient
and necessary conditions were found by Morzhakov [17], Napalkov [19], Lelong and
Gruman [9], Sigurdsson [20]. Finally, the answer to this problem was established by
Krivosheev [8]. For this problem we also refer to the papers of Kawai [5], Meril and
Struppa [16], Berenstein and Struppa $[1, 2]$ , Ishimura and Okada [4].

When the operator $M_{\mu}$ is surjective, the question whether there is a continuous
linear operator $S:\mathcal{O}(\Omega)\rightarrow \mathcal{O}(\Omega+K)$ which assigns to each $f\in \mathcal{O}(\Omega)$ a solution of the
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equation $M_{\mu}(Sf)=f$is of great interest. This operator $S$, a continuous linear right inverse
of $M_{\mu}$ , is called a “section” or a ”solution operator” of $M_{\mu}$ . Meise and Taylor [15]
proved that such an operator exists when $\Omega=C^{n}$ . In the case of a bounded convex
domain $\Omega$ in $C^{n}$ the existence of such an operator was studied by Momm [18].

In the present paper we consider these problems for the class of holomorphic
Dirichlet series.

ACKNOWLEDGMENTS. The author thanks Professors C. O. Kiselman and M.
Morimoto for valuable discussions and helpful suggestions in the preparation of this
work.

2. Sequence spaces of coefficients of Dirichlet series.

We use the notation: if $z,$ $\zeta\in C^{n}$ , then we put $|z|=(z_{1}\overline{z}_{1}+\cdots+z_{n}\overline{z}_{n})^{1/2}$ and $\langle z, \zeta\rangle=$

$z_{1}\zeta_{1}+\cdots+z_{n}\zeta_{n}$ .
Given a sequence $(\lambda^{k})_{k=1}^{\infty}$ of complex vectors in $C^{n}$ , we can associate to it the

following three sequence spaces

$E_{1}=\{c=(c_{k}) ; \exists M\forall k|c_{k}|\leq e^{M|\lambda^{k}|}\}$ ,

$E_{\Omega}=E=\{c=(c_{k})$ ; $\lim_{k\rightarrow}\sup_{\infty}\frac{\log|c_{k}|+H_{\Omega}(\lambda^{k})}{|\lambda^{k}|}\leq 0\}$ ,

$E_{0}=\{c=(c_{k}) ; |c_{k}|^{1/|\lambda^{k}|}\rightarrow 0, k\rightarrow\infty\}$ ,

where $\Omega$ is a bounded convex domain in $C^{n}$ (not necessarily containing the origin of
coordinates), with the supporting function defined as follows

$ H_{\Omega}(\zeta)=\sup_{z\in\Omega}{\rm Re}\langle z, \zeta\rangle$ , $\zeta\in C^{n}$

The condition in $E_{1}$ means that

$\sup_{k\geq 1}|c_{k}|^{1/|\lambda^{k}|}<+\infty$ ,

which is equivalent, due to the boundedness of the domain $\Omega$, to

$\lim_{k\rightarrow}\sup_{\infty}\frac{\log|c_{k}|+H_{\Omega}(\lambda^{k})}{|\lambda^{k}|}<+\infty$ .

Also the condition in $E_{0}$ means that

$\lim_{k\rightarrow\infty}\frac{\log|c_{k}|}{|\lambda^{k}|}=-\infty$ ,

which is equivalent to
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$\lim_{k\rightarrow\infty}\frac{\log|c_{k}|+H_{\Omega}(\lambda^{k})}{|\lambda^{k}|}=-\infty$ .

Thus we can define these spaces in a uniform way by requiring

$\lim_{k\rightarrow}\sup_{\infty}\frac{\log|c_{k}|+H_{\Omega}(\lambda^{k})}{|\lambda^{k}|}\left\{\begin{array}{l}<+\infty\\\leq 0\\=-\infty\end{array}\right.$

but we have to remark that in cases $E_{1}$ and $E_{0}$ the definition is independent of the
bounded domain $\Omega$ .

It is easy to check that the space $E_{0}$ is a proper subspace of $E_{\Omega}$ and the space $E_{\Omega}$,
in turn, is aproper subspace of $E_{1}$ . Indeed, if we take $c_{k}=e^{-H_{\Omega}\langle\lambda^{k})}$ , then $c=(c_{k})$ belongs
to $E_{\Omega}$ but does not belong to $E_{0}$ and the first claim is proved. For the second one, we
note that a sequence $(H_{\Omega}(\lambda^{k})/|\lambda^{k}|)_{k=1}^{\infty}$ is bounded. Taking $c_{k}=e^{M|\lambda^{k}|}$ with $M$ sufficiently
large we see that the element $c=(c_{k})$ belongs to $E_{1}$ but does not belong to $E_{\Omega}$ .

We shall show that these sequence spaces can be endowed with some topological
structure. Before doing so we would like to introduce the terminology we follow
throughout the present paper: a Fr\’echet space is a metrizable and complete locally
convex topological vector space; an $(F)$-spaoe is metrizable and complete, but not
necessarily locally convex.

Now for every $c=(c_{k})$ from the space $E_{1}$ , the largest among the spaces considered,
we write

(2.1) $\Vert c\Vert=\sup_{k\geq 1}|c_{k}|^{1/|\lambda^{k}|}$ .

We assume in addition that $|\lambda^{k}|\geq 1$ for all $k$ large enough. Then by a standard method
(which was used in [11, Theorem 4.1]) we can easily prove the following result.

PROPOSITION 2.1. The space $E_{1}$ is a complete, metrizable, non-locally bounded
space, i.e., a non-normable $(F)$-space, where the translation-invariant metric is given by

(2.2) $\rho(c, d)=\Vert c-d\Vert=\sup_{k\geq 1}|c_{k}-d_{k}|^{1/|\lambda^{k}|}$ , $\forall c=(c_{k})$ , $d=(d_{k})$ .

As in [11] we make the following remark: since the space $E_{1}$ is a metrizable space,
a metric, as is well-known [7], can always be defined by a so-called $(F)$-norm [7] (or
total paranorm [21]). We can verify that the (2.1) is, in fact, an (F)-norm (a total
paranorm).

From Proposition 2.1 it follows that also the spaces $E_{\Omega}$ and $E_{0}$ are metric spaces
with the same metric $\rho$ induced from the space $E_{1}$ .

It is easy to prove the following result.

PROPOSITION 2.2. (i) The space $E_{0}$ is a closed subspace of the space $E_{\Omega}$ and is
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also a closed subspace of the space $E_{1}$ .
(ii) The space $E_{\Omega}$ is a closed subspace of the space $E_{1}$ .

To every element $c=(c_{k})$ from any of the considered spaces we can associate th
multiple Dirichlet series

(2.3) $\sum_{k=1}^{\infty}c_{k}e^{\langle\lambda^{k},z\rangle}$ .

It is natural to ask about convergence of this series. We take an arbitrary bounde $($

convex domain $\Omega$ in $C^{n}$ with supporting function $H_{\Omega}(\zeta)$ . The following characterizatio]

[11] of the coefficients of the series (2.3) when it converges for the topology of $\mathcal{O}(\Omega$

is important and necessary for further study.

THEOREM 2.3. If the multiple Dirichlet series (2.3) converges for the topology $0$.
$\mathcal{O}(\Omega)and|\lambda^{k}|\rightarrow\infty$ as $ k\rightarrow\infty$ , then

(2.4) $\lim_{k\rightarrow}\sup_{\infty}\frac{\log|c_{k}|+H_{\Omega}(\lambda^{k})}{|\lambda^{k}|}\leq 0$ .

Conversely, if the coefficients of (2.3) satisfy condition (2.4) and if

(2.5) $\lim_{k\rightarrow\infty}\frac{\log k}{|\lambda^{k}|}=0$ ,

then the series (2.3) converges absolutely for the topology of $\mathcal{O}(\Omega)$ .

From now on a bounded convex domain $\Omega$ in $C^{n}$ with supporting function $ H_{\Omega}(\zeta$

and a sequence $\Lambda=(\lambda^{k})_{k=1}^{\infty}$ satisfying condition (2.5) are considered to be given.
Theorem 2.3 then shows that for the compact-open topology of $\mathcal{O}(\Omega)$ the serie

(2.3) converges if and only if it converges absolutely. In this case series (2.3) represent
a function holomorphic in the domain $\Omega$, i.e., an element of $\mathcal{O}(\Omega)$ .

From Theorem 2.3 it also follows that the largest open ball $RB$ where the serie
(2.3) converges locally uniformly is given by $R=$ - $\lim\sup_{k\rightarrow\infty}$ logl $c_{k}|/|\lambda^{k}|$ . Therefore
with a sequence of coefficients from the space $E_{O}$ series (2.3) converges in $C^{n}$ ant

represents an entire function in $C^{n}$ .
Thus the space $E_{\Omega}$ defines the class $E(\Lambda, \Omega)$ of Dirichlet series with the $sequenc|$

of frequencies $\Lambda=(\lambda^{k})$ that converge locally uniformly in $\Omega$ . In particular, the spaoe $E$

defines the class $E(\Lambda, C^{n})$ .
What can be said about convergence of series (2.3) for the metric $\rho$? We can easill.

prove the following result.

PROPOSITION 2.4. The series (2.3) converges for the metric $\rho$ if and only if $th|$

sequence of coefficients of this series belongs to $E_{0}$ .

PROOF. The series (2.3) converges for the metric $\rho$ if and only if the sequence $(S_{m}$

with
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$S_{m}=\sum_{k=1}^{m}c_{k}e^{\langle\lambda^{k},z\rangle}$ ,

the partial sums of this series, forms a Cauchy sequence with respect to $\rho$ . This means

$\sup_{p\leq k\leq q}|c_{k}|^{1/|\lambda^{k}|}\rightarrow 0$ as $p,$ $ q\rightarrow\infty$ ,

which is equivalent to

$|c_{k}|^{1/|\lambda^{k}|}\rightarrow 0$ , $ k\rightarrow\infty$ .

This ends the proof of the proposition.

As we have seen above, Theorem 2.3 means that series (2.3) converges for the
topology of $\mathcal{O}(\Omega)$ if and only if the sequence of coefficients of this series belongs to $E_{\Omega}$ .
So Theorem 2.3 and Proposition 2.4 show that the compact-open topology of $\mathcal{O}(\Omega)$ and
the topology defined by metric $\rho$ are very different.

In the sequel, dealing with the space $E_{\Omega}$ we mainly use the techniques of convergent
Dirichlet series, especially Theorem 2.3 and the remarks that follows it. In particular,
the fact that for $(\lambda^{k})$ satisfying condition (2.5) the series $\sum_{k=1}^{\infty}r^{|\lambda^{k}|},$ $r\in(O, 1)$ , converges,
is used very often.

We need some notation. For a point $ a\in\Omega$ we denote

(2.6) $\Omega_{t}^{a}=(1-t)a+t\Omega$ , $0<t<1$ ,

$\Omega(a)=\Omega-a=\{z-a ; z\in\Omega\}$ .
We see that $\Omega_{t}^{a}\subset\Omega$ and

$H_{\Omega_{e}^{a}}(\zeta)=(1-t){\rm Re}\langle a, \zeta\rangle+tH_{\Omega}(\zeta)$ , $\zeta\in C^{n}$

Also we have

$ H_{\Omega\langle a)}(\zeta)=H_{\Omega}(\zeta)-{\rm Re}\langle a, \zeta\rangle$ , $\zeta\in C^{n}$

Furthermore, since $0\in\Omega(a)$ it is clear that

(2.7)
$ 0<\alpha_{a}=\inf_{|\zeta|=1}H_{\Omega\langle a)}(\zeta)\leq\beta_{a}=\sup_{|\zeta|=1}H_{\Omega\langle a)}(\zeta)<\infty$ ,

and, therefore

$\alpha_{a}|\zeta|\leq H_{\Omega\langle a)}(\zeta)\leq\beta_{a}|\zeta|$ , $\forall\zeta\in C^{n}$

Now we can confirm the following result.

THEOREM 2.5. In the space $E_{\Omega}$ the topology defined by the metric $\rho$ is not locally
convex. In other words, this space with the metric $\rho$ is never a Fr\’echet space.

PROOF. First note that we can endow the space $E_{\Omega}$ with another topological
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structure which is defined by the following system of seminorms

(2.8) $\Vert c\Vert_{j}=\sum_{k=1}^{\infty}|c_{k}|p_{j}(z\rightarrow e^{\langle\lambda^{k},z\rangle})$ , $j=1,2,$ $\cdots$ ,

where $(p_{j})$ is a system of seminorms defining the compact-open topology of $\mathcal{O}(\Omega)$ . It is
easy to check (see, e.g., [6, Chapter I, \S 1, item 4]) that then this space becomes a
Fr\’echet space. Furthermore, we prove that the topology $\rho$ is strictly stronger than the
topology defined by (2.8).

Let $c^{\langle m)}=(c_{k}^{\{m)})$ be a sequence in the space $E_{\Omega}$ such that $c^{\langle m)}\rightarrow 0$ in this space with
respect to the metric $\rho$ . We prove that $\sum_{k=1}^{\infty}|c_{k}^{(m)}|\sup_{z\in K}|e^{\langle\lambda^{k}.z\rangle}|\rightarrow 0$ for any compact
subset $K$ of $\Omega$ . Let a positive number $\epsilon$ and a compact subset $K$ be given. There exists
$N$ such that for any $m\geq N$

$\rho(c^{\langle m)}, 0)=\sup_{k\geq 1}|c_{k}^{(m)}|^{1/|\lambda^{k}|}<\epsilon$ ,

which is equivalent to

(2.9) $|c_{k}^{\langle m)}|<\epsilon^{|\lambda^{k}|}$ , $\forall k\geq 1$ , $\forall m\geq N$ .

It is clear that $K\subset\Omega_{t}^{a}$ for some $t\in(O, 1)$ , where $\Omega_{t}^{a}$ is defined by (2.6). Then by (2.9) we
have, for any $m\geq N$,

$\sum_{k=1}^{\infty}|c_{k}^{(m)}|\sup|e^{\langle\lambda^{lc},z\rangle}|\leq\sum_{k=1}^{\infty}|c_{k}^{\langle m)}|e^{Hn_{\iota}^{a}\langle\lambda^{k})}$

$=\sum_{k=1}^{\infty}|c_{k}^{\{m)}|e^{tH_{\Omega\langle a)}\langle\lambda^{k})+{\rm Re}\langle a,\lambda^{k}\rangle}\leq\sum_{k=1}^{\infty}\epsilon^{|\lambda^{k}|}e^{tH_{\Omega\langle a)}\langle\lambda^{k})+{\rm Re}\langle a,\lambda^{k}\rangle}$

$\leq\sum_{k=1}^{\infty}\epsilon^{|\lambda^{k}|}e^{\langle t\beta_{a}+|a|)|\lambda^{k}|}=\sum_{k=1}^{\infty}(\epsilon e^{t\beta_{a}+|a|})^{|\lambda^{k}|}$ ,

where $\beta_{a}$ is defined by (2.7). We choose $\epsilon$ sufficiently small so that $\epsilon e^{t\beta_{a}+|a|}<1$ . Ther
the last series converges and, therefore, it tends to $0$ as $\epsilon$ tends to $0$ . So we have prove $($

that in the space $E_{\Omega}$ the convergence of a sequence with respect to the metric $\rho$ implie:
its convergence with respect to the topology (2.8).

Now we show that in general the converse is not ture. Indeed, take an arbitran.
element $c=(c_{k})$ of the space $E_{\Omega}$ . Then the series $\sum_{k=1}^{\infty}c_{k}e^{\langle\lambda^{k}.z\rangle}$ represents a function
$f(z)$ from space $\mathcal{O}(\Omega)$ and this series converges (absolutely) in the topology of $\mathcal{O}(\Omega)$

The last fact means that for every compact subsetK of $\Omega$

$\sum_{k=1}^{\infty}|c_{k}|\sup_{z\in K}|e^{\langle\lambda^{k},z\rangle}|<\infty$ ,

which implies
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(2.10) $\sum_{k=m+1}^{\infty}|c_{k}|\sup_{z\in K}|e^{\langle\lambda^{k},z\rangle}|\rightarrow 0$ , $ m\rightarrow\infty$ .

Consider a sequence $(c^{\langle m)})$ in the space $E_{\Omega}$ with

$c_{k}^{\langle m)}=\left\{\begin{array}{l}c_{k},ifk\leq m\\0,otherwise\end{array}\right.$

Then (2.10) shows that $c^{\langle m)}\rightarrow c$ with respect to the topology (2.8).
On the other hand, concerning the convergence of this sequence in the topology

$\rho$ we consider

$\rho(c^{\langle m)}, c)=\sup_{k\geq m}|c_{k}|^{1/|\lambda^{k}|}$

The sequence $(\rho(c^{\langle m)}, c))$ need not tend to $0$ as $ m\rightarrow\infty$ . For this claim it is enough to
give an example. Indeed, if we take the sequence $(c_{k})$ defined as follows
(2.11) $c_{k}=e^{-H_{\Omega}\langle\lambda^{k})}$ ’ $k=1,2,$ $\cdots$ ,

then $c=(c_{k})\in E$. For this sequence (2.11), due to boundedness of the sequence
$(H_{\Omega}(\lambda^{k})/|\lambda^{k}|)_{k=1}^{\infty}$ , there exists a constant $C>0$ such that

$|c_{k}|^{1/|\lambda^{k}|}=e^{-H_{\Omega}\langle\lambda^{k})/|\lambda^{k}|}\geq C$ , $\forall k\geq 1$ .
Thus the topology defined by metric $\rho$ is strictly stronger than the Fr\’echet topology

defined by (2.8) and therefore cannot be locally convex. Indeed, if it were, we would
have two topologies making $E_{\Omega}$ into a Fr\’echet space. These topologies would then be
equivalent by the Banach homomorphism theorem: a contradiction.

3. Sequence convolution operators on Dirichlet series.

Throughout this section the following are considered to be given: a bounded convex
domain $\Omega$ and a convex compact set $K$ in $C^{n}$ with supporting functions $H_{\Omega}(\zeta)$ and $H_{K}(\zeta)$

respectively, a sequence $\Lambda=(\lambda^{k})_{k=1}^{\infty},$ $\lambda^{k}=(\lambda_{1}^{k}, \cdots, \lambda_{n}^{k})$ , satisfying condition (2.5) and an
analytic functional $\mu\in \mathcal{O}(C^{n})^{*}$ carried by $K$ (or equivalently, $\mu\in \mathcal{O}(K)^{*}$).

As we have already seen in the previous section, for each bounded convex domain
$\Omega$ the sequence space $E_{\Omega}$ defines the class $E(\Lambda, \Omega)$ of the Dirichlet series

$\sum_{k=1}^{\infty}c_{k}e^{\langle\lambda^{k},z\rangle}$ ,

that converge locally uniformly in $\Omega$ . We call each such series, an element of the class
$E(\Lambda, \Omega)$ , the series associated to the element $c=(c_{k})$ from $E_{\Omega}$ . This makes it possible to
define convolution operators on such sequence spaces understanding that we deal with
the series associated with elements of these spaces.
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We denote briefly by $E_{\Omega+K}$ and $E_{\Omega}$ the sequence spaces, the classes of Dirichle
series associated to which are $E(\Lambda, \Omega+K)$ and $E(\Lambda, \Omega)$ respectively. Both of thes‘
sequence spaces have the same invariant metric $\rho$ induced from the space $E_{1}$ which wa:
studied in the previous section.

In the sequel, the following obvious equality

$H_{\Omega+K}(\zeta)=H_{\Omega}(\zeta)+H_{K}(\zeta)$ , $\forall\zeta\in C^{n}$

is used very often.

Let $c=(c_{k})\in E_{\Omega+K}$ . Then the series associated to $c$ has the form

$f(z+\zeta)=\sum_{k=1}^{\infty}c_{k}e^{\langle\lambda^{k}.z+\zeta\rangle}$ , $z\in K$ , $\zeta\in\Omega$ .

Applying the operator $M_{\mu}$ , defined by (1.1), to $f$ we have

(3.1) $M_{\mu}[f](\zeta)=\langle\mu,$ $z\mapsto\sum_{k=1}^{\infty}c_{k}e^{\langle\lambda^{k},z+\zeta\rangle}\rangle=\sum_{k=1}^{\infty}c_{k}\hat{\mu}(\lambda^{k})e^{\langle\lambda^{k},\zeta\rangle}$ , $\zeta\in\Omega$ ,

where $\hat{\mu}(\xi)=\langle\mu, z\mapsto e^{\langle z,\xi\rangle}\rangle,$ $\xi\in C^{n}$ , is the Laplace transform of the analytic functiona
$\mu$ . Thus the analytic functional $\mu$ generates, besides $M_{\mu}$ of the form (1.1) on the spac $($

$\mathcal{O}(\Omega+K)$ , an operator, denoted by $\mathscr{L}_{\mu}$ , acting on $E_{\Omega+K}$ . We call it a sequence convolutioi
operator.

Obviously the question now is: when does the series in the right-hand side of (3.1

belong to the class $E_{\Omega}$? It is clear that this is so, by virtue of Theorem 2.3, if th
following condition holds

(3.2) $\lim_{k\rightarrow}\sup_{\infty}\frac{\log|\hat{\mu}(\lambda^{k})|-H_{K}(\lambda^{k})}{|\lambda^{k}|}\leq 0$ .

Thus condition (3.2) is sufficient for the operator $\mathscr{L}_{\mu}$ to map the space $E_{\Omega+K}$ into th
spaoe $E_{\Omega}$ . The mapping rule is as follows: every element $c=(c_{k})\in E_{\Omega+K}$ is mapped $t($

the element $\mathscr{L}_{\mu}c=(c_{k}\hat{\mu}(\lambda^{k}))\in E_{\Omega}$ .
We now prove that condition (3.2) is also necessary. Indeed, suppose that thi

condition is false. This means that

$\lim_{k\rightarrow}\sup_{\infty}\frac{\log|\hat{\mu}(\lambda^{k})|-H_{K}(\lambda^{k})}{|\lambda^{k}|}>0$ .

Consider the sequence $(c_{k})=(e^{-H_{\Omega+\kappa}\langle\lambda^{k})})$ . In this case

$\frac{\log|c_{k}|+H_{\Omega+K}(\lambda^{k})}{|\lambda^{k}|}=0$ , $\forall k\geq 1$ .

This means that $c=(c_{k})\in E_{\Omega+K}$ . Furthermore, we have
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$\lim_{k\rightarrow}\sup_{\infty}\frac{\log|c_{k}\hat{\mu}(\lambda^{k})|+H_{\Omega}(\lambda^{k})}{|\lambda^{k}|}=\lim_{k\rightarrow}\sup_{\infty}\frac{\log|\hat{\mu}(\lambda^{k})|-H_{K}(\lambda^{k})}{|\lambda^{k}|}>0$ ,

which means that $\mathscr{L}_{\mu}c\not\in E_{\Omega}$ .
So we have proved the following.

PROPOSITION 3.1. The condition (3.2) is necessary and sufficientfor the convolution
operator $\mathscr{L}_{\mu}$ to map the space $E_{\Omega+K}$ into the space $E_{\Omega}$ .

So for further study this condition (3.2) is always supposed to be satisfied. Then
it is easily checked that $\mathscr{L}_{\mu}$ is continuous from $E_{\Omega+K}$ into $E_{\Omega}$ .

The question arises: what can we say about $\mathscr{L}_{\mu}(E_{\Omega+K})$? Here we are interested in
the density of this image in the spaoe $E_{\Omega}$ . We prove the following result.

PROPOSITION 3.2. Ifthe image $\mathscr{L}_{\mu}(E_{\Omega+K})$ is dense in the space $E_{\Omega}$ , then thefollowing
conditions hold

(3.3) $\hat{\mu}(\lambda^{k})\neq 0$ , $\forall k\geq 1$ ,

(3.4) $\lim_{k\rightarrow}\inf_{\infty}\frac{\log|\hat{\mu}(\lambda^{k})|-H_{K}(\lambda^{k})}{|\lambda^{k}|}\geq 0$ .

PROOF. Suppose that (3.3) is not true. Then there exists $p\geq 1$ such that $\hat{\mu}(\lambda^{p})=0$ .
Define a sequence $(c_{k})$ as follows

$c_{k}=\left\{\begin{array}{ll}1 , & if k=p ,\\0 , & otherwise.\end{array}\right.$

It is clear that $c=(c_{k})\in E_{\Omega}$ . Furthermore, for each $d=(d_{k})\in E_{\Omega+K}$ we have

$\rho(c, \mathscr{L}_{\mu}d)=\sup_{k\geq 1}|c_{k}-d_{k}\hat{\mu}(\lambda^{k})|^{1/|\lambda^{k}|}$

$\geq|c_{p}-d_{p}\hat{\mu}(\lambda^{p})|^{1/|\lambda^{p}|}=|c_{p}|^{1/|\lambda^{p}|}=1$ ,

which shows that $\mathscr{L}_{\mu}(E_{\Omega+K})$ is not dense in $E_{\Omega}$ . We get a contradiction.
The necessity of the condition (3.4) is proved in a similar way. Assume that (3.4)

is false. This means that

$\lim_{k\rightarrow}\inf_{\infty}\frac{\log|\hat{\mu}(\lambda^{k})|-H_{K}(\lambda^{k})}{|\lambda^{k}|}<0$ ,

which is equivalent to

(3.5) $\exists\delta>0$ , $\exists(k_{p})\uparrow+\infty$ : $|\hat{\mu}(\lambda^{k_{p}})|<e^{-2\delta|\lambda^{k_{p}}|+H_{K}\langle\lambda^{k_{p}})}$ .
Take $c=(c_{k})\in E_{\Omega}$ , where $c_{k}=e^{-H_{\Omega}\langle\lambda^{k})}$ , $k\geq 1$ . Let $d=(d_{k})\in E_{\Omega+K}$ . This means that
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$\lim_{k\rightarrow}\sup_{\infty}\frac{\log|d_{k}|+H_{\Omega+K}(\lambda^{k})}{|\lambda^{k}|}\leq 0$ .

There is $N$ such that

(3.6) $|d_{k}|\leq e^{\delta|\lambda^{k}|-H_{\Omega+K}\langle\lambda^{k})}$ , $\forall k\geq N$ .

We have

$\rho(c, \mathscr{L}_{\mu}d)=\sup_{k\geq 1}|c_{k}-d_{k}\hat{\mu}(\lambda^{k})|^{1/|\lambda^{k}|}\geq|c_{k_{p}}-d_{k_{p}}\hat{\mu}(\lambda^{k_{p}})|^{1/|\lambda^{k_{p}}|}$ , $\forall p\geq 1$ .

Furthermore, by virtue of (3.5) and (3.6), we see that for all $p$ large enough

$|c_{k_{p}}-d_{k_{p}}\hat{\mu}(\lambda^{k_{p}})|\geq|c_{k_{p}}|-|d_{k_{p}}\hat{\mu}(\lambda^{k_{p}})|$

$\geq e^{-H_{\Omega}(\lambda^{k_{p}})}-e^{-\delta|\lambda^{k_{p}}|-H_{\Omega}\langle\lambda^{k_{p}})}=e^{-H_{\Omega}\langle\lambda^{k_{p}})}(1-e^{-\delta|\lambda^{k_{p}}|})$

$\geq e^{-H_{\Omega}\langle\lambda^{k_{p}})}(1-e^{-\delta|\lambda^{k_{1}}|})=Ce^{-H_{\Omega}\langle\lambda^{k_{p}})}$ ,

where $C=1-e^{-\delta|\lambda^{k}}$ ‘ $|>0$ . Taking into account that the sequenoe $(H_{\Omega}(\lambda^{k})/|\lambda^{k}|)i$

bounded, we then can conclude that for some $C_{1}>0$

$\rho(c, \mathscr{L}_{\mu}d)\geq C_{1}$ , $\forall d\in E_{\Omega+K}$ ,

which shows that $\mathscr{L}_{\mu}(E_{\Omega+K})$ is not dense in $E_{\Omega}$ . The proposition is proved.

We now study the $su\dot{\eta}ectivity$ of the sequenoe convolution operator $\mathscr{L}_{\mu}$ .
It should be noted that the surjectivity of a continuous linear operator $F$ from on

functional spaoe $X$ onto another Yis usually established in the following way: to prov
that $F(X)$ is closed and dense in Y. In the case where $X$ and $Y$ are Fr\’echet spaces, th
closedness of the image $F(X)$ in $Y$ can be proved by checking that the image $F^{*}(Y^{1}$

of the adjoint operator $F^{*}:$ $Y^{*}\rightarrow X^{*}$ is closed.
This method was used to study the surjectivity of the operator $M_{\mu}$ from the spac

$\mathcal{O}(\Omega+K)$ onto the spaoe $\mathcal{O}(\Omega)$ and gave us a so-called ”theorem of existenoe”. Howeve]

such a way is ”theoretical”, i.e., is not “constructive” in the sense that this does nc
allow us to find explicitly a particular solution $x$ in $X$ of the equation $Fx=y$ for a give
right-hand side $y$ in Y.

Concerning the operator $\mathscr{L}_{\mu}$ we prove the following result.

PROPOSITION 3.3. Suppose that conditions (3.3) and (3.4) hold. Then the convolutio
operator $\mathscr{L}_{\mu}$ is surjective from $E_{\Omega+K}$ onto $E_{\Omega}$ . Moreover, for a given $d\in E_{\Omega}$ we can fin
explicitly $c\in E_{\Omega+K}$ such that $\mathscr{L}_{\mu}c=d$ Moreprecisely, $\iota fd=(d_{k})\in E_{\Omega}$ then $\mathscr{L}_{\mu}c=d$, where

(3.7) $c=(\frac{d_{k}}{\hat{\mu}(\lambda^{k})})$ .

Also in this case the operator $\mathscr{L}_{\mu}$ admits a continuous linear right inverse $T:E_{\Omega}\rightarrow E_{\Omega+}$
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which has the following representation:

(3.8) $Td=(\frac{d_{k}}{\hat{\mu}(\lambda^{k})})$ , $d=(d_{k})\in E_{\Omega}$ .

PROOF. Let $d=(d_{k})\in E_{\Omega}$ . This means that

$\lim_{k\rightarrow}\sup_{\infty}\frac{\log|d_{k}|+H_{\Omega}(\lambda^{k})}{|\lambda^{k}|}\leq 0$ .

By virtue of (3.3) we can define a sequence $(c_{k})$ , where

$c_{k}=\frac{d_{k}}{\hat{\mu}(\lambda^{k})}$ , $k=1,2,$ $\cdots$

Then from (3.4) it follows that

$\lim_{k\rightarrow}\sup_{\infty}\frac{\log|c_{k}|+H_{\Omega+K}(\lambda^{k})}{|\lambda^{k}|}$

$=\lim_{k\rightarrow}\sup_{\infty}\{\frac{\log|d_{k}|+H_{\Omega}(\lambda^{k})\log|\hat{\mu}(\lambda^{k})|-H_{K}(\lambda^{k})}{|\lambda^{k}||\lambda^{k}|}\}$

$\leq\lim_{k\rightarrow}\sup_{\infty}\frac{\log|d_{k}|+H_{\Omega}(\lambda^{k})}{|\lambda^{k}|}\lim_{k\rightarrow}\inf_{\infty}\frac{\log|\hat{\mu}(\lambda^{k})|-H_{K}(\lambda^{k})}{|\lambda^{k}|}\leq 0$ .

This means that $c=(c_{k})$ is in $E_{\Omega+K}$ . Furthermore, it is clear that $\mathscr{L}_{\mu}c=d$. So the operator
$\mathscr{L}_{\mu}$ is surjective.

Now we prove the last assertion of the theorem. We have already seen that the
right-hand side of (3.8) represents an element in $E_{\Omega+K}$ for every $d=(d_{k})\in E_{\Omega}$ which
means that the operator $T$ of the form (3.8) is well defined. Furthermore, it is obvious
that $T$ is linear. Moreover, $T$ is the right inverse of $\mathscr{L}_{\mu}$ . Finally, the continuity of $T$ is
obvious. The proof is complete.

Note that conditions (3.2) and (3.4) together mean

(3.9) $\lim_{k\rightarrow\infty}\frac{\log|\hat{\mu}(\lambda^{k})|-H_{K}(\lambda^{k})}{|\lambda^{k}|}=0$ .

Summarizing our discussion we get the following criterion for the surjectivity of
the convolution operator $\mathscr{L}_{\mu}$ (as well as the density of its image).

THEOREM 3.4. Let $\Omega$ be a bounded convex domain and $K$ a convex compact set in
$C^{n}$ . Let further $(\lambda^{k})_{k=1}^{\infty}$ be a sequence of complex vectors in $C^{n}$ satisfying condition (2.5).
Letfinally $\mu\in \mathcal{O}(C^{n})^{*}be$ an analytic functional carried by K The following assertions are
equivalent:
(i) The image $\mathscr{L}_{\mu}(E_{\Omega+K})$ is dense in $E_{\Omega}$ .
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(ii)
$\left\{\begin{array}{ll}\hat{\mu}(\lambda^{k})\neq 0, & \forall k\geq 1,\\\lim_{k\rightarrow\infty} & =0.\end{array}\right.$

(iii) The operator $\mathscr{L}_{\mu}$ : $E_{\Omega+K}\rightarrow E_{\Omega}$ is surjective.
Moreover, in the case where any one of these assertions holds, for a given $d\in E_{\Omega}$ we

can alwaysfind explicitly $c\in E_{\Omega+K}$ ; namely $c$ is of the form (3.7) such that $\mathscr{L}_{\mu}c=d$ and
also $\mathscr{L}_{\mu}$ admits a continuous linear right inverse $T:E_{\Omega}\rightarrow E_{\Omega+K}$ defined by (3.8).

By virtue ofTheorem 2.3, for every $c=(c_{k})$ from the spaoe $E_{\Omega}$ its associated DirichleI
series represents a function holomorphic in $\Omega$ . Therefore, we can naturally define a
linear mapping $\sigma_{\Omega}$ ; $E_{\Omega}\rightarrow \mathcal{O}(\Omega)$ , called a representation mapping, as follows

$\sigma_{\Omega}(c)=\sigma_{\Omega}((c_{k}))=\sum_{k=1}^{\infty}c_{k}e^{\langle\lambda^{k},z\rangle}$ , $ z\in\Omega$ .

In general, $\sigma_{\Omega}(E_{\Omega})\subset \mathcal{O}(\Omega)$ . However, it should be noted that for certain sequences
$(\lambda^{k})_{k=1}^{\infty}$ the mapping $\sigma_{\Omega}$ can be surjective, i.e., the equality $\sigma_{\Omega}(E_{\Omega})=\mathcal{O}(\Omega)$ holds. In this
case the choioe of the sequenoe $(\lambda^{k})$ can be realized in different ways. This is so if and
only if the system $(e^{\langle\lambda^{k}.z\rangle})_{k=1}^{\infty}$ is an absolutely representing system in the spaoe $\mathcal{O}(\Omega)$

(see, e.g., [10, 12]), i.e., if and only if every function $f(z)\in \mathcal{O}(\Omega)$ can be represented in
the form of the series

$f(z)=\sum_{k=1}^{\infty}c_{k}e^{\langle\lambda^{k},z\rangle}$ , $ z\in\Omega$ ,

which converges absolutely in the topology of $\mathcal{O}(\Omega)$ . Then, sinoe this representation is
never unique, the mapping $\sigma_{\Omega}$ in this case is never injective.

Furthermore, it is easy to see that the mapping $\sigma_{\Omega}$ is not injective if and only il
there exists a sequenoe $(c_{k})\in E_{\Omega}$, not all zero, such that

$\sum_{k=1}^{\infty}c_{k}e^{\langle\lambda^{k},z\rangle}=0$ , $\forall z\in\Omega$ ,

and the series converges (absolutely) in the topology of $\mathcal{O}(\Omega)$ , or equivalently, if and
only if the system $(e^{\langle\lambda^{k},z\rangle})_{k=1}^{\infty}$ admits a non-trivial expansion of zero in the spaoe $\mathcal{O}(\Omega)$

(see, e.g., [12]). Moreover, this system of exponents is not necessarily an absolutely
representing system in $\mathcal{O}(\Omega)$ . So, a non-injective mapping $\sigma_{\Omega}$ may be non-surjective.

Also note that the operator $\sigma_{\Omega}$ is a continuous linear operator.
When the mapping $\sigma_{\Omega}$ : $E_{\Omega}\rightarrow \mathcal{O}(\Omega)$ is surjective, it is natural to ask whether this

mapping admits a continuous linear right inverse.
So far as we know for the multidimensional case, this question has not been studied

yet. Besides, as we already noted in the introduction, the existenoe of the continuous
linear right inverse of the convolution operator $M_{\mu}$ : $\mathcal{O}(\Omega+K)\rightarrow \mathcal{O}(\Omega)$ was studied by
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Momm [18, Duality 1.6]. We give here one simple relation between $\sigma_{\Omega}$ and $M_{\mu}$ which
is followed from the results obtained above.

PROPOSITION 3.5. Let $\Omega$ be a bounded convex domain and $K$ a convex compact set
in $C^{n}$ . Let further $(\lambda_{k})_{k=1}^{\infty}$ be a sequence of complex vectors in $C^{n}$ such that the system
$(e^{\langle\lambda^{k},z\rangle})_{k=1}^{\infty}$ is an absolutely representing system in the space $\mathcal{O}(\Omega)$ . Let finally $\mu$ be an
analytic functional carried by $K$ such that the convolution operator $\mathscr{L}_{\mu}$ is surjective from
$E_{\Omega+K}$ onto $E_{\Omega}$ . If $\sigma_{\Omega}$ admits a continuous linear right inverse, then so does $M_{\mu}$ .

PROOF. By virtue of Theorem 3.4 the operator $\mathscr{L}_{\mu}$ admits a continuous linear
right inverse $T:E_{\Omega}\rightarrow E_{\Omega+K}$ . If $S:\mathcal{O}(\Omega)\rightarrow E_{\Omega}$ is a continuous linear right inverse of $\sigma_{\Omega}$ ,
then, as is easy to verify, the operator $M_{\mu}$ admits a continuous linear right inverse
$R:\mathcal{O}(\Omega+K)\rightarrow \mathcal{O}(\Omega)$ defined as $R=\sigma_{\Omega+K}\circ T\circ S$, where $\sigma_{\Omega+K}$ is the representation
mapping from $E_{\Omega+K}$ into $\mathcal{O}(\Omega+K)$ .

Finally, we note that in a particular case where $K=\{0\}$ , the convolution operator
$M_{\mu}$ is a partial differential operator (of finite or infinite order) on $\mathcal{O}(\Omega)$ and can be
written as

$M_{\mu}[f](\zeta)=\sum_{||v||=0}^{\infty}a_{v}D^{\nu}f$ , $f\in \mathcal{O}(\Omega)$ .

The coefficients are determined by the Laplace transform of the functional $\mu$ , the entire
function $\hat{\mu}(\zeta)=\sum_{||v||=0}^{\infty}a_{v}\zeta^{\nu}$ for which

$\lim_{||v||\rightarrow\infty}||v\sqrt[||]{|a_{v}|v!}=0$ ,

where $\Vert v\Vert=v_{1}+\cdots+v_{n},$ $v!=v_{1}!\cdots v_{n}!$ ; in other words, $\hat{\mu}(\zeta)$ belongs to the class $[1, 0]$

of entire functions of at most order one and zero type. Then $M_{\mu}$ is always surjective
[14].

In this case $\mu$ defines a differential operator $\mathscr{L}_{\mu}$ on the sequenoe spaoe $E_{\Omega}$ and all
results obtained above in this section hold for this differential operator.
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