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Abstract. Let n>2 be an integer. We show that if G is a graph such that every component of G has
order at least 3, and | (G)|<2" and | V(G)|#2"—2, then there exists an injective mapping ¢ from V(G) to
an elementary abelian 2-group of order 2" such that for every component C of G, the sum of ¢(x) as x ranges
over V(C) is o.

1. Introduction.

Let n>2 be an integer, and let E,. denote an elementary abelian 2-group of order
2" (the operation is written additively).

Let G be a graph with no isolated vertex (by a graph, we mean a simple undirected
graph). Suppose that there exists a mapping ¥ from the edge set E(G) of G to E,. such
that if we define a mapping ¢ from the vertex set ¥(G) of G to E,. by

P(x)= > ple)  (xeV(G)),
eis iniiedi(n(f)wilh x

then ¢ is injective. In this situation, we say that G is realizable in E,.. We easily see
that if G is realizable in E,., then every component of G has order at least 3 (recall
that we are assuming G has no isolated vertex). It also follows that o

G is realizable in E,. if and only if there exists an injective
mapping ¢ from ¥(G) to E,. such that Y, @(X)=0 (1.1)
for every component C of G

(see [1, Lemma 4]). We let g(n) denote the maximum of those integers m for which
every graph G of order at most m such that all components of G have order at least 3
is realizable in E,.

A subset S of E,. is called a zero-sum subset if Y _¢v=o0. Let a, b, ¢ be nonnegative
integers, and let Z be a subset of E,.. Let K be a family of zero-sum subsets of Z, and
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suppose that SN T=F for all S, Te K with S#T, that 3<|S|<5 for all SeK, and
that a=|{S||S|=3}I, b=|{S||S|=4}| and c=|{S||S|=5}|. In this situation, we
say that K realizes (g, b, ¢) in Z. If there exists a family realizing (a, b, ¢) in Z, we say
that (a, b, ¢) is realizable in Z. We let f(n) denote the largest integer such that every
triple (a, b, ¢) of nonnegative integers with 3a+4b+ 5c¢< f(n) is realizable in E,.. It
follows from (1.1) that f(n)=g(n) (see the first paragraph of the proof of Theorem 3
in [1]).

In [1], Aigner and Triesch proved that f(n)>2""2 for all n>2, and conjectured
that f(n)>2""1. In [5], Tuza settled this conjecture for large values of n by proving
lim, ,  f(n)/2"=1 by a probabilistic method. In this paper, we settle the conjecture
completely by proving the following theorem (it is easy to see that f{2)=4):

THEOREM 1. Let n>3 be an integer. Then f(n)=2"—3.
We in fact give a constructive proof of the following stronger result:

THEOREM 2. Let n>2 be an integer, and let a, b, ¢ be nonnegative integers with
3a+4b+5c=2"—1. Then (a, b, ¢) is realizable in E,.\{o}.

COROLLARY 3. Let n>2 be an integer, and let a, b, c be nonnegative integers such
that 3a+4b+5c<2" and 3a+4b+5c#2"—2. Then (a, b, ¢) is realizable in E,..

ReEMARK. From n>2, we see that E,. itself is a zero-sum subset. Since no subset
of E,. having cardinality 2 is a zero-sum subset, this implies that no triple (aq, b, c) with
3a+4b+S5¢c=2"-2 is realizable in E,..

In view of the above remark, it is straightforward to verify that Corollary 3 implies
Theorem 1. For completeness, we here include a description of how Corollary 3 follows
from Thorem 2. Let a, b, ¢ be as in Corollary 3. By replacing a, b, ¢ by suitable larger
integers (if necessary), we may assume that 3a+4b+5¢=2"—1 or 2" If 3a+
4b+5¢=2"—1, the desired conclusion immediately follows from Theorem 2. Thus
we may assume 3a+4b+ 5c=2". Since 2" is not a multiple of 3, we have 5>0 or ¢>0.
Assume first that 5>0. Then by Theorem 2, there exists a family K realizing (a+ 1,
b—1,c)in E,.\{0}. Take S e K with | S| =3. Then the family (K\{S}) U {S U {0} } realizes
(a, b, ¢). If ¢>0, then we can simmilarly get a family realizing (a, b, ¢) from a family
realizing (a, b+ 1, c—1) in E,.\{0}.

We prove several preliminary results in Sections 2 and 3, and prove Theorem 2 in
Sections 4 and 5. We conclude this section with related results. Let »>2 be an integer.
A graph G with no isolated vertex is said to be embeddable in a set A of cardinality »
if there exists a mapping { from E(G) to the set of all subsets of 4 such that the mapping
¢ defined by

o(x)= U Yle) (xeG))
eis iniiedlig(t;)with x
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is injective. We let A(n) denote the maximum of those integers m for which every graph
G of order at most m such that all components of G have order at least 3 is embeddable
in a set of cardinality #n. In [1], Aigner and Triesch proved that h(n)>2""! for all n>2,
and it has recently been proved in [3] that A(n)=2" for all n>2. ‘

REMARK. In [2], Caccetta and Jia have recently obtained the same result as
Theorem 2.

2. Nonnegative integers.

In this section and the following section, we prove a number of preliminary results
which we use in the proof of Theorem 2 (readers not interested in technical details may
skip Sections 2 through 4, and proceed to Section 5). We start with lemmas concerning
nonnegative integers.

LemMA 2.1. Let a, b, c be nonnegative integers such that
3a+4b+5¢=57, 2.1

and suppose that we have a>3 or c=1. Then there exist nonnegative integers x, y, z
such that

3x+4y+5z=45, x<a, y<b, z<c. 2.2)

PrOOF. Let d=min{b, c}. If d>5, (2.2) holds with (x, y, z)=(0, 5, 5). Thus we may
assume d<4.1fa+3d>15,(2.2) holds with (x, y, z) =(15—3d, d, d). Thus we may assume

a+3d<15. 2.3)

We first consider the case where b>c. If c>1, let =0 and c,=1; if c=0 (so a>3
by assumption), let a,=3 and ¢,=0. Then q,<a, ¢, <c and

3ao+9c,=9. 2.4)
Also we easily see that there exist nonnegative integers p, r with p<a—a,, r<c—c, and
p+r<3 2.5)
such that
3p+5r=3(a—ag)+5(c—cyp) (mod4) . (2.6)
Since 3p+ 5r<15 by (2.5), we obtain
3(a—p)+4b+5(c—r)=42 2.7

by (2.1). On the other hand, we get
3(a—p)+5(c—r)<3(a+3c)=3(a+3d)<45 2.8)
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from (2.3). Since 45—(3(a—p)+S(c—r)=36+4co—(3(@—ao—p)+5(c—co—r)) is a
multiple of 4 by (2.4) and (2.6), it follows from (2.7) and (2.8) that there exists a positive
integer y such that (2.2) holds with x=a—p and z=c—r.

We now consider the case where b <c. In this case, we take nonnegative integers
P, q with p<a, g<b and p+g<4 such that 3p+4g=3a+4b (mod5). Then we have
3(@a—p)+4b—q)+5¢=41 and 3(a—p)+4(b—qg<45, and 45—B(a—p)+4b—¢q)) is a
multiple of 5. Consequently, there exists a positive integer z such that (2.2) holds with
x=a—p and y=b—gq.

LemMMA 2.2. Let r be a nonnegative integer. Let a, b, c, be nonnegative integers such
that 3a+4b+ 5¢>45r+12 and

[(b—1)/9] <(a/3)+c. 9

Then there exist nonnegative integers X, ¥y, Z1; X1, Y2, Z25° "5 Xp Vy» Z, Such that
3x;4+4y;+5z,;=45for all i, ) x;<a, ) y;<band ) z;<c.

Proor. If r=0, the lemma trivially holds. Thus let »>1, and assume that the
lemma is proved for r—1. It suffices to show that there exist nonnegative integers x,
¥, z satisfying (2.2) such that

[(b—y)—1)/9]1<(a—x)/3+(c—2). (2.10)

Assume first that 5> 10. Then a/3+c>1 by (2.9), and hence a=>3 or c>1. If a>3, let
(x,¥,2)=(3,9,0); if a<3 (so c=1), let (x,y,z)=(0, 10, 1). Then (2.10) easily follows
from (2.9). Assume now that 5<9. Then 3a+ 5¢>(45+12)—36, and hence we have
a>3 or c>1. Consequently, it follows from Lemma 2.1 that there exist nonnegative
integers x, y, z satisfying (2.2), and (2.10) clearly holds because (b—y)—1<b—1<9.

LemMMA 23. Let b, c, t be nonnegative integers such that 4b+5c>t+12, and
suppose that one of the folloiwng holds:

(i) t is a multiple of 4 and b= 4, or

(i) ¢t is a multiple of 5 and c¢>3.
Then there exist nonnegative integers y, z such that

4y+5z=t, y<b, z<c. (2.11)

Proor. We first consider the case where (i) holds. Clearly we may assume b < t/4.
Also there exists a nonnegative integer ¢ with ¢ <4 such that t—4(b—gq) is a multiple
of 5. Then 4(b —q)+ 5c>t—4, and hence there exists a positive integer z such that (2.11)
holds with y=>b—q. We now consider the case where (ii) holds. We may assume ¢ < /5.
Also there exists a nonnegative integer r with r <3 such that t—5(c—r) is a multiple of
4. Then 4b+ 5(c—r)>t—3, and hence there exists a nonnegative integer y such that
(2.11) holds with z=c—r.
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3. Realizable triples.

Throughout this section, we let n>2 be an integer, and let X be an elementary
abelian 2-group of order 2". For a subset S of X, we let {(S) denote the subgroup of
X generated by S. For subsets S, 7 of X, we let S+T={u+v|ueS,veT}.

LEMMA 3.1. Let S be a subset of X and let Q be a zero-sum subset of cardinality
4 of X, and suppose that {(S) N {Q>={o}. Then (0,|S], 0) is realizable in S+ Q.

PrOOF. The family {u+ Q|ue S} realizes (0, | S|, 0).

LEMMA 3.2. Let S, P be zero-sum subsets of cardinality 3 such that {S) n {P)={o}.
Then (0, 1, 1) and (3, 0, 0) are realizable in S+ P.

PROOF. Write S={s,, 5,, 53} and P={v,, v,, v3}, and let Pp={s;+v;4, |1 <i<3}
for each 1 <k <3 (subscripts of the letter v are to be read modulo 3). Then {P,, P,, P;}
realizes (3, 0, 0), and

{{s1, 53} +{vy, v3}, (S+P)\ ({54, 53} +{v1, v3})}
realizes (0, 1, 1).

LemMmA 3.3. Let S and R be zero-sum subsets of cardinality 3 and 5, respectively,
such that {S) n{R)={o}. Then (0, 0, 3) is realizable in S+ R.

PROOF. Write S={s,, s, s3} and R={v,, v,, v3, p, q} and define P, as in Lemma
3.2. Then {P, U {s,+p, sy +q} | 1 <k <3} realizes (0, 0, 3).

LemMa 3.4. Let S, P, Q be zero-sum subsets of cardinality 3 such that PN Q=
and {S> " {P U Q)>={0}. Then (2,3,0) and (1, 0, 3) are realizable in S+ (P v Q).

PrROOF. Write S={s,, 5,, 53}, P={v;, U5, v3} and Q={w;, w,, w3} (subscripts are
to be read modulo 3). For each 1 <k <3, let

Ov={Sk+ 1> Sk+2) +{V Wi}
Ri={s+v; | 1<i<3} U {sp11+We Sk tWe}.
Let
Py={s;+v;|1<i<3}, P,={s;+w;|1<i<3}.

Then {P,, P,} u{Q,|1<k<3} realizes (2,3,0), and {P,} U {R,|1<k<3} realizes
(1,0, 3).

LEMMA 3.5. Let T be a zero-sum subset of cardinality 5 and let P, Q be zero-sum
subsets of cardinality 3, and suppose that P Q= and {T) n{(Pu Q)={o}. Then
0, 5, 2) is realizable in T+ (P v Q).

PROOF. Write T={sy, s, s3,t, u}, P={vy,0,,v3} and Q={w,, w,, w;}. Define
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P, P,, 0y, Q,, Q3 as in Lemma 3.4, and let
R =P, U{t+v,,u+v,}, R,=P, U {t+w,yu+w,},
Q.={t, u} +{vy,v3}, Os={t,u}+{wy, ws}.
Then {R,, R,} U {Q, | 1 <k<5} realizes (0, 5, 2).

LEMMA 3.6. Let S be a zero-sum subset of cardinality 3 and let Q, R be zero-sum
subsets of cardinality S, and suppose that Q " R= and {S) n{Q U R)={o0}. Then
0, 5, 2) is realizable in S+(Q v R).

PROOF. Write S={s,, 5,, 53}, @={vy, v,, 03, P, g}, R={w,, w,, w3, x, y}. Define P,,
P,, Oy, O0,, Q5 as in Lemma 3.4, and let

Ri=P,u{s;+p,5,+q}, Ry=P,U{s;+Xx,5,+y},
Qi={s1, 53} +{p. g} » Qs={s1, 53} +{x, y} .
Then {R,, R,} U {Q, | 1 <k <5} realizes (0, 5, 2).

LeMMA 3.7. Let S, P be zero-sum subsets of cardinality 3 and let R be a zero-sum
subset of cardinality 5, and suppose that PN R= and {(S) n{PuU R)={0}. Then
(1,4, 1) is realizable in S+ (P v R).

PROOF. Write S={s,, 5,, 53}, P={v;, 5, 3} and R={w, w,, w3, X, y}, and let P,,
R,, O;, O3, O3, Os be as in Lemma 3.6. Then they form a family realizing (1, 4, 1).

LeMMA 3.8. Let W be a subgroup of order 23 of X and let P be a zero-sum subset
of cardinality 3 of X, and suppose that W n {(P)={0}. Then (0, 1, 4), (3,0, 3) and (8, 0, 0)
are realizable in W+ P.

PrROOF. Let Z be a subgroup of order 22 of W. By Lemma 3.2, (0, 1, 1) and (3, 0, 0)
are realizable in (Z\{0})+ P. By Lemma 3.3, (0, 0, 3) is realizable in (W\Z) L {0})+ P.
Consequently, (0, 1, 4) and (3, 0, 3) are realizable in W+ P. Now write W={v,, v,, v3)
and P={p,, p,, p3} (subscripts are to be read modulo 3). For each 1 <k <3, let

Py={Pi> 0 +Pi+1 U+ Pi+2} »
Se={Vk+Pis Vk+ 1 +Vk 42+ P+ 25 Ui+ Vx4 1+ 02+ Pir1} -
For each 1 </<2, let
Ty ={v;+ 04 1 +Piv141 | 1Si<3}.
Then {P,, S;, T;} | 1 <k <3, 1 <1<2} realizes (8, 0, 0).

LEMMA 3.9. Let W be a subgroup of order 23 and let R be a zero-sum subset of
cardinality 5, and suppose that W N {R>={o}. Then (0, 0, 8) is realizable in W+ R.

PROOF. Write W={v,, v,,v3) and P={p,, p,, ps, ¢, r} (subscripts are to be read
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modulo 3). Define P, S;, T; as in Lemma 3.8, and let
Ri=P, v {v+q, v +r},
Ur=St U {Ukr1+Vk2+q U1 H0ip+75
Vi=T,v{gr}, Vo=T,U{v;+v,+03+q, v, +v,+v3+r} .
Then {R,, U,, V;| 1<k <3, 1 <I<2} realizes (0, 0, 8).

LEMMA 3.10. Let W be a subgroup of order 23 and let R be a zero-sum subset of
cardinality 5 with o¢ R, and suppose that W n {R>={0}. Then (0, 3, 7) is realizable in

(W+(R U {o))\{o}. |
Proor. Under the notation of Lemma 3.9, let
Vi={v,+v3+ps 01 +03, 01 +03+Ps, vy +03+P3, Uy + 02+ D3}
Q1 ={vy, 03, V3, vy + v, + 03},
Q,={v,+v;3, v1+v,} +{0,p1} .,
Qs={o, vy +v,+v3}+{g,r}.
Then {Q;, Ry, U;, V3 | 1 <k <3} realizes (0, 3, 7).

LemMMA 3.11. If n is odd, let W denote a subgroup of order 23; if n is even, let
W={o}. Then (| X|—| W))/3, 0, 0) is realizable in X \W.

PrOOF. We proceed by induction on n. It is easy to verify the lemma for n=2, 3.
Thus let n>4, and assume that the lemma is proved for n—2. Take subgroups U and
V of order 2"~ 2 and 22, respectively, so that U= W and U n V={o}. By the induction
hypothesis, there exists a family L realizing (| U|—] W1)/3,0,0) in U\W. It follows
from Lemma 3.2 that for each PeL, there exists a family M, realizing (3, 0, 0) in
P+ (V\{o}). Furthermore, there exists a family N realizing (| W|, 0, 0) in W+ (V' \{o0})
(if W={o}, this is trivial; if | W|=38, this follows from Lemma 3.8). Thus the family
(UpeL Mp) v N U L realizes (| X|—| W|)/3, 0, 0) in X\ W.

LemMMA 3.12. Suppose that n>3, and let U be a subgroup of order 2"~ 1. Let a, b,
¢ be nonnegative integers with 3a+4b+5c=2"—1 and b>2""3, and suppose that there
exists a family K realizing (a,b—2""3, ¢) in U\{o}. Then (a, b, c) is realizable in X \{o}.

PrOOF. Let W be a subgroup of order 22 of U. Then the family L consisting of
those cosets of W which are disjoint from U realizes (0,2"" 3, 0), and hence Ku L
realizes (a, b, ¢).

The following lemma shows that Theorem 2 holds for 2<n<4:

LemMa 3.13. Suppose that 2<n<4, and let a, b, c be nonnegative integers with
3a+4b+5c=2"—1. Then (a, b, ¢) is realizable in X\{o}.
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PrOOF. If n=2 or 3, the lemma clearly holds. Thus we may assume n=4. In view
of Lemmas 3.11 and 3.12, we may assume b+c#0 and b<1. Thus (a, b, c)=(2,1, 1) or
(0,0, 3). Let U, ¥ be subgroups of order 22 such that U V= {0}. Then by Lemma 3.2,
there exists a family K realizing (0, 1, 1) in (U\{0})+ (¥ \{0}), and hence Ku {U\{o},
V\{o}} realizes (2,1,1). Now write U\{o}={u, u,,u3} and V\{o}={v,, vy, v3}
(subscripts are to be read modulo 3). Then the family

{{ths Vs e+ V4 15 Uper 1 0 Uiy 1 041} | 1SK<3)
realizes (0, 0, 3).
We prove four more technical results.

LemMA 3.14. Let r be a nonnegative integer, and let P,,---, P,, S be zero-
sum subsets of cardinality 3 such that P, P;=& for all i, j with i#j and
(S>N{PyU---UP,y={o}. Let x,y, z be nonnegative integers with 3x+4y+5z=09r,
and let d=min{y, z} and e=max{y, z}. Suppose that e—d<3(r—d)/2. Then (x, y, z) is
realizable in S+(P, v --- U P,).

Proor. We proceed by induction on r. If r=0, the lemma trivially holds. Thus
assume r>1. If d>1, then (x, y—1,z—1) is realizable in S+(P, U --- U P,_,) by the
induction hypothesis, and (0, 1, 1) is realizable in S+ P, by Lemma 3.2, and hence (x, y, z)
is realizable in S+ (P, U - -+ U P,). Thus we may assume d=0. If e=0, then y=z=0
and x=3r, and hence the desired conclusion immediately follows from Lemma 3.2.
Thus we may assume e>0. Then either y=0 and z>0, or z=0 and y>0.

Assume first that y=0 and z>0. Then since 3x+ 5z=9r, z is a multiple of 3, and
hencez>3and r>2. Since z=e—d<3(r—d)/2=3r/2, we also get x=(9r—5z)/3>r/2>1.
Thus by the induction hypothesis, (x—1, 0, z— 3) is realizable in S+ (P, U - - U P,_,).
Since (1, 0, 3) is realizable in S+ (P,_, v P,) by Lemma 3.4, this implies that (x, 0, z) is
realizable in S+ (P, u---UP,).

Assume now that z=0and y>0. Then y>3, r>2 and x> 2. Thus by the induction
hypothesis, (x—2,y—3,0) is realizable in S+(P,uv---UP,_,). Since (2,3,0) is
realizable in S+ (P,_, v P,) by Lemma 3.4, this implies that (x, y, 0) is realizable in
S+P,u---UP).

LeMMA 3.15. Let V be a subgroup of order 2%, and let S be a zero-sum subset of
cardinality 3 such that {(S) V={o}. Let x, y, z be nonnegative integers with
3x+4y+5z=45. Then (x, y, z) is realizable in S+ (V' \{o}).

PrOOF. Let d=min{y, z} and e=max{y, z}. By Lemma 3.13, we can partition
V'\{o} into five zero-sum subsets of cardinality 3. Consequently, if e—d<3(5—d)/2,
then the desired conclusion immediately follows from Lemma 3.14. Thus we may assume
e—d>3(5—d)/2. Then (x, y,z)=(0, 0, 9), (0, 10, 1), (1, 8, 2) or (3,9, 0). By Lemma 3.13,
we can partition V'\{o} into three zero-sum subsets of cardinality 5, and hence it follows
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from Lemma 3.3 that (0, 0,9) is realizable in S+ (¥ \{0o}). By Lemma 3.13, we can
partition V'\{o} into four zero-sum subsets P, Q,, @,, Qs such that |P|=3 and
|Q,1=10,|=10Q3|=4. Then (0, 1, 1) and (3, 0, 0) are realizable in S+ P by Lemma 3.2,
and (0, 3, 0) is realizable in S+ Q; by Lemma 3.1. Consequently, (0, 10, 1) and (3, 9, 0)
are realizable in S+ (¥ \{o}). Now by Lemma 3.13, we can partition ¥'\{o} into four
zero-sum subsets P;, P,, O, R such that |P,|=|P,|=3, |Q|=4 and |R|=S5. Then
(1, 4, 1) is realizable in S+ (P, u R) by Lemma 3.7, (0, 1, 1) is realizable in S+ P, by
Lemml 3.2, and (0, 3, 0) is realizable in S+ Q by Lemma 3.1. Consequently, (1, 8, 2) is
realizable in S+ (V'\{o0}).

LEMMA 3.16. Let V be a subgroup of order 2%, and S be a zero-sum subset of
cardinality 3 such that {S) "V={o}. Let x, y, z be nonnegative integers with
3x+4y+5z=48. Then (X, y, z) is realizable in S+ V.

ProOF. If x>1, the desired conclusion immediately follows from Lemma 3.15.
Thus we may assume x =0. Since (1, 3, 0) is realizable in V'\{o} by Lemma 3.13, (0, 4, 0)
is realizable in V. Consequently, it follows from Lemma 3.1 that (0, 12, 0) is realizable
in S+ V. Thus we may assume z>0, and hence (y, z)=(2, 8) or (7, 4). Since (2, 1, 1) is
realizable in V'\{o} by Lemma 3.13, we can partition V into two zero-sum sets P;, P,
of cardinality 3 and two zero-sum subsets R;, R, of cardinality 5. By Lemma 3.2,
(0, 1, 1) is realizable in S+ P, and S+ P,. By Lemmas 3.3 and 3.6, (0, 0, 6) and (0, 5, 2)
are realizable in S+ (R, U R,). Consequently, (0,2, 8) and (0, 7, 4) are realizable in
S+ V.

LEMMA 3.17. Let V be a subgroup of order 2*, and let T be a zero-sum subset of
cardinality S such that {T) n V'={o}. Let y, z be nonnegative integers with 4y+5z=175.
Then (0, y, z) is realizable in T+ (V \{o}).

PrOOF. By Lemma 3.13, we can partition V\{o} into a zero-sum subset P of
cardinality 3 and three zero-sum subsets Q,, Q,, Qs of cardinality 4. By Lemma 3.3,
(0, 0, 3) is realizable in T+ P. By Lemma 3.1, (0, 5, 0) is realizable in 7+ Q, for each i.
Consequently, (0, 15, 3) is realizable in T+ (V' \{0}). Thus we may assume z>3, and
hence (y, 2)=(0, 15), (5, 11) or (10, 7). By Lemma 3.13, we can partition V'\{o} into five
zero-sum subsets P, - - -, P5 of cardinality 3. By Lemmas 3.3 and 3.5, (0, 0, 6) and
(0, 5, 2) are realizable in T+ (P,;_; U P,;) for each 1<i<2. By Lemma 3.3, (0, 0, 3) is
realizable in T+ Ps. Consequently, (0, 0, 15), (0, 5, 11) and (0, 10, 7) are realizable in
T+ (V\{o}).

4. Small case.

Let n>2 be an integer, and let X be an elementary abelian 2-group of order 2".
In this section, we consider the case where 5<n<7.
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LemMA 4.1. Suppose that n=S5, and let a, b, ¢ be nonnegative integers with
3a+4b+5c=31. Then (a, b, c) is realizable in X \{o}.

ProOF. By Lemmas 3.12 and 3.13, we may assume b <3. Thus (a, b, ¢)=(1, 2, 4),
2,0,5),(3,3,2),(4,1,3),(6,2,1), (7,0, 2) or (9, 1, 0). Take subgroups U and V of order
23and 22, respectively, so that U n V= {0}, and let Wbe a subgroup of order 22 of U.

Case 1. (a,b,c)=(1,2,4),(4,1,3)0r (9,1,0). By Lemma 3.8, (0, 1, 4), (3, 0, 3) and
(8, 0, 0) are realizable in U+ (V'\{o}). Since {W\{o}, U\ W} realizes (1, 1, 0), it follows
that (1, 2, 4), (4, 1, 3) and (9, 1, 0) are realizable in X \{o}. This completes the discussion

for Case 1.

Throughout the rest of the proof of the lemma, we write ¥\{o}={p, q,r} and
W\{o}={u,v,w}, and fix ze U\W.

Case 2. (a,b,c)=(6,2,1). Since {V\{o}, W\{o}, U\W} realizes (2,1,0) in
(Uu V)\{o}, it suffices to show that (4, 1, 1) is realizable in X \(Uu V). Let

P,={p+z,q9+ur+u+z},
P,={q+z,r+v,p+v+z},
Py={r+z,p+w,q+w+z},

P ={p+u,q+v,r+w},

0 ={p+v,q+w,p+w+z,q+v+z},

R ={r+u,pt+u+tz,qtu+z,r+v+z,r+w+z}.

Then {P,, P,, P3, P, Q, R} realizes (4, 1, 1).
Case 3. (a,b,c)=(3,3,2). Let

P={p+u,q+v+z,r+w+z},
O,={r,q+z}+{u, w},
Q,={p+z,r+z}+{u, v},
R,={p+v,q9+u,q+v,q+w,r+v},
Ry={p+z,q+z,r+z,p+w,p+w+z}.

Then {P, Q,, Q,, R,, R,} realizes (1, 2, 2) in X\(Uu V).
Case 4. (a,b,c)=(7,0,2). We show that (5, 0, 2) is realizable in X \(V' u W). Let

Py={p+z,u+z,p+u},
P,={q+z,v+zq+0v},
Py={r+z,w+z,r+w},
Sy={q+u,p+w+z,r+v+z},
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S,={q+w,p+v+z,r+u+z},

R,={z,p+v,p+w, r+v,r+w+z},

R,={r+u,p+u+z,q+u+z,q+v+z,q+w+z}.
Then Py, P,, P;, S,, S,, Ry, R, realizes (5, 0, 2) in X\(V L W).

Case 5. (a,b,c)=(2,0,5). Let
Ri={p+z,q+z,r+ur+v,r+w},
R,={u+z,v+z,w+z,q+w,q+w+z},
Ri={p+u,p+v,p+w,q+v+z,r+v+z},
R,={q+u,p+u+z,p+v+z,p+w+z,r+u+z},
Rs={z,r+z,q+v,q+u+z,r+w+z}.

Then {R;| 1<i<5} realizes (0, 0, 5) in X \(V L W).

LemMA 4.2. Suppose that n=6, and let a, b, ¢ be nonnegative integers with
3a+4b+5c=63. Then (a, b, c) is realizable in X \{o}.

Proor. By Lemmas 3.12 and 4.1, we may assume b <7, and hence we have a>5
orc>3.1fa>5,leta;=5and ¢, =0; if a<5 (so ¢>3), let a;=0and ¢, =3. Let U, V
be subgroups of order 2* and 2?2 such that U~ V={o0}. Then (a,, 0, c,) is realizable in
U\{o} by Lemma 3.13, and (¢—a,, b,c—c,) is realizable in U+(V\{o}) by
Lemma 3.16, and hence (a, b, ¢) is realizable in X' \{o}.

LEMMA 4.3. Suppose that n=7, and let a, b, ¢ be nonnegative integers with
3a+4b+5c¢=127. Then (a, b, ¢) is realizable in X \{o}.

Proor. By Lemmas 3.12 and 4.2, we may assume
b<15. 4.1

We divide the proof into four cases.
Case 1. a=0. By (4.1), we have (b, ¢)=(3, 23), 8, 19) or (13, 15).

Subcase 1.1. (b,c)=(3,23). Let U, V be subgroups of order 2* and 2* such that
Un V={o0}. By Lemma 3.13, we can partition V'\{o} into three zero-sum subsets R,
R,, R; of cardinality 5. It follows from Lemma 3.9 that (0, 0, 8) is realizable in U+ R,
and U+R,, and it follows from Lemma 3.10 that (0,3,7) is realizable in
(U+(R5 v {0}))\{0}, and hence (0, 3, 23) is realizable in X' \{o}.

Subcase 1.2. (b, ¢)=(8, 19) or (13, 15). Let U, V be subgroups of order 2° and 22 such
that U~ V={o}. Since (4, 1, 3) is realizable in U\{o} by Lemma 4.1, we can partition
U into four zero-sum subsets P,, - - -, P, of cardinality 3 and four zero-sum subsets
Ry, -+, R, of cardinality 5. By Lemma 3.2, (0, 1, 1) is realizable in P;+(V"\{o}) for
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each 1<i<4. By Lemmas 3.3 and 3.6, (0,0,6) and (0, 5,2) are realizable in
(Ri-1 Y Ry)+(V'\{o}) for each 1 <i<2. Since (0, 4, 3) is realizable in U\{o} by Lemma
4.1,itnow follows that (0, 8, 19)and (0, 13, 15)(and (0, 18, 11)) are realizable in X \{0}.

Case 2. 1<a<l11 and b=0. We have (a,c)=(4,23) or (9,20). Let U, V be
subgroups of order 2° and 22 such that Un V'={o0}. By Lemma 4.1, we can partition
U\{o} into two zero-sum subsets P,, P, of cardinality 3 and five zero-sum subsets
Ry, - - -, R of cardinality 5. By Lemmas 3.2 and 3.4, (6, 0, 0) and (1, 0, 3) are realizable
in (P; U P;)+(V\{o}). By Lemma 3.3, (0, 0, 3) is realizable in R;+(V"\{0}) for each i.
Since {V'\{o}, P,, P,} U {R;|1<i<5} realizes (3,0, 5), it now follows that (9, 0, 20)
and (4, 0, 23) are realizable in X' \{o}.

Case 3. 1<a<l1land b>1. Let U, V be subgroups of order 23 and 24 such that
Un V={o}, and let W be a subgroup of order 22 of U. Then {W\{o}, U\ W} realizes
(1,1,0) in U\{o}. We aim at showing that we can write 5—1=5b,+b, and c=c, +c,
so that (0, b,,c,) and (a—1, b,, ¢c,) are realizable in (U\W)u {0})+(V'\{0}) and
(W\{o})+(V'\{0}), respectively. Since a<11, we get 4b—1)+5¢>127—-33—-4=75+
15, and we also get c>7 from (4.1). Hence by Lemma 2.3, there exist nonnegative
integers by, ¢, with b; <b—1 and ¢, <c such that 4b, +5¢, =75. Let b,=b—1—b, and
¢, =c—cy. Then 3(a—1)+4b, + 5¢, =45. It now follows from Lemma 3.17 that (0, b,, ¢,)
is realizable in (U\W)u {0})+(V'\{0}), and it follows from Lemma 3.15 that
(a—1, by, ¢,)isrealizable in (W\{o})+ (V' \{0}), and hence (a, b, c)is realizable in X\ {o}.

Case 4. a>12. Let U, V be subgroups of order 2° and 22 such that Un V= {0},
and let W be a subgroup of order 23 of U. We aim at showing that we can write
a=a;+a,+as, b=b,+b,+b; and c=c,+c,+c; so that (a,, by, c;), (a,, b,, c,) and
(as, b3, c3) are realizable in W+ (V'\{o}), (U\W)+(V'\{0}) and U\{o}.

We first take up W+(V'\{0}). If 12<a<16, let (a,, b;,c;)=(3,0, 3); if a>17, let
(ay, by, ¢;)=(8, 0, 0). Note that in the case where 12<a <16, it follows from (4.1) that
c=>(127—48—60)/5, i.e., c=4. Thus in either case, we have

301 +4b1+5C1=24, (4.2)

a—a;>9,b>b, and c>c,. Moreover, (a,, b,, ¢,) is realizable in W+ (V' \{o}) by Lemma
3.8.

We now consider (U\ W)+ (V' \{o}). We choose nonnegative integers a,, b,, ¢, as
follows so that they satisfy

8<a,<a—a,, 4.3)
b,<b—b,, c,<c—c,, 3a,+4b,+5c,=72. “4.4)

If a—a, >24, we simply let (a,, b,, c;)=(24, 0, 0). Thus assume that a—a, <23. Then
4(b—b,)+5(c—cy)=>34 by (4.2), and hence we have b—b, >4 or c—c,>3. We first
consider the case where b—b,>4. In this case, we let a, be the largest integer with
a,<a—a, such that 24 —a, is a multiple of 4. Then
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(a—a;)—a, <3 4.5)

and, from a—a,>9, we obtain a,>8. Since we get 4b—b,)+5(c—c,)=3(24—a,)+
31-3((a—ay)—ay)=>3(24 —a,)+22 from (4.2) and (4.5), it follows from Lemma 2.3 that
there exist nonnegative integers b,, c, satisfying (4.4). We now consider the case where
b—b,<4 (so c—c,>3). In this case, we let a, be the largest integer with a, <a—a,
such that 24—aq, is a multiple of 5. Then we get a,>9 and 4b—b,)+5(c—c,)>
3(24 —a,)+ 19, and hence by Lemma 2.3, there exist nonnegative integers b,, c, satisfying
(4.4). Now in any case, we have (4.3) and (4.4). By Lemma 3.11, we can partition U\ W
into 8 zero-sum subsets of cardinality 3. Since (4.3) and (4.4) imply max{b,, c,}+
(min{b,, ¢,})/2<b,+c, <(72—24)/4=(3/2)-8, we have max{b,,c,} —min{b,,c,} <
(3/2(8 —min{b,, c,}), and hence it now follows from Lemma 3.14 that (a,, b,, c,)
is realizable in (U\W)+(V'\{0}).

Finally, let ay=a—a, —a,, by=b—b, —b, and c;=c—c; —c,. Then by (4.2), (4.3)
and (4.4), a3, b3, c; are nonnegative integers and 3a;+4b;+5¢; =31, and hence by
Lemma 4.1, (a, bs, c3) is realizable in U\{o}. Consequently, (a, b, c) is realizable in

X\{o}.

5. Proof of Theorem 2.

In this section, we complete the proof of Theorem 2. Let n, a, b, ¢ be as in Theorem
2 and, asin the preceding section, let X denote an elementary abelian 2-group of order 2”.

We proceed by induction on n. The theorem holds for n<7 by Lemmas 3.13, 4.1,
4.2 and 4.3. Thus let n>8, and assume that the theorem is proved for smaller values
of n. By Lemma 3.12, we may assume

b<2"73, (5.1
and hence
3a+5¢>2""1, 5.2)

Let U, V be subgroups of order 2""* and 2* such that Un V={0}. If n is odd, let W
be a subgroup of order 8 of U if n is even, let W=/{o}. Since n>8, we have

| W <2"-6, (5.3)

We aim at showing that we can write a=a, +a, +as, b=b,+b,+bsand c=c,+c,+c;
so that (a;, by, c¢y), (az, by, ¢;) and (as, b3, c3) are realizable in W+ (V\{o}),
(U\W)+(V\{0}) and U \{o}.

We first take up W+ (V'\{o}). By (5.2), we have 3a>2""2 or 5¢>2""2. Assume
first that 3a>2""2. In this case, we let (a,, b,, ¢;)=(5| W|, 0, 0). By (5.3), we have a, <a.
By Lemma 3.13, we can partition ¥V'\{o} into five zero-sum subsets P,, - - -, P5 of
cardinality 3. Then for each 1 <i<35, there is a family X of subsets of W+ P, realizing
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(1%, 0, 0) (in the case where n is odd, we here use Lemma 3.8). Consequently, the family
K=|),ics K: realizes (ay, by, c;) in W+(V\{0o}). Assume now that 3a<2""2, so
5¢>2""2, In this case, we let (a,, by, ¢;)=(0,0, 3] W|). By (5.3), we have ¢, <c. By
Lemma 3.13, we can partition '\ {o} into three zero-sum subsets R,, R,, R; of cardinali-
ty 5. Then we see from Lemma 3.9 that for each 1<i<3, there is a family K; of
subsets of W+ R, realizing (0, 0, | W|). Consequently, the family K=}, <i<3 K realizes
(ay, by, ¢1) in W+(V\{o}).
We now consider (U\W)+(V'\{o}) and U\{o}. Let r=( U|—| W|)/3. Then
3(a—a,)+4b—>b)+5(c—c,)

: 54
=|U\W|-|V\{o}|+| U\{o}|=45r+| U\{o}].

We also have
[(b—by)—1)/91<b/9<2"73/9  (by (5.1)
<@"'=15|WD/9  (by (5.3)
=2""'—(3a,+5¢,))/9
<((3a+5¢c)—(3ay +5¢,))/9 (by (5.2))
<(a—ay)/3+(c—cy).

Since (5.4) implies 3(a—a,)+4b—b,)+5(c—c,)=45r+(2""*—1)=45r+15, it now
follows from Lemma 2.2 that there exist nonnegative integers Xy, ¥y, Z1; X2, Y2, 225 * " "5 Xp
¥,, Z, such that

3xl+4y,+521=45 (5.5)

for all i, ) x;<a—a,, Y. y;<b—b, and ) z;<c—c,. Let a, =) x;, b,=) y;, ;=) 2;,
a;=a—a,;—a,, by=b—b,;—b,, c3=c—c;—c,. By the induction hypothesis, it follows
from (5.4) and (5.5) that there exists a family L of subsets of U \{o} realizing (a3, bs, c3).
‘By Lemma 3.11, we can partition U\ W into r zero-sum subsets S, - - -, S, of cardinality
3, and we see from Lemma 3.15 that for each 1 <i<r, there exists a family N; of subsets
of S;+(V\{o}) realizing (x;, y;, z). Then (), _,_, N; realizes (a,, by, c;) in (U\W)+
(V\{0}). Consequently, the family KU L U (|, ,., N:) realizes (a, b, ) in X'\{o}.
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