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Abstract. An elliptic curve $E$ defined over $O$ is called a Q-curve, if $E$ and $E^{\sigma}$ are isogenous over $Q$ for
any $\sigma$ in Gal(Q/Q). For a real quadratic field $K$ and a prime number $p$ , we consider a Q-curve $E$ with the
following properties: 1) $E$ is defined over $K,$ $2$) $E$ has everywhere good reduction over $K,$ $3$ ) there exists a
p-isogeny between $E$ and its conjugate $E^{\sigma}$ . In this paper, a method to construct such a Q-curve $E$ for some
$p$ will be given.

1. Introduction.

Let $E$ be an elliptic curve which is defined over the algebraic closure $Q$ of the
rational number field Q. An elliptic curve $E$ is called a Q-curve, if $E$ and its Galois
conjugate $E^{\sigma}$ are isogenous over $\overline{Q}$ for any $\sigma$ in Gal(Q/Q). Q-curves are very interesting
objects in many aspects of the arithmetic geometry including a generalization of the
Taniyama-Shimura conjecture. It is conjectured by Ribet that Q-curves are “modular”
in the sense that each should be a factor over $\overline{Q}$ of the jacobian variety of the modular
curve $X_{1}(N)$ for some $N$. The following examples for ”modular” Q-curves are prototypes
of this conjecture. Let $f=\sum_{n=1}^{\infty}a_{n}q^{n}$ be a cusp form of weight 2 on $\Gamma_{1}(N)$ which is a
common eigenform for the Hecke operators with Nebentypus character $\chi$ associated to
a real quadratic field $K$. We denote by $K_{f}$ the extension over $Q$ generated by the Fourier
coefficients $\{a_{n}\}$ . Then by Shimura [14] we know that there exists an abelian variety
$A_{f}$ defined over $Q$ attached to $f$ such that its dimension is equal to $d=[K_{f} : Q]$ and

$End_{Q}(A_{f})\otimes_{Z}Q=K_{f}$ ,

where $End_{Q}(A_{f})$ is the endomorphism ring defined over $Q$ of $A_{f}$ . Suppose that $d=2$

and $\chi$ is a primitive character modulo $N$. Then we know that the simple components
of $A_{f}$ are Q-curves defined over $K$, which are called Shimura’s elliptic curves. Moreover
it is known that they have everywhere good reduction (cf. [2], [9]). Thus it can be said
that Shimura’s elliptic curves are the simplest nontrivial “modular” Q-curves. We
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examine the converse question. Namely for any real quadratic field $K$, we consider
Q-curves $E$ which satisfy the following conditions:

1) $E$ is defined over $K$,
2) $E$ has everywhere good reduction over $K$.

Some examples for Q-curves with properties 1) and 2) have been constructed by Cremona
[1]. In this paper we discuss a new method to construct such Q-curves. We consider
Q-curves $E$ with properties 1), 2) and the additional property

3) $E$ has an isogeny to its conjugate $E^{\sigma}$ of degree $p$

for some rational prime $p$ . For $p=2,3,5,7$ and 13, we give a new method to construct
Q-curves with properties 1), 2) and 3) systematically.

Here we describe it briefly. For a number field $L$ , a prime ideal $q$ of $L$ , a finite
extension $L^{\prime}$ over $L$ and an elliptic curve $E$ over $L$, we will functorially use the following
notation:

$\mathcal{O}_{L}$ : the ring of integers of $L$ ,
$v_{q}$ : the normalized valuation of $L$ with respect to $q$ , i.e. $v_{q}(L)=Z\cup\{\infty\}$ ,
$L_{q}$ : the completion of $L$ with respect to $q$ ,
$D(L^{\prime}/L)$ : the relative discriminant of $L^{\prime}/L$,
$N_{L^{\prime}/L}$ : the norm map of $L^{\prime}/L$,
$cond_{L}(E)$ : the conductor of $E$ over $L$ .

Define a rational function $j(X)$ by

(1.1) $j(X)=\left\{\begin{array}{ll}2^{6}\frac{(X+4)^{3}}{X^{2}} & if p=2,\\3^{3}\frac{(X+1)(9X+1)^{3}}{X} & if p=3,\\\frac{(X^{2}+10X+5)^{3}}{X} & if p=5,\\\frac{(X^{2}+13X+49)(X^{2}+5X+1)^{3}}{X} & if p=7,\\\ovalbox{\tt\small REJECT}_{X}(X^{2}+5X+13)(X^{4}+7X^{3}+20X^{2}+19X+1)^{3} & if p=13.\end{array}\right.$

For any element $\tau$ in $K$ with $j(\tau)\neq 0$ , 1728, we consider the elliptic curve

(1.2) $E_{\tau}$ : $y^{2}+xy=x^{3}-\frac{36}{j(\tau)-1728}x-\frac{1}{j(\tau)-1728}$

defined over $K$, which has discriminant

$\Delta(\tau)=\frac{j(\tau)^{2}}{(j(\tau)-1728)^{3}}$ .
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If $p$ does not split in $K$, let $p$ be the unique prime of $K$ above $p$ . If $p$ splits in $K$, let $p$ ,
$\mathfrak{p}^{\prime}$ be the primes ofKabove p. We define the ideal $\mathfrak{a}$ ofKby

(1.3) $\mathfrak{a}=\{\mathfrak{p}^{2}p^{3}p^{3}\mathfrak{p}^{-3}\mathcal{O}_{K}orp^{6’-6}\mathcal{O}_{K}pp$ $ififififififp=2,3andpdoesnotp=2and2splitsinKp=5p=3and3splitsinKp=7p=13$

,

split in $K$ ,

and put

$m_{p}=$
$\left\{\begin{array}{l}1ifp=2,3\\5^{3}ifp=5\\7^{2}ifp=7\\l3ifp=13\end{array}\right.$

Now we state the main theorem, which plays a central role in our construction:

THEOREM 1.1. Fix a real quadratic field K The notation is as above.
a) Assume thatp is equal to 2. For the existence $ofa$ non-CM Q-curve withproperties

1), 2) and 3), it is necessary that there exists an element $\tau$ in $K$ such that

(1.4) $\tau \mathcal{O}_{K}=\mathfrak{a}$ , $N_{K/Q}(\tau)=m_{p}$ and $v_{q}(\Delta(\tau))\equiv 0$ (mod6) for any prime $q$ ,

where $u$ is a unit in $K$

b) Assume that $p$ is equal to 3, 5, 7, 13. For the existence of a non-CM Q-curve
with properties 1), 2) and 3), it is necessary that the rational prime $p$ does not remain
prime in $K$ and there exists an element $\tau$ in $K$ such that

(1.5) $\tau \mathcal{O}_{K}=\mathfrak{a}$ , $N_{K/Q}(\tau)=m_{p}$ and $v_{q}(\Delta(\tau))\equiv 0$ (mod6) for any prime $q$ ,

where $u$ is a unit in $K$

c) Assume that $\tau$ satisfies either (1.4) or (1.5). (We do not have to assume that $E_{\tau}$

is non-CM type.) If there exists an element $D$ in $K$ such that

(1.6) $cond_{L}E_{\tau}=\mathcal{O}_{L}$ and $D(L/K)^{2}=cond_{K}E_{\tau}$

where $L=K(\sqrt{D})$ , then there exists a Q-curve with properties 1), 2) and 3). Moreover
the quadratic twist of $E_{\tau}$ by $D$ has properties 1), 2) and 3).

This theorem tells us the necessary and sufficient conditions for the existence of
Q-curves which we require, and will be proved by using properties of the modular
curves as the moduli space of elliptic curves and a parameterization of the points on
these curves. In section 2 we explain more precisely an idea for the proof of the theorem
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and our method to construct such Q-curves using it. We prove assertions a) and b) $0$

Theorem 1.1 in section 4. In section 5 we discuss the sufficient conditions for existenct
and prove the part c) of Theorem 1.1. In section 6 we give some examples for Q-curves
produced by our method and check their “modularity”.

ACKNOWLEDGMENTS. This paper grew out from the author’s master thesis. Tht
author expresses sincere thanks to Professors Ki-ichiro Hashimoto and Fumiyuk
Momose for kind and warm encouragement during the preparation of this paper.

2. The idea for construction.

In this section we explain our method of construction. Let $N$ be a positive integer
and $\Gamma=SL_{2}(Z)$ . Define subgroups $\Gamma_{0}(N)$ and $\Gamma_{1}(N)$ of $\Gamma$ by

$\Gamma_{0}(N)=\{\left(\begin{array}{ll}a & b\\c & d\end{array}\right)\in\Gamma|c\equiv 0(mod N)\}$ ,

$\Gamma_{1}(N)=\{\left(\begin{array}{ll}a & b\\c & d\end{array}\right)\in\Gamma|c\equiv 0(mod N),$ $a\equiv d\equiv 1(mod N)\}$ .

We denote by $X_{0}(N)$ and $X_{1}(N)$ the modular curves corresponding to $\Gamma_{0}(N)$ and $\Gamma_{1}(N)$

respectively. We recall that they have models defined over Q. For any prime numbe]

$p$ , any non-cuspidal point of the modular curve $X_{0}(p)$ corresponds to a triple $(E_{1},$ $E_{2},$ $\phi$

of elliptic curves $E_{1},$ $E_{2}$ and the isogeny $\phi$ : $E_{1}\rightarrow E_{2}$ whose kemel is a cyclic subgroup
of order $p$ . Denote by $W_{p}$ the Atkin-Lehner involution for $p$ . Then $W_{p}$ induces an
involution $(E_{1}, E_{2}, \phi)\mapsto(E_{2}, E_{1},\hat{\phi})$ on $X_{0}(p)$ with the dual isogeny $\hat{\phi}$ of $\phi$ , which is
denoted by the same letter $W_{p}$ . Moreover we denote by $X_{O}^{*}(p)$ the quotient curve $0$

$X_{0}(p)$ by $W_{p}$ , which is defined over Q. Then we note that any non-cuspidal Q-rationa
point of $X_{0}^{*}(p)$ corresponds to a Q-curve and conversely any non-CM Q-curv$($

corresponds to a Q-rational point, as pointed out by Elkies [3]. Therefore for a rea
quadratic field $K$, a Q-curve $E$ has properties 1) and 3) if and only if the triple $(E,$ $E^{\sigma},$ $\psi$

is represented by a point on $X_{0}(p)$ , where $\sigma$ is the generator of the Galois group $Ga1(K/Q$

and $\psi$ is an isogeny between $E$ and $E^{\sigma}$ .
Assume that $p$ is a prime number such that the genus of $X_{0}(p)$ is zero, $namel\tau$.

$p=2,3,5,7,13$ . Since $X_{0}(p)$ is isomorphic over $Q$ to the projective line $P^{1}$ , the $point\{$

of $X_{0}(p)$ are described by one parameter $\tau$ (see Fricke [5]). And we can write the relation
between points on $X_{0}(p)$ and triples $(E_{1}, E_{2}, \phi)$ , i.e. we know that the j-invariant of $E$

is equal to $j(\tau)$ , where the rational function $j$ is given in (1.1), and the involution $W_{J}$

acts on the points of $X_{0}(p)$ by
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(2.1) $W_{p}(\tau)=\left\{\begin{array}{ll}1/\tau & if p=2,3,\\5^{3}/\tau & if p=5,\\7^{2}/\tau & if p=7,\\13/\tau & if p=13.\end{array}\right.$

If we put $k(X)=j(X)-1728$ , then we can write

(2.2)

$k(X)=|_{\ovalbox{\tt\small REJECT}_{X}}\frac{(X^{4}+14X^{3}+63X^{2}+70X-7)^{2}X}{X}\frac{2^{6}\frac 3^{3}\frac{(X-8)^{2}(X+1)(27X^{2}+18X-1)^{2}X^{2}}{X}(X^{2}+22X+125)(X^{2}+4X+1)^{2}}{}$ $ifp=2ifp=3ifp=5ifp=7ifp=13$

.

We recall that the elliptic curve $E_{\tau}$ given in (1.2) has j-invariant $j(\tau)$ and discriminant

(2.3) $\Delta(\tau)=j(\tau)^{2}/k(\tau)^{3}$

Now we assume that there exists a Q-curve $E$ with properties 1), 2) and 3). If $E_{\tau}$ is
isomorphic to $E$ over $O$ , then the Galois action for $\tau$ coincides with the action of the
involution $W_{p}$ , i.e. it follows that

(2.4) $\tau^{\sigma}=W_{p}(\tau)$ .

So one can describe the necessary condition for the existence of such Q-curves $E$ by
using $\tau$ , as in assertions a) and b) of Theorem 1.1.

Using this theorem, we can give an effective procedure to construct such Q-curves.
At first we fixp and K, and we finda fundamental unit $\epsilon$ ofKanda suitable element
$\alpha$ in $K$ which generates the ideal $\mathfrak{a}$ given in (1.3) if $\mathfrak{a}$ is principal. Every unit $u$ in $K$ is
apower of $\epsilon$ up to sign, so we can write

$\tau=\pm\alpha\epsilon^{n}$ ,

where $n$ is a rational integer. For each $n$ , we calculate $\Delta(\tau)$ . If $\tau$ satisfies condition (1.4)

or (1.5), we check whether there exists an element $D$ in $K$ which actually satisfies
condition (1.6). We note that the number of elements in $K$ which have possibility to be
$D$ is finite (cf. Remark 5.4). Thus we can obtain Q-curves of the type specified.



188 ATSUKI UMEGAKI

3. Lemmas.

In this section we show some lemmas to prove our main theorem.

LEMMA 3.1. Let $L$ be a quadratic field, and $E$ an arbitrary elliptic curve defined
over L. Let $\Delta$ be the discriminant of E If there exists an elliptic curve $E_{0}$ over $L$ such
that $E_{O}$ has everywhere good reduction and $E_{0}$ is isomorphic to $E$ over the algebraic closure
$\overline{L}$ of $L$ , then

$v_{q}(\Delta)\equiv 0$ (mod6) for any prime $q$ of $L$ .

PROOF. We suppose that there exists $E_{0}$ which satisfies the condition above. If
$j(E_{0})$ is equal to $0$ or 1728, then there exists a prime $q$ in $L$ such that $E$ has bad reduction
at $\mathfrak{q}$ from Theorem 2 of [13]. So we may assume that $j(E_{0})\neq 0$ , 1728. Therefore there
exists a quadratic extension $L^{\prime}$ of $L$ such that $E$ and $E_{0}$ are isomorphic over $L^{\prime}$ from
[15] chapter X, Proposition 5.4. Let $\Delta_{0}$ be the discriminant of $E_{0}$ . Then there exists an
element $\alpha$ in $L^{\prime}$ such that $\Delta=\alpha^{12}\Delta_{0}$ , so it follows that

$v_{q}(\Delta)\equiv v_{q}(\Delta_{0})=0$ (mod6) for any prime $q$ of L. $[$

LEMMA 3.2. Let $L$ be a number field and $E$ an elliptic curve defined over L. If $E$

has everywhere good reduction over $L$ , then its j-invariant is an integer of $L$ .
PROOF. Let $q$ be a prime of $L$ . From [15] chapter VII, Proposition 5.5, $E$ has

potential good reduction in the completion $L_{q}$ of $L$ by $\mathfrak{q}$ if and only if its j-invariant
is an integer of $L_{q}$ . Since this holds for any prime $q$ , the lemma follows. $\square $

LEMMA 3.3. Let $L$ be a number field and $E$ an elliptic curve defined over L. For
an element $D$ in $L$ , we put $M=L(\sqrt{D})$ and denote by $E_{D}$ the quadratic twist of $E$ by $D$.
Then the Weil restriction ${\rm Res}_{M/L}E$ and the product $E\times E_{D}$ are isogenous over $L$.

PROOF. We put $A={\rm Res}_{M/L}E$ For a rational prime $l$, let $\rho_{A}$ (resp. $\rho_{E}$) be the l-adic
representation over $L$ with respect to $A$ (resp. $E$). Then it follows that

$\rho_{A}=Ind_{M}^{L}(\rho_{E}|_{M})=\rho_{E}\oplus(\rho_{E}\otimes\psi)$ ,

where $\psi$ is the character corresponding to the extension $M$ over $L$ . This means that $A$

is isogenous over $L$ to $E\times E_{D}$ from [4] chapter IV, Corollary 1.3. This completes the
proof of the lemma. $\square $

4. Necessary conditions.

In this section we prove assertions a) and b) of Theorem 1.1. We recall that the
prime ideals $p$ and $\mathfrak{p}^{\prime}$ defined in section 1 divide $p$ . Moreover we note that we use
equations (1.1) and (2.2) many times through this section.

4.1. The case of $p=2$ . $PR\infty F$ . If $\tau$ corresponds to a Q-curve, then equation
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(2.4) holds, so it follows that

(4.1) $N_{K/Q}(\tau)=1$

from (2.1). At first we assume that 2 remains in $K$. Then we need that $v_{p}(\tau)=0$ from
(2.4). Then $v_{p}(j(\tau))=6$ and $v_{p}(k(\tau))=6+v_{p}(\tau+1)$ , so $v_{p}(\Delta(\tau))=-6-3v_{p}(\tau+1)$ . From
Lemma 3.1, we need that $v_{p}(\tau+1)\equiv 0$ (mod2). For any prime $q$ not dividing 2, if
$v_{q}(\tau)>0$ , then $v_{q}(j(\tau))<0$ . Therefore we need that

$v_{q}(\tau)=0$ and $v_{q}(\Delta(\tau))\equiv 0$ (mod6)

from the action of $W_{2}$ , Lemma 3.1 and Lemma 3.2, so from equation (4.1) it follows that

$\tau \mathcal{O}_{K}=\mathcal{O}_{K}$ .

Now we assume that 2 ramifies in $K$ As above, we must have $v_{p}(\tau)=0$ . Then
$v_{p}(j(\tau))=12$ and $v_{p}(k(\tau))=12+v_{\mathfrak{p}}(\tau+1)$ , so $v_{\mathfrak{p}}(\Delta(\tau))=-12-3v_{p}(\tau+1)$ . Thus we need
that $v_{p}(\tau+1)\equiv 0$ (mod2). For other primes $q$ not dividing 2, clearly we meed that

$v_{q}(\tau)=0$ and $v_{q}(\Delta(\tau))\equiv 0(mod 6)$ .

From equation (4.1) it follows that
$\tau \mathcal{O}_{K}=\mathcal{O}_{K}$ .

Next we assume that 2 splits in $K$. If $v_{p}(\tau)\geq 7$ , then $v_{p}(j(\tau))<0$ , so we need that
$-6\leq v_{p}(\tau)\leq 6$ . If $v_{p}(\tau)=4,5$ , then $v_{p}(j(\tau))=12-2v_{p}(\tau)$ and $v_{p}(k(\tau))=12-2v_{p}(\tau)$ , so

$v_{p}(\Delta(\tau))=2v_{p}(j(\tau))-3v_{p}(k(\tau))=-12+2v_{p}(\tau)\not\equiv 0$ (mod6).

If $v_{p}(\tau)=-3$ , then $v_{p}(j(\tau))=3$ and $v_{p}(k(\tau))=3$ , so $v_{p}(\Delta(\tau))=-3\not\equiv 0$ (mod6). If $v_{p}(\tau)=2$ ,
then $v_{p}(j(\tau))=2+3v_{p}(\tau+4)$ and $v_{p}(k(\tau))=6$ , so $v_{p}(\Delta(\tau))=6v_{p}(\tau+4)-14\not\equiv 0$ (mod6). If
$v_{p}(\tau)=1$ , then $v_{p}(j(\tau))=7$ and $v_{p}(k(\tau))=6$ , so $v_{p}(\Delta(\tau))=-4\not\equiv 0$ (mod6). Therefore from
Lemma 3.1 and the action of $W_{2}$ we need that $v_{p}(\tau)=0,$ $\pm 6$ . If $v_{p}(\tau)=0$ , then $v_{p}(j(\tau))=6$

and $v_{p}(k(\tau))=6+v_{p}(\tau+1)$ , so $v_{p}(\Delta(\tau))=-6-3v_{p}(\tau+1)$ . If $v_{p}(\tau)=\pm 6$ , then $v_{p}(j(\tau))=$

$v_{p}(k(\tau))=0$, so $v_{p}(\Delta(\tau))=0$ . For other primes $q\{\prime 2$ , clearly we need that

$v_{q}(\tau)=0$ and $v_{q}(\Delta(\tau))\equiv 0(mod 6)$ ,

so from equation (4.1) it follows that

$\tau \mathcal{O}_{K}=\mathcal{O}_{K}$ or $\mathfrak{p}^{6}p^{\prime-6}$ . $\square $

REMARK 4.1. In order to find $\tau$ which satisfies the condition above, we must
evaluate the value $v_{q}(\Delta(\tau))$ for any prime $q$ , and it is often difficult to compute $v_{q}(\Delta(\tau))$ ,
since the absolute value of a fundamental unit of $K$ becomes very large. Fortunately,
it is rather easy for any prime ideal dividing 2. Namely if 2does not split in $K$, then it
is sufficient to check that

$v_{p}(\tau+1)\equiv 0(mod 2)$ .
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If2sp1its inKand $\tau \mathcal{O}_{K}=\mathcal{O}_{K}$ , then it is sufficient to check that

$v_{p}(\tau+1)\equiv v_{p^{\prime}}(\tau+1)\equiv 0$ (mod2) ,

and if 2 splits in $K$ and $\tau \mathcal{O}_{K}=p^{6}p^{\prime}$

‘ 6 we do not need to evaluate the value $v_{p}(\Delta(\tau))$ .

4.2. The case of $p=3$ . $PR\infty F$ . If $\tau$ corresponds to a Q-curve, then equation
(2.4) holds, so it follows that

(4.2) $N_{K/Q}(\tau)=1$

from (2.1). If 3 remains prime in $K$, then we need that $v_{p}(\tau)=0$ from (2.4). Then
$v_{p}(j(\tau))\geq 3$ and $v_{p}(k(\tau))=3\backslash $ ’ so

$v_{p}(\Delta(\tau))=2v_{p}(j(\tau))-9\not\equiv 0(mod 6)$ .

This contradicts Lemma 3.1. Therefore 3 does not remain prime in $K$.
Now we assume that 3 ramifies in $K$. Then we need that $v_{p}(\tau)=0$ from the same

reason as above. If $v_{p}(\tau)=0$ , then $v_{p}(j(\tau))=6+v_{p}(\tau+1)$ and $v_{p}(k(\tau))=6$ , so $v_{p}(\Delta(\tau))=$

$2v_{p}(\tau+1)-6$ . Therefore we need that $v_{p}(\tau)=0$ and $v_{p}(\tau+1)\equiv 0(mod 3)$ . For other primes
$q$ not dividing 3, clearly we need that

$v_{q}(\tau)=0$ and $v_{q}(\Delta(\tau))\equiv 0$ (mod6) ,

so from equation (4.2) it follows that

$\tau \mathcal{O}_{K}=\mathcal{O}_{K}$ .

Next we assume that 3splits in $K$. If $v_{p}(\tau)\geq 4$ , then $v_{p}(j(\tau))<0$ . If $v_{p}(\tau)=1,2$ , then
$v_{p}(j(\tau))=3-v_{p}(\tau)$ and $v_{p}(k(\tau))=3-v_{p}(\tau)$ , so

$v_{p}(\Delta(\tau))=2v_{p}(j(\tau))-3v_{p}(k(\tau))=-3+v_{p}(\tau)\not\equiv 0$ (mod6).

Moreover, if $v_{p}(\tau)=0$ , then $v_{p}(j(\tau))\geq 3$ and $v_{p}(k(\tau))=3$ , so

$v_{p}(\Delta(\tau))=2v_{p}(j(\tau))-9\not\equiv 0(mod 6)$ .

Therefore we need that $v_{p}(\tau)=\pm 3$ from Lemma 3.1 and the action of $W_{3}$ . Then
$v_{p}(j(\tau))=0$ and $v_{p}(k(\tau))=0$ , so $v_{p}(\Delta(\tau))=0$ , and the same holds for $p^{\prime}$ . For other primes
$q$ not dividing 3, clearly we need that

$v_{q}(\tau)=0$ and $v_{q}(\Delta(\tau))\equiv 0$ (mod6),

so from equation (4.2) it follows that
$\tau \mathcal{O}_{K}=p^{3}p^{\prime-3}$ . $\square $

REMARK 4.2. As in Remark 4.1, it is rather easy to evaluate the value $v_{q}(\Delta(\tau))$ in
the case where $q=p$ or $p^{\prime}$ . Namely if 3ramifies in $K$, then it is sufficient to check that

$v_{p}(\tau+1)\equiv 0(mod 3)$ ,
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and if 3 splits in $K$, then we do not need to evaluate the value $v_{p}(\Delta(\tau))$ .

4.3. The case of $p=5$ . PROOF. If $\tau$ corresponds to a Q-curve, then equation
(2.4) holds, so

(4.3) $N_{K/Q}(\tau)=5^{3}$

from (2.1). If 5 remains prime in $K$, then from (2.4)

$2v_{p}(\tau)=v_{p}(\tau)+v_{p}(\sigma\tau)=3$ ,

but this cannot occur.
Now we assume that 5 ramifies in $K$. Then we need that $v_{p}(\tau)=3$ . If $v_{p}(\tau)=3$ , then

$v_{p}(j(\tau))=3$ and $v_{p}(k(\tau))=0$ , so it follows that $v_{p}(\Delta(\tau))=6$ . For other primes $q$ not dividing
5, clearly we need that

$v_{q}(\tau)=0$ and $v_{q}(\Delta(\tau))\equiv 0(mod 6)$ ,

so from equation (4.3) it follows that

$\tau \mathcal{O}_{K}=p^{3}$ .

Next we assume that 5 splits in $K$. If $v_{p}(\tau)\geq 4$ , then $v_{p}(j(\tau))<0$ . If $v_{p}(\tau)=1$ , then
$v_{p}(j(\tau))=2$ and $v_{p}(k(\tau))=0$ , so $v_{p}(\Delta(\tau))=4$ . From the action of $W_{5}$ on $X_{0}(5)$ and Lemma
2.3 we need that $v_{p}(\tau)=0,3$ . If $v_{p}(\tau)=0,3$ , then $v_{p}(j(\tau))=0$ and $v_{p}(k(\tau))\geq 0$ , so
$v_{p}(\Delta(\tau))=-3v_{p}(k(\tau))$ . Therefore $v_{p}(k(\tau))\equiv 0$ (mod2), and the same holds for $p^{\prime}$ . For
other primes $q$ not dividing 5, we clearly need that

$v_{q}(\tau)=0$ and $v_{q}(\Delta(\tau))\equiv 0(mod 6)$ ,

so from equation (4.3) it follows that
$\tau \mathcal{O}_{k}=\mathfrak{p}^{3}$ $\square $

REMARK 4.3. As in Remark 4.1, we must evaluate the value $v_{q}(\Delta(\tau))$ for any prime
$q$ , fortunately it is rather easy for any prime ideal dividing 5. Namely if 5 splits in $K$,

then it is sufficient to check that

$v_{p}(k(\tau))\equiv v_{p},(k(\tau))\equiv 0(mod 2)$ ,

and if 5ramifies in $K$, then we do not need to evaluate the value $v_{p}(\Delta(\tau))$ .

4.4. The case of $p=7$ . PROOF. If $\tau$ corresponds to a Q-curve, then equation
(2.4) holds, so

(4.4) $N_{K/Q}(\tau)=7^{2}$

from (2.1). If the rational prime 7 remains prime in $K$, then we need that $v_{p}(\tau)=1$ from
(2.4). Then $v_{p}(j(\tau))=0$ and $v_{p}(k(\tau))=1$ , so $v_{p}(\Delta(\tau))=-3\not\equiv 0(mod 6)$ . This is contradictory
to Lemma 3.1.
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We assume that 7 ramifies in $K$. Then we need that $v_{p}(\tau)=2$ , so $v_{p}(j(\tau))=0$ anc
$v_{p}(k(\tau))=2$ . Therefore it follows that $v_{p}(\Delta(\tau))=-6$ . For other primes $qt7$ , clearly $Wt$

must have

$v_{q}(\tau)=0$ and $v_{q}(\Delta(\tau))=0$ (mod6)

from Lemma 3.2, so from equation (4.4) it follows that
$\tau \mathcal{O}_{K}=7\mathcal{O}_{K}=p^{2}$

Next we assume that 7 splits in $K$. If $v_{p}(\tau)\geq 3$ , then $v_{p}(j(\tau))<0$ . If $v_{p}(\tau)=1$ , ther
$v_{p}(j(\tau))=0$ and $v_{p}(k(\tau))=1$ , so $v_{p}(\Delta(\tau))=-3\not\equiv 0$ (mod6). Thus we need that $v_{p}(\tau)=0,$ $A$

’

from the action of $W_{7}$ on $X_{O}(7)$ and Lemma 3.1. If $v_{p}(\tau)=0,2$ , then $v_{p}(j(\tau))\geq 0an\mathfrak{c}$

$v_{p}(k(\tau))=0$ , so $v_{p}(\Delta(\tau))=2v_{p}(j(\tau))$ . Therefore it follows that $v_{p}(j(\tau))\equiv 0(mod 3)$

Similarly, for any prime $qt7$ , if $v_{q}(\tau)>1$ , then $v_{q}(j(\tau))<0$ , so we need that

$v_{q}(\tau)=0$ and $v_{q}(\Delta(\tau))\equiv 0$ (mod6).

From equation (4.4) it follows that

$\tau \mathcal{O}_{K}=p^{2}$ . $\subset$

REMARK 4.4. As in Remark 4.1, it is rather easy to evaluate the value $v_{q}(\Delta(\tau))$ ir
the case where $q=p$ or $p^{\prime}$ . Namely if 7 splits in $K$, then it is sufficient to check that

$v_{p}(j(\tau))\equiv v_{p^{\prime}}(j(\tau))\equiv 0(mod 3)$ ,

and if 7 ramifies in $K$, then we do not need to evaluate the value $v_{p}(\Delta(\tau))$ .

4.5. The case of $p=13^{*}$ $PR\infty F$ . If $\tau$ corresponds to a Q-curve, then equatior
(2.4) holds, so

(4.5) $N_{N/Q}(\tau)=13$

from (2.1). If 13 remains prime in $K$, then from (2.4)

$2v_{p}(\tau)=v_{p}(\tau)+v_{p}(\sigma\tau)=1$ ,

but this cannot occur.
Now we assume that 13 ramifies in $K$. Then we need that $v_{p}(\tau)=1$ . Then $v_{p}(j(\tau))=t$

and $v_{p}(k(\tau))=0$ , so $v_{p}(\Delta(\tau))=0$ . For other $q$ prime to 13, clearly we need that

$v_{q}(\tau)=0$ and $v_{q}(\Delta(\tau))\equiv 0(mod 6)$ ,

so from equation (4.5) it follows that

$\tau \mathcal{O}_{K}=p$ .

$r$ In the case of $p=13$ , the author finds that Pinch showed the fact that there does not exist a Q-curv $($

with properties 1), 2) and 3) (cf. R. G. E. Pinch, Elliptic curves over numberfields, Doc. Phil. Thesis, Oxfor$($

University (1982)).
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Next we assume that 13 splits in $K$. If $v_{p}(\tau)\geq 2$ , then $v_{p}(j(\tau))<0$ . Therefore we need
that $v_{p}(\tau)=0,1$ from the action of $W_{13}$ on $X_{0}(13)$ . If $v_{p}(\tau)=0,1$ , then $v_{p}(j(\tau)),$ $v_{p}(k(\tau))\geq 0$ .
Similarly, for any other prime $q$ not dividing 13, if $v_{q}(\tau)>1$ , then $v_{q}(j(\tau))<0$ , so we
need that

$v_{q}(\tau)=0$ and $v_{q}(\Delta(\tau))\equiv 0$ (mod6).

From equation (4.5) it follows that

$\tau \mathcal{O}_{K}=p$ . $\square $

REMARK 4.5. We must evaluate the value $v_{q}(\Delta(\tau))$ for any prime $q$ , fortunately it
is rather easy for any prime ideal dividing 13 as in Remark 4.1. Namely if 13 ramifies
in $K$, then we do not need to evaluate the value $v_{p}(\Delta(\tau))$ .

5. Sufficient conditions.

We have proved the necessary conditions for the existence of Q-curves with
properties 1), 2) and 3). Next we discuss the sufficient conditions for the existence of
such Q-curves. In the following, for a triple $(p, K, \tau)$ of a rational prime $p$ , a real
quadratic field $K$ and an element $\tau$ in $K$, we say that $(p, K, \tau)$ has property $(*)$ if $(p, K, \tau)$

satisfies assertions a) or b) of Theorem 1.1. Fix a prime number $p$ . Now for any triple
$(p, K, \tau)$ with property $(*)$ we consider the case where we can form a Q-curve

$E:y^{2}+a_{1}xy+a_{3}y=x^{3}+a_{2}x^{2}+a_{4}x+a_{6}$

with everywhere good reduction using the elliptic curve $E_{\tau}$ defined by (1.2). Let $\Delta(\tau)$ be
the discriminant of $E_{\tau}$ , and $q_{1},$ $\cdots,$ $q_{r}$ the primes of $K$ dividing $\Delta(\tau)$ . One can rewrite
$E_{\tau}$ in the short form

$E_{\tau}^{\prime}$ : $y^{2}=x^{3}+c_{4}x+c_{6},$ $c_{4},$ $c_{6}\in \mathcal{O}_{K}$ .

From the choice of $\tau$ ,

$v_{q_{i}}(\Delta(E_{\tau}^{\prime}))\equiv 0,6(mod 12)$

for $i=1,$ $\cdots,$ $r$ . Now we consider the quadratic twist
$E_{\tau,D}^{\prime}$ : $y^{2}=x^{3}+D^{2}c_{4}x+D^{3}c_{6}$

of $E_{\tau}^{\prime}$ by an element $D$ in $K$. If the class number $h_{K}$ of $K$ is equal to 1, then one can find
a sequence $\{\alpha_{i}\}_{i=1,\cdots,r}$ of elements in $K$ such that

$\left\{\begin{array}{ll}\alpha_{i}\mathcal{O}_{K}=\mathfrak{q}_{i} & if v_{q_{i}}(\Delta(E_{\tau}^{\prime}))\equiv 6(mod 12) ,\\\alpha_{i}=1 & if v_{q_{i}}(\Delta(E_{\tau}^{\prime}))\equiv 0(mod 12).\end{array}\right.$

So if we put $D_{0}=\prod_{i}\alpha_{i}$ , then the quadratic twist $E_{\tau,D_{O}}^{\prime}$ of $E_{\tau}^{\prime}$ has good reduction at any
$q$ prime to 6. Thus we know the following:
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REMARK 5.1. Assume that $h_{K}=1$ . If we find an element $\tau$ in $K$ such that $(p,$ $K,$ $\tau$

has property $(*)$ , we can get a Q-curve which has good reduction at any prime $q$ no
dividing 2 or 3 and which also satisfies conditions 1) and 3) in \S 1.

It remains to check whether $E_{\tau,D}^{\prime}$ has good reduction at all prime ideals $dividin_{t}$

6. To determine exactly the reduction type of $E_{\tau,D}^{\prime}$ at $\mathfrak{q}$ dividing 6, we consider th
conductors of $E$ over $K$ and $L$ .

PROPOSITION 5.2. Assume that the triple $(p, K, \tau)$ has property $(*)$ . We put $E_{\tau}a$

in (1.2). For an element $D$ in $K$, let $E_{\tau,D}^{\prime}$ be the quadratic twist by $D$ and $L=K(\sqrt{D})$

Then $E_{\tau.D}^{\prime}$ has everywhere good reduction over $K$ if and only if
$cond_{L}E_{\tau}=\mathcal{O}_{L}$ and $D(L/K)^{2}=cond_{K}E_{\tau}$ .

REMARK5.3. In this proposition, we do not assume that $K$ has class number 1.

PROOF. Denote by $A$ the Weil restriction ${\rm Res}_{L/K}(E_{\tau})$ of $E_{\tau}$ . Then we recall that $A^{l}$

is isogenous to $E_{\tau}\times E_{\tau.D}^{\prime}$ over $K$ from Lemma 3.3. From [12] Proposition 1, we knos
that

$cond_{K}A=N_{L/K}(cond_{L}E_{\tau})\cdot D(L/K)^{2}$

Then

$cond_{K}(E_{\tau}\times E_{\tau.D}^{\prime})=cond_{K}E_{\tau}\cdot cond_{K}E_{\tau.D}^{\prime}$ ,

so it follows that

(5.1) $N_{L/K}(cond_{L}E_{\tau})\cdot D(L/K)^{2}=cond_{K}E_{\tau}\cdot cond_{K}E_{\tau.D}^{\prime}$ .

We assume that $E_{\tau,D}^{\prime}$ has everywhere good reduction. Since it is equivalent $t\langle$

$cond_{K}E_{\tau.D}^{\prime}=\mathcal{O}_{K}$ that $E_{\tau,D}^{\prime}$ has everywhere good reduction over $K$, it is also equivalent $t\langle$

(5.2) $N_{L/K}(cond_{L}E_{\tau})\cdot D(L/K)^{2}=cond_{K}E_{\tau}$ .

We note that $E_{\tau}$ and $E_{\tau.D}^{\prime}$ are isomorphic over $L$ . If $E_{\tau.D}^{\prime}$ has everywhere good reductio]

over $K$, then $E_{\tau,D}^{\prime}$ also has everywhere good reduction over $L$ , so $cond_{L}E_{\tau}$ is trivial ant

$D(L/K)^{2}=cond_{K}E_{\tau}$ .

Conversely if $cond_{L}E_{\tau}=cond_{L}E_{\tau.D}^{\prime}=\mathcal{O}_{L}$ and $D(L/K)^{2}=cond_{K}E_{\tau}$ , then $E_{\tau.D}^{\prime}$ ha
everywhere good reduction in $K$ from (5.1). So we have completed the proof $0$

Proposition 5.2. $\subset$

Clearly assertion c) of Theorem 1.1 follows from Proposition 5.2.

REMARK5.4. In assertion c) of Theorem 1.1, the number of prime ideals in 1
which ramify in the extension $L/K$ is finite, since the number of bad primes is finite fo
any elliptic curves. Thus the number of elements in $K$ which have possibility to be 1
is finite. Therefore we can determine whether there exists a Q-curve with properties 1)
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2) and 3).

6. Examples and their modularity.

All the calculations in the following were done on SparcStation with GNU $C$ and
PARI-library, version 1.39. The calculation of global minimal models is based on
Laska’s algorithm (cf. [10], [11]) and the calculation of conductors is based on Tate’s
algorithm.

Using our method, we can find many triples $(p, K, \tau)$ with property $(*)$ . We can
construct Q-curves with properties 1), 2) and 3) as follows.

EXAMPLE 6.1. Let $p=3$ and $K=Q(\sqrt{997})$ . The quadratic field $K$ has a
fundamental unit $\epsilon=84906+2689\sqrt{997}$ and class number 1, and the rational prime 3
splits in $K$ Put

$\alpha=\frac{58275188611277+1845593740900\sqrt{997}}{27}$ ,

then $\alpha \mathcal{O}_{K}=p^{3}\mathfrak{p}^{\prime-3}$ . For $\tau=\alpha\epsilon^{-2}=(2021+64\sqrt{997})/27$ , we can verify that the triple
$(p, K, \tau)$ has property $(*)$ . Then

$cond_{K}E_{\tau}=(2^{4}\cdot 7^{2}\cdot\pi_{67}^{2}\cdot\pi_{4597}^{2})$ ,

where $\pi_{67}=(-27+\sqrt{997})/2$ and $\pi_{4597}=2304+73\sqrt{997}$ are prime elements of prime
ideals over 67 and 4597 of degree 1, respectively. Moreover

$D=-7\cdot\pi_{67}\cdot\pi_{4597}=\frac{74011+2331\sqrt{997}}{2}$ ,

for which $N_{K/Q}D(L/K)=2^{4}\cdot 7^{2}\cdot 67\cdot 4597$ , satisfies condition (1.6). So we can get a
Q-curve $E$ with properties 1), 2) and 3) whose global minimal Weierstrass equation is
defined by

$y^{2}+y=x^{3}+x^{2}-$ $($ 129490 +4101 $\sqrt{997})x-\frac{50814489+1609311\sqrt{997}}{2}$

This is isomorphic over $K$ to the quadratic twist $E_{\tau,D}^{\prime}$ of $E_{\tau}$ . Then $E$ has discriminant

$\Delta=14418057673+456624468\sqrt{997}=\epsilon^{2}$

and j-invariant

$j=j(\tau)=33308803072+1054900224\sqrt{997}$ .

EXAMPLE 6.2. Let $p=5$ and $K=Q(\sqrt{461})$ . The quadratic field $K$ has a
fundamental unit $\epsilon=(365+17\sqrt{461})/2$ and class number 1, and the rational prime 5
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splits in $K$. Put

$\alpha=-4788+223\sqrt{461}$ ,

then $\alpha \mathcal{O}_{K}=p^{3}$ . For $\tau=-\alpha\epsilon=(-31+\sqrt{461})/2$ , we can verify that $(p, K, \tau)$ has propert]
$(*)$ . Then one can find a Q-curve $E$ with properties 1), 2) and 3) which has the $followin\not\in$

global minimal Weierstrass equation:

$y^{2}+\frac{3+\sqrt{461}}{2}xy=x^{3}+x^{2}+(42907827+1998409\sqrt{461})x$

$-\frac{58348803105+2717574729\sqrt{461}}{2}$ .

Then $E$ has discriminant

$\Delta=^{41972152560694558870080627+1954838033345010483647275\sqrt{461}}-\ovalbox{\tt\small REJECT}_{2}=-\epsilon^{10}$

and j-invariant

$j=j(\tau)=\frac{-3048867+142155\sqrt{461}}{2}$ .

EXAMPLE 6.3. Let $p=7$ and $K=Q(\sqrt{497})$ . The quadratic field $K$ has a
fundamental unit $\epsilon=1201887+53912\sqrt{497}$ and class number 1, and the rational prime
7 ramifies in $K$. For $\tau=7$ , one can construct a Q-curve $E_{1}$ with properties 1), 2) and
3) which has a global minimal model

$y^{2}+xy=x^{3}-x^{2}-\frac{12770049+572815\sqrt{497}}{2}x-\frac{17560440233+787693397\sqrt{497}}{2}$ .

Then $E_{1}$ has discriminant

$\Delta=6944658661946678751+311510514535059400\sqrt{497}=\epsilon^{3}$

and j-invariant

$j=j(\tau)=16581375=3^{3}\cdot 5^{3}\cdot 17^{3}$

For $\tau=-7$ one can also find a Q-curve $E_{2}$ with properties 1), 2) and 3) whose
global minimal model is

$y^{2}+xy=x^{3}-x^{2}-\frac{751179+33695\sqrt{497}}{2}x-\frac{307946113+13813271\sqrt{497}}{2}$ .

Then $E_{2}$ has discriminant
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$\Delta=-6944658661946678751-311510514535059400\sqrt{497}=-\epsilon^{3}$

and j-invariant
$j=-3375=-3^{3}\cdot 5^{3}$

For a real quadratic field $K$ whose discriminant $N$ is one of

28, 56, 77, 161, 301, 497, 553, 749, 889, 1057, 1141, 1253, 1337, 1477, 1673, 1841,

we can get two Q-curves which have properties 1), 2) and 3) and j-invariants

$j=16581375$ , -3375.

Assume that $K$ has class number 1 and its discriminant is less than 1000. Using
our method, we can construct Q-curves with properties 1), 2) and 3) for a prime $p$ and
a real quadratic field $K$ whose discriminant is equal to $N$ listed in Table 1.

TABLE 1

REMARK 6.4. In the case of $h_{K}\neq 1$ , we can also get such Q-curves. For example,
we can find by our method a Q-curve for $p=2$ and $N=257$ (resp. $p=5$ and $N=229$),

which is listed in Cremona [1].

The following modularity problem arises naturally:

PROBLEM 6.5. For a prime number $p$ and a real quadratic field $K$, we assume that
there exists a Q-curve $E$ with properties 1), 2) and 3). Let $N$ be the discriminant of $K$,

and $S_{2}^{0}(N, \chi)$ the space of cusp forms of weight 2 on $\Gamma_{1}(N)$ with Nebentypus character
$\chi$ which is a primitive real quadratic Dirichlet character. Is $E$ modular? In other words,
does there exist a cusp form $f$ in $S_{2}^{0}(N, \chi)$ corresponding to $E$?

We can check this modularity problem for elliptic curves given in the examples
above. For a Q-curve $E$ over $K$ with everywhere good reduction, let $A={\rm Res}_{K/Q}E$ be
the Weil restriction of $E$. Then $A$ is a Q-simple abelian variety over $Q$ of dimension 2,
which is isogenous to $E\times\sigma E$ over $K$. For all primes $\mathfrak{q}$ in $K$, we denote by $\kappa_{q}$ the finite
field $\mathcal{O}_{K}/q\mathcal{O}_{K}$ , and denote by $\tilde{E}_{q}$ the reduction of $E$ at $q$ . Then we put

$c_{q}=1+\#\kappa_{q}-\#\tilde{E}_{q}(\kappa_{q})$ ,

and we define $a_{q},$
$b_{q}$ which satisfy the following equation:
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$f_{q}(u)=\{(1-c_{q}u+qu^{2})(1-c_{q},u+qu^{2})1-c_{q}u+qu^{2}1-c_{q}u^{2}+q^{2}u^{4}$ $ififif$ $qsplitsinKqramifiesinKqremainsprime$

in $K$ ,

$=(1-a_{q}u+\chi(q)qu^{2})(1-b_{q}u+\chi(q)qu^{2})$ ,

where $q,$ $q^{\prime}$ are the primes over the rational prime $q$ and $\chi$ is the Dirichlet characte]

corresponding to $K$. Then we note that $a_{q}$ and $b_{q}$ are determined up to order. Then tht
L-series of $A$ over $Q$ is defined to be the infinite product

$L(s, A/Q)=\prod_{q\in P}f_{q}(q^{-s})^{-1}$ ,

where $P$ is the set of all rational prime numbers.
On the other hand, if there exists a two-dimensional Q-simple subspace in $S_{2}^{0}(N,$

$\chi$

corresponding to $E$, then let $f_{1}$ and $f_{2}$ be the normalized cusp forms which are commor
eigen forms of the Hecke operators and span the two-dimensional subspace. Then wt

denote by $A_{n}$ and $B_{n}$ the n-th Fourier coefficients of $f_{1}$ and $f_{2}$ , respectively.
In the following, we know the existence of a suitable two-dimensional subspace ir

$S_{2}^{0}(N, \chi)$ and the Fourier coefficients $A_{n}$ and $B_{n}$ of the basis from Hasegawa [7].

EXAMPLE 6.6. For Example 6.1, there exists a two-dimensional Q-simple subspac $($

in $S_{2}^{0}(997, \chi)$ where $\chi$ is the real quadratic character $(^{\underline{997}})$ . Then we can see the gooe

correspondence as in Table 2.

TABLE 2. Data of L-series (for Example 6.1)

EXAMPLE 6.7. For Example 6.2, there exists a two-dimensional Q-simple subspac$($

in $S_{2}^{o}(461, \chi)$ where $\chi$ is the real quadratic character $(^{\underline{461}})$ . Then we can see the goo $($
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correspondence as in Table 3.
Moreover, we can prove that $E$ has modularity from Hasegawa-Hashimoto-

Momose [8] in this example.

TABLE 3. Data of L-series (for Example 6.2)

EXAMPLE 6.8. For Example 6.3, $E_{1}$ and $E_{2}$ have CM j-invariants, so we know
that they are modular from Shimura [14]. There exists a two-dimensional Q-simple

subspace in $S_{2}^{0}(497, \chi)$ where $\chi$ is the real quadratic character $(\underline{497})$ . Then we can see

that two Q-curves $E_{1},$ $E_{2}$ have the same $a_{q},$
$b_{q}$ . Then they have the good correspondence

as in Table 4.

TABLE 4. Data of L-series (for Example 6.3)
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