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Introduction.

The purpose of this note is to study linear isometries on function algebras, especially
isometric shift operators on the disc algebra. For a compact Hausdorff space $X$, we
denote by $C(X)$ the Banach space of all complex-valued continuous functions on $X$.
Recently, A. Gutek, D. Hart, J. Jamison and M. Rajagopalan [5] and F. O. Farid and
K. Varadarajan [3] have obtained many significant results conceming isometric shift
operators on Banach spaces, especially on $C(X)$ . Here we investigate linear isometries
on function algebras and isometric shift operators on the disc algebra.

In section 1, we give a representation of a codimension 1 linear isometry on a
function algebra and in section 2, on the disc algebra $A$ , we establish the form of a
codimension 1 linear isometry $\varphi$ and give equivalent conditions under which $\varphi$ is a shift
operator.

1. Codimension llinear isometries on function algebras.

Let $E$ be a Banach space and $\varphi$ a linear isometry from $E$ into $E$. Then we call $\varphi$

a codimension 1 linear isometry on $E$ if the range of $\varphi$ has codimension 1. A bounded
linear operator $\varphi$ on $E$ is called a shift operator on $E$ if the following conditions are
satisfied: (i) $\varphi$ is injective; (ii) the range of $\varphi$ has codimension 1; and $(iii)\bigcap_{n=1}^{\infty}\varphi^{n}(E)=\{0\}$ .
A linear isometry on $E$ which is a shift operator is an isometric shift operator on $E$.

Let $X$ be a compact Hausdorff space. We say that $A$ is a function algebra on $X$ if
it is a closed subalgebra of $C(X)$ , the Banach algebra of all complex-valued continuous
functions on $X$ with the supremum norm, which separates points in $X$ and contains the
constants. After now, we consider codimension 1 linear isometries on function algebras
and isometric shift operators on the disc algebra.

The following extends a theorem of Gutek, Hart, Jamison and Rajagopalan [5,

Theorem 2.1] to the case of the function algebras (cf. [9]).

THEOREM 1.1. Let $A$ be afunction algebra on a compact Hausdorffspace X Suppose
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the Choquet boundary $Ch(A)$ for $A$ is X Let $\varphi$ be a codimension 1 linear isometry on $A$ .
Then there is a closed subset $F$ of $X$, where either,

(i) $F=X\backslash \{p\}$ , where $p$ is an isolated point of $X$ or
(ii) $F=X$

such that there is a continuous map $\tau$ from $F$ onto $X$ and a unimodular function $u\in C(F)$

such that $(\varphi f)(x)=u(x)f(\tau(x))$ for any $f\in A$ and $x\in F$.

PROOF. $LetB=\varphi(A)$ . Then by Novinger [7], there area continuous map $\tau$ from
$Ch(B)$ onto $Ch(A)$ and a unimodular continuous function $u$ on $Ch(B)$ such that
$(\varphi f)(x)=u(x)f(\tau(x))$ for $f\in A$ and $x\in Ch(B)$ . Since $Ch(A)$ is closed in $X$ by the hypothesis,
$Ch(B)$ is also closed in $X$ [ $7$ , Corollary 2]. We here assert that $X\backslash F$ consists of at most
one point if we put $F=Ch(B)$ . Otherwise, $X\backslash F$ contains two distinct points $p,$ $q$ . Since
$p,$ $q\in X=Ch(A)$ and $A$ is a function algebra, there are $f,$ $g\in A$ such that $\Vert f\Vert=\Vert g\Vert=1$ ,
$f(p)=1,$ $|f(x)|\leq 1/4(x\in F\cup\{q\})$ and $g(q)=1,$ $|g(x)|\leq 1/4(x\in F\cup\{p\})$ (see [1]). We
here show that if $af+bg\in B=\varphi(A)(a, b\in C)$ then $a=b=0$ . Since $h=af+bg\in B$, there is
a $k\in A$ such that $h=\varphi k$ . So $af(x)+bg(x)=(\varphi k)(x)=u(x)k(\tau(x))(x\in F)$ . Hence

$|k(\tau(x))|\leq|a||f(x)|+|b||g(x)|\leq\frac{1}{4}(|a|+|b|)$ $x\in F$ .

Since $\tau$ is surjective, we have

(1) $\Vert h\Vert=\Vert\varphi k\Vert=\Vert k\Vert\leq\frac{1}{4}(|a|+|b|)$ .

It implies the following since $h(p)=a+bg(p)$ and $h(q)=af(q)+b$ .

(2) $|a+bg(p)|\leq\frac{1}{4}(|a|+|b|)$ , $|af(q)+b|\leq\frac{1}{4}(|a|+|b|)$ .

Since $|g(p)|\leq 1/4$ , by the first part of (2) we have $3|a|\leq 2|b|$ . Similarly, by the latter of
(2) we have $3|b|\leq 2|a|$ and $a=b=0$ . Thus, the codimension of $\varphi$ is at least two. This
contradiction tells us that $X\backslash F$ has at most one point.

The following lemma was shown in the case of $C(X)$ in [5, Lemma 2.2], but we
observe that this holds true in the case of function algebras.

LEMMA 1.2. Let $A$ be a function algebra on a compact Hausdorff space $X$ and
suppose that $Ch(A)=X$ Let $\varphi$ be a codimension 1 linear isometry on $A$ and let $F,$ $\tau$ and
$u$ be as in Theorem 1.1. Then $\tau^{-1}(x)$ has at most two elementsfor any $x\in X$ Furthermore,
if $\tau^{-1}(x_{0})$ has two elementsfor some $x_{0}\in X$, then $\tau^{-1}(x)$ is a singletonfor any $x\in X\backslash \{x_{0}\}$ .

Let $\Gamma=\{z\in C:|z|=1\}$ . If $A$ is a function algebra on $\Gamma$, we can have the following
THEOREM 1.3. Let $A$ be afunction algebra on $\Gamma$ with $Ch(A)=\Gamma$ and $\varphi$ a codimension

1 linear isometry on A. Then $\tau$ is a homeomorphism from $\Gamma$ onto $\Gamma$ .
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PROOF. Since $\Gamma$ is connected, $F$ in Theorem 1.1 is equal to $\Gamma$ . From Lemma 1.2,
it suffices to show that there is no element $ x_{0}\in\Gamma$ such that $\tau^{-1}(x_{0})$ has two elements.
Suppose $\tau(a)=\tau(b)=x_{0}$ for some distinct points $a,$

$ b\in\Gamma$ . Let $L_{1}$ be a closed arc on $\Gamma$

having $a,$
$b$ as the end points. If $t_{1}\in L_{1},$ $t_{1}\neq a,$ $t_{1}\neq b$ , then $\tau(t_{1})\neq x_{0}$ . Since $\tau$ is a continuous

map from $\Gamma$ onto $\Gamma,$ $\tau(L_{1})$ is a closed arc on $\Gamma$ containing $x_{0}$ and $\tau(t_{1})$ . The fact that
$\tau^{-1}(x)$ is a singleton for any $x\in\Gamma\backslash \{x_{0}\}$ follows that $\tau(L_{1})=\Gamma$ . If $L_{2}$ is another closed
arc on $\Gamma$ having $a,$

$b$ as the end points, a similar argument as above implies that $\tau(L_{2})=\Gamma$ .
This is a contradiction since $\tau^{-1}(x)$ is a singleton for any $x\in\Gamma\backslash \{x_{0}\}$ .

2. Isometric shift operators on the disc algebra.

Let $\Gamma=\{z\in C:|z|=1\},$ $D=\{z\in C:|z|<1\}$ and $\overline{D}=\Gamma\cup D$ . We put $ A_{0}=\{f\in$

$C(\overline{D}):f$ is analytic on $D$} and $A=A_{0}|\Gamma.$ $A$ is called the disc algebra. We here consider
isometric shift operators on the disc algebra $A$ . We set $M_{a}(z)=(z-a)/(1-\overline{a}z)$ for $a\in D$ .

We begin with the following theorem.

THEOREM 2.1. Let $A$ be the disc algebra and $\varphi$ a codimension 1 linear isometry on
A. Then there are $\alpha,$ $\beta\in C(|\alpha|=|\beta|=1)$ and $a,$ $b\in D$ such that $(\varphi f)(z)=\alpha M_{a}(z)f(\beta M_{b}(z))$

$(f\in A, z\in\Gamma)$ .

PROOF. Since $A$ is a function algebra on $\Gamma$ with Ch(A) $=\Gamma$ , by Theorem 1.1 and
Theorem 1.3, there are a continuous map $u$ from $\Gamma$ into $\Gamma$ and a homeomorphism $\tau$

from $\Gamma$ onto $\Gamma$ such that $(\varphi f)(z)=u(z)f(\tau(z))(f\in A, z\in\Gamma)$ . By putting $f=1$ , we see that
$u\in A$ . For every $f\in A$ , there is a unique function $f_{0}\in A_{0}$ such that $f_{0}|\Gamma=f$. In the rest
we also write $f$ instead of $f_{0}$ .

(i) We first assume thatu does not have zeros in D. Since $|u|=1$ , uisaconstant
function $\alpha$ . By putting $f=z$ (the coordinate function), we have $u\tau\in A$ and so $\tau\in A$ . If
$\tau$ does not have zeros in $D,$ $\tau$ is constant since $|\tau|=1$ . Hence $\tau$ has (not necessarily
distinct) zeros $b_{1},$ $b_{2},$ $\cdots,$ $b_{n}$ in $D$ and so $\tau(z)$ is of form $\beta\prod_{i=1}^{n}M_{b_{i}}(z)(|\beta|=1)$ . We here
assert that $n=1$ . Suppose $n\geq 2$ . When $z$ turns arround on $\Gamma$ one time, it is not hard to
see that $\tau(z)$ rotates on $\Gamma$ n-times. This contradicts that $\tau$ is a homeomorphism of $\Gamma$

onto $\Gamma$ . Thus, $\varphi f$ is of form $\alpha f(\beta M_{b})$ , and so $\varphi$ does not have 1 codimension.
(ii) We next assume that $u$ has $ze$ros $a_{1},$ $a_{2},$ $\cdots,$ $a_{m}$ in $D$ . Then $u(z)$ is of form

$\alpha\prod_{j=1}^{m}M_{a_{j}}(z)(|\alpha|=1)$ . By putting $f=z^{k},$ $u\tau^{k}\in A(k=1,2,3, \cdots)$ . Since $u(u\tau^{2})=(u\tau)^{2}$ ,
$u\tau\in A$ and $u\tau^{2}\in A,$ $ u\tau$ has zeros in $D$ . From that $|u\tau|=1$ , it follows that $(u\tau)(z)$ is of
form $\beta\prod_{i=1}^{n}M_{b_{i}}(z)(|\beta|=1, b_{i}\in D)$ . We first consider $a_{1}$ . Since $u(u\tau^{2})=(u\tau)^{2}$ again, there
is some $b_{j}$ with $b_{j}=a_{1}$ . Let $m_{1}$ be the number of $a_{i}$ such that $a_{i}=a_{1}$ and $a_{i}\in\{a_{j}\}_{j=1}^{m}$ .
From that $u^{k-1}(u\tau^{k})=(u\tau)^{k}(k=1,2,3, \cdots)$ , if $n_{1}$ is the number of $b_{j}$ such that $b_{j}=a_{1}$

and $b_{j}\in\{b_{i}\}_{i=1}^{n}$ , we get $(k-1)m_{1}\leq kn_{1}$ . By tending $k$ to $\infty,$ $m_{1}\leq n_{1}$ . A similar argument
$foranya_{j}$ implies that $\tau\in A$ . Since $\tau\in A$ , as we saw in (i), $\tau$ is of form $\beta M_{b}$ . Finally we
show that $m=1$ . For otherwise, $m\geq 2$ . Suppose first that $\{a_{j}\}_{j=1}^{m}$ contains two distinct
elements; call them $a_{1}$ and $a_{2}$ . If $pM_{a_{1}}+qM_{a_{2}}\in\varphi(A)(p, q\in C)$ , there is an $f\in A$ such
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that $pM_{a_{1}}(z)+qM_{a_{2}}(z)=\alpha\prod_{j=1}^{m}M_{a_{j}}(z)f(\beta M_{b}(z))$ . By putting $z=a_{1}$ and $z=a_{2},$ $qM_{a_{2}}(a_{1})=$

$0,$ $pM_{a_{1}}(a_{2})=0$ , and so $p=q=0$ . Suppose next that $a_{1}=a_{2}=\cdots=a_{m}=a$ . If
$p+qM_{a}(z)\in\varphi(A),$ $p+qM_{a}(z)=\alpha(M_{a}(z))^{m}f(\beta M_{b}(z))$ for an $f\in A$ . By setting $z=a$ , we have
$p=0$ . So $q=\alpha(M_{a}(z))^{m-1}f(\beta M_{b}(z))$ . By putting $z=a$ again, $q=0$ . This means $\varphi$ has at
least 2 codimension either way. This contradiction shows $m=1$ and $\varphi f$ is of form
$\alpha M_{a}f(\beta M_{b})$ .

We next discuss when a codimension 1 linear isometry on the disc algebra $A$

becomes an isometric shift operator. To do this, we describe the form of $\varphi^{n}$ as follows:
Let $\varphi$ be a codimension 1 linear isometry on the disc algebra $A$ . By Theorem 2.1,

there are $\alpha,$ $\beta\in C(|a|=|b|=1)$ and $a,$ $b\in D$ such that

$(\varphi f)(z)=\alpha M_{a}(z)f(\beta M_{b}(z))$ $(f\in A, z\in\Gamma)$ .
Hence,

$(*)$ $(\varphi^{n}f)(z)=\alpha^{n}M_{a}(z)M_{a}(\beta M_{b}(z))\cdots M_{a}[(\beta M_{b})^{n-1}(z)]f[(\beta M_{b})^{n}(z)]$

for every positive integer $n,$ $f\in A$ and $ z\in\Gamma$ , where $(\beta M_{b})^{k}$ denotes the k-times composition
of $\beta M_{b}$ .

Now, for $n=0,1,2,$ $\cdots$ , we take $d_{n}\in D$ such that $a=(\beta M_{b})^{n}(d_{n})$ . We call $\{d_{n}\}$ the
backward orbit of $a$ by $\beta M_{b}$ .

Our final aim is to give equivalent conditions under which a codimension 1 linear
isometry $\varphi$ on the disc algebra $A$ is a shift operator.

We start with the following lemmas.

LEMMA 2.2 (cf. [8], [2]). Let $D=\{z\in C;|z|<1\}$ and $\Gamma=\{z\in C;|z|=1\}$ and let
$m$ be an analytic automorphism of D. Then it occurs either of the following four cases.

(i) $m$ is the identity, that is, $m(z)=z(z\in D)$ .
(ii) $m$ has only one fixed point in D. Then $m$ is said to be elliptic.
(iii) $m$ has distinct two fixed points on $\Gamma$ . Then $m$ is said to be hyperbolic.
(iv) $m$ has only onefixed point on T. Then $m$ is called parabolic.

We fix a point $z_{O}\in D$ and set $z_{n}=m^{n}(z_{0})$ , where $m^{n}$ denotes the n-times composition
of $m$ . Then we obtain the following.

LEMMA 2.3. (a) If $m$ satisfies (i) or (ii) of Lemma 2.2, then $\sum_{n=0}^{\infty}(1-|z_{n}|)=\infty$ .
(b) If $m$ satisfies (iii) or (iv) of Lemma 2.2, then $\sum_{n=0}^{\infty}(1-|z_{n}|)<\infty$ .

PROOF. (a) It is clear if $m$ has (i). Suppose that $m$ satisfies (ii). Let $p$ be the fixed
point of $m$ in $D$ . By putting $k(z)=(z-p)/(1-\overline{p}z),$ $h=k\circ m\circ k^{-1}$ is an analytic auto-
morphism of $D$ and $h(O)=0$ . Hence $h(z)=\lambda z$ for a $\lambda\in C(|\lambda|=1)$ . If we set $w_{n}=k(z_{n})$

$(n=0,1,2, \cdots)$, then $w_{n}=k\circ m^{n}\circ k^{-1}(w_{0})=\lambda^{n}w_{0}$ . Hence $\{w_{n}\}$ is a relatively compact
subset in $D$ , and so is $\{z_{n}\}$ since $k^{-1}$ is an analytic automorphism on $D$ and $z_{n}=k^{-1}(w_{n})$

$(n=0,1,2, \cdots)$ . It follows that $\sum_{n=0}^{\infty}(1-|z_{n}|)=\infty$ .



ISOMETRIC SHIFT OPERATORS 119

(b) Suppose that $m$ satisfies (iii). Let $p$ be the Denjoy-Wolff point of $m$ and $q$

be another fixed point of $m$ on $\Gamma$ (cf. [2, p. 59]). Let $l$ be a bi-holomorphic map of
$D$ onto the upper half plane $H$ of $C$ such that $ l(p)=\infty$ and $l(q)=0$ . Then
$l\circ m\circ l^{-1}(w)=\alpha w(w\in H)$ for some $\alpha>0(\alpha\neq 1)$ since it is an analytic automorphism on
$H$ which fixes $0$ and $\infty$ only [2, p. 59]. Since $p$ is the Denjoy-Wolff point of $m,$ $z_{n}$

converges to $p$ and so $l(z_{n})$ converges to $ l(p)=\infty$ . If we set $w_{n}=l(z_{n})(n=0,1,2, \cdots)$ , then
$w_{n}=\alpha^{n}w_{0}$ . Since $w_{n}=l(z_{n})$ converges to $\infty$ , it follows $\alpha>1$ . Therefore,

$\sum_{n=0}^{\infty}\frac{{\rm Im} w_{n}}{1+|w_{n}|^{2}}\leq\sum_{n=0}^{\infty}\frac{1}{|w_{n}|}=\frac{1}{|w_{0}|}\sum_{n=0}^{\infty}\frac{1}{\alpha^{n}}<\infty$ .

It follows that $\{w_{n}\}$ is the zeros of a Blaschke product defined on $H$ [$4$ , p. 55]. Since
$z_{n}=l^{-1}(w_{n})(n=0,1,2, \cdots)$ and $l$ is a bi-holomorphic map of $D$ onto $H$, it guarantees

that $\{z_{n}\}$ is the zeros of a non-zero bounded analytic function on $D$ , and so
$\sum_{n=0}^{\infty}(1-|z_{n}|)<\infty$ (cf. [6]).

Next suppose that $m$ has (iv). Let $p$ be the unique fixed point of $m$ on $\Gamma$ . Let $l$

be the bi-holomorphic map of $D$ onto $H$ such that $ l(p)=\infty$ and $l(-p)=0$ . Then
$l\circ m\circ l^{-1}(w)=w+\gamma(w\in H)$ for some non-zero $re$al number $\gamma$ , since it is an analytic

automorphism on $H$ which fixes $\infty$ only [2, p. 59]. If we set $w_{n}=l(z_{n})$ , then $ w_{n}=w_{0}+n\gamma$

$(n=0,1,2, \cdots)$ . Since $\sum_{n=0}^{\infty}{\rm Im} w_{n}/(1+|w_{n}|^{2})\leq\alpha\sum_{n=1}^{\infty}1/n^{2}<\infty$ for some $\alpha>0,$ $\{w_{n}\}$ is
the zeros of a Blaschke product defined on $H$ and so $\{z_{n}\}$ is the zeros of a non-zero
bounded analytic function on $D$ . It follows that $\sum_{n=0}^{\infty}(1-|z_{n}|)<\infty$ .

Let $\beta$ be a complex number with $|\beta|=1$ . Then $(1+\beta)/\sqrt{\beta}$ is real. Since the trace

of $\beta M_{b}$ is $(1+\beta)/\sqrt{\beta(1-|b|^{2})}$ , we have the following by [8, Theorem, p. 5].

LEMMA 2.4. Let $\beta$ be a complex number $with|\beta|=1$ and $b\in D$ . Then $\beta M_{b}$ is elliptic

if and only if $(1+\beta)/\sqrt{\beta(1-|b|^{2})}<2$ , where a branch of $\sqrt{\beta(1-|b|^{2})}$ is chosen so that
$(1+\beta)/\sqrt{\beta(1-|b|^{2})}$ is non-negative.

We are now in a position to discuss conditions under which a codimention 1 linear

isometry on the disc algebra is a shift operator.

THEOREM 2.5. Let $\varphi$ be a codimension 1 linear isometry on the disc algebra $A$ and
$\varphi f=\alpha M_{a}f(\beta M_{b})$ for $f\in A$ . Let $\{d_{n}\}$ be the backward orbit of $a$ by $\beta M_{b}$ . Then thefollowing

four conditions are mutually equivalent.
(a) $\varphi$ is a shift operator.
(b) $\beta M_{b}$ is the identity or elliptic.
(c) $\sum_{n=0}^{\infty}(1-|d_{n}|)=\infty$ .
(d) $\beta=1$ and $b=0$ , or $(1+\beta)/\sqrt{\beta(1-|b|^{2})}<2$ , where a branch of $\sqrt{\beta(1-|b|^{2})}$ is

chosen so that $(1+\beta)/\sqrt{\beta(1-|b|^{2})}$ is non-negative.

PROOF. The equivalence of (b) and (d) follows from Lemma 2.4. By Lemma 2.2
and 2.3, (b) and (c) are equivalent.



120 TAKUMA TAKAYAMA AND JUNZO WADA

$(c)\rightarrow(a)$ . If $f\in\bigcap_{n=1}^{\infty}\varphi^{n}(A)$ , by $(*)$ , we $getf(d_{n})=0(n=0,1,2, \cdots)$ . Since
$\sum_{n=0}^{\infty}(1-|d_{n}|)=\infty$ and $f$ is bounded and analytic on $D$, it follows $f=0$ .

To prove the theorem, it remains only to show that $(a)\rightarrow(b)$ . Suppose that $\beta M_{b}$ is
hyperbolic or parabolic. Then $m=(\beta M_{b})^{-1}$ is also hyperbolic or parabolic and $d_{n}=$

$m^{n}(d_{0})(n=0,1,2, \cdots)$ . Hence $d_{n}$ converges to the Denjoy-Wolff point $d$ of $m$ and
$\sum_{n=0}^{\infty}(1-|d_{n}|)<\infty$ by (b) of Lemma 2.3.

Let $B$ be the Blaschke product having $\{d_{n}\}$ as its $ze$ros. If we put $f(z)=(z-d)B(z)$ ,
then $f\in A,$ $f\neq 0$ and $f(d_{\hslash})=0(n=0,1,2, \cdots)$ . Hence by $(*)$ , for any positive integer
$n$ we can find a $g\in A$ such that $f=\varphi^{n}g$ . Thus $\bigcap_{n=1}^{\infty}\varphi^{n}(\Lambda)\neq\{0\}$ and $\varphi$ is not a shift
operator. The proof is completed.

EXAMPLES. Let $\varphi$ be a codimension 1 linear isometry on the disc algebra $A$ and
$\varphi f=\alpha M_{a}f(\beta M_{b})$ for $f\in A$ . From Theorem 2.5, the following are immediate.

(a) If $\beta=1$ , then $\varphi$ isashift operator onA if and only ifb $=0$ .
(b) If $\beta=-1$ , then $\varphi$ is alwaysa shift operator on A.
(c) If $\beta=\pm i$, then $\varphi$ is a shift operator on $A$ if and only if $|b|^{2}<1/2$ .

$Ac\kappa NOWLEDGEMENTS$ . The authors would like to express their thanks to Professor
O. Hatori for helping them with valuable suggestions in the latter half of section 2.
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