
TOKYO J. MATH.
VOL. 21, No. 1, 1998

Kobayashi-Hitchin Correspondence for Perturbed
Seiberg-Witten Equations

Ken-ichi SEIMIYA

Tokyo Metropolitan University

(Communicated by N. Sasakura)

1. Introduction.

By theorem of Donaldson-Uhlenbeck-Yau [D2], [UY] there exists a unique
irreducible Hermitian-Einstein connection on any stable vector bundle over a compact
K\"ahler manifold. This, together with the result of Kobayashi-L\"ubke [Ko], [L\"u], implies
that there is a one-to-one correspondence between the differential geometric and
algebro-geometric objects. This correspondence is called Kobayashi-Hitchin corre-
spondence, and can be realized as the relation between the symplectic quotient and
stable orbits via the moment map (cf [DK]). The purpose of this paper is to establish
a correspondence of Kobayashi-Hitchin type.

Recently Seiberg and Witten introduced new invariants for smooth 4-manifolds.
These invariants are defined to be the number of the solutions of the Seiberg-Witten
equations. For a closed K\"ahler surface, there is a correspondence of Kobayashi-Hitchin
type between the gauge equivalence classes of irreducible solutions of these equations
and a certain type of divisors [W], [FM]. However the moduli spaces of solutions of
the unperturbed equations may not be useful to compute the invariants because K\"ahler

metrics are not generic. In [W], Witten introduced a certain perturbation of the
Seiberg-Witten equations for K\"ahler surfaces with $b_{2}^{+}>1$ to compute the invariants,
and he used there the fact that there is also a correspondence of Kobayashi-Hitchin
type between the gauge equivalence classes of solutions of the perturbed equations and
pairs of divisors. It turns out that the set of these equivalence classes is finite. However
there he did not give a proof of this fact. In this paper we shall establish the cor-
respondence for the perturbed equations.

We shall explain the contents of this paper. In section 2, we observe how the
unperturbed Seiberg-Witten equations are described for K\"ahler surfaces. In this situation
we find that to each gauge equivalence class of solutions, we can associate an effective
divisor. The proof of the bijectivity of this correspondence, which can be considered as
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a variant of “Kobayashi-Hitchin correspondence”, can be reduced to the existence a
the uniqueness of the solution of a certain nonlinear elliptic differential equation. Tl
equation is identical with that of Kazdan and Wamer [KW], and we can prove $t$

bijectivity mentioned above by a straightforward application of their results. The resu
in this section are not due to the author, but have been already stated in [W] or [FN
In section 3, we consider the perturbed equations ofWitten on K\"ahler surfaces satisfyi
$b_{2}^{+}>1$ . We will find that this time there corresponds a pair of effective divisors to ea
equivalence class of solutions. As in the unperturbed case, we can reduce the bijectiv
of this “Kobayashi-Hitchin correspondence” to the existence and the uniqueness of $t$

solution of a certain elliptic equation. This equation differs from that ofKazdan-Wam $($

although similar to theirs, and we cannot apply their results directly. In section 41
shall prove the existence and the uniqueness of the solution of this equation by
modification of the iteration method which has been exploited by Kazdan-Wamer.

The author would like to thank Prof. Y. Ohnita, Prof. H. Konno and Prof.
Nakashima for their advices and encouragements.

2. The Seiberg-Witten equations for Kahler surfaces.

In this section we describe the moduli spaces of solutions of the $unperturb|$

Seiberg-Witten equations for K\"ahler surfaces in terms of holomorphic geometry. 4
of the results in this section are described in [W], [FM]. However we shall sketch sor
of proofs to consider the moduli spaces of solutions of the perturbed Seiberg-Witt $($

equations.
Let $X$ be a closed K\"ahler surface with K\"ahler metric $g$ . $K_{X}$ will denote the canonic

bundle of $X$, and $\omega$ will be the K\"ahler form. In this case, the structure group of $t$

tangent bundle reduces to $U(2)$ , and the lifting

Spin $(4)$

$\nearrow^{l}\downarrow$

$U(2)\subset\star SO(4)$

defines the canonical Spin structure, whose associated spinor bundles $S=S^{+}\oplus S^{-}a$

given by

$S^{+}=\underline{C}\oplus K_{X}^{-1}=\Lambda^{0,0}\oplus\Lambda^{0.2}$ $S^{-}=T^{\prime}X=\Lambda^{0,1}$

Here $\underline{C}$ is the trivial line bundle over $X,$ $T^{\prime}X$ the holomorphic tangent bundle of $X$ an
$\Lambda^{p.q}$ the bundle of $(p, q)$-forms. The spinor bundles associated to a general Spin structu
$\xi$ are given by

$S^{+}=\mathscr{L}\oplus K_{X}^{-1}\mathscr{L}=\Lambda^{0,0}\otimes \mathscr{L}\oplus\Lambda^{0,2}\otimes \mathscr{L}$

$S^{-}=T^{\prime}X\otimes \mathscr{L}=\Lambda^{0,1}\otimes \mathscr{L}$ ,
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where $\mathscr{L}$ is a $U(1)$ line bundle. Thus the choice of $\xi$ is equivalent to that of $\mathscr{L}$ . For
$Spin^{c}$ structure $\xi$ , we write $L$ for the determinant of $S^{\pm}$ . Then $L=K_{X}^{-1}\mathscr{L}^{2}$ satisfies
$c_{1}(L)\equiv c_{1}(K_{X})\equiv w_{2}(X)$ mod2. In other words, $L$ is characteristic, i.e. $c_{1}(L)$ is an integral
lift of $w_{2}(X)$ . Thus a Spin structure determines the associated characteristic line bundle.
Conversely for any line bundle $L$ with $c_{1}(L)\equiv w_{2}(X)$ , the Spin structures with $L$ as the
associated characteristic line bundle are in one-to-one correspondence with the elements
of the 2-torsion part of $H^{2}(X;Z)$ .

Now we shall introduce Clifford multiplication. For any point $x$ in $X,$ $T_{x}^{*}X$ acts on
$S_{x}=\sum_{q=0}^{2}(\Lambda^{0,q}\otimes \mathscr{L})_{x}$ by

$\rho$ : $v\mapsto\sqrt{2}(ext(v^{(O,1)})-int(\overline{v^{\langle 0,1)}}))$ ,

where $v^{\langle 0,1)}$ is the $(0,1)$-part of $v\in T_{x}^{*}X$, ext is left exterior multiplication, and int is
contraction. It follows immediately from the definition that non-zero $v$ maps $S_{x}^{\pm}$ onto
$S_{X}^{\mp}$ . Since this action satisfies $\rho(v)\circ\rho(v)=-|v|^{2},$ $p$ is extended to the isomorphism

$\rho$ : $\Lambda T^{*}X\otimes C\simeq Cl(X)\otimes C\rightarrow End(S)$ ,

where $Cl(X)$ is the Clifford bundle of $(T^{*}X, g)$ . This isomorphism is called $Cl\iota fford$

multiplication. For convenience, we write $c$ for the associated pairing

$c$ : $\sum_{p=0}^{4}\Omega_{\mathbb{C}}^{p}(X)\otimes C^{\infty}(S^{\pm})\rightarrow C^{\infty}(S^{\mp})$ ,

where $\Omega_{\mathbb{C}}^{p}(X)$ is the space of C-valued $C^{\infty}$ p-forms.
Next we shall introduce Dirac operator on the spinor bundles. Let $\nabla^{L.C}$ . be the

Levi-Civita connection of (X, $g$). Since $\nabla^{L.C}$ is compatible with the holomorphic structure
of $T^{\prime}X$, it induces a unitary connection $A^{LC}$ on $K_{X}$ that is compatible with the
holomorphic structure of $K_{X}$ . Now suppose that a unitary connection $A$ on $L$ is given.
Since Lie group Spin(4) is realized as a central extension of $SO(4),$ $\nabla^{L.C}$ and $A$ induce
a unitary connection $\nabla_{A}$ on $S^{\pm}$ . For unitary connection $A$ on $L$ , the Dirac operator

$D_{A}$ : $C^{\infty}(S^{\pm})\rightarrow C^{\infty}(S^{\mp})$

is defined by

$D_{A}$ : $\Phi\mapsto c(\nabla_{A}\Phi)$ .

In view of our definition of Clifford multiplication, $D_{A}$ can be written as

$D_{A}=\sqrt{2}(\partial_{A}+\partial_{A}^{*})$ ,

where $\partial_{A}$ is a $\partial$ operator on $\mathscr{L}$ defined by $A^{LC}$ and $A$ . We note

$\partial_{A}\partial_{A}=\frac{1}{2}F_{A}^{0,2}$ ,

where $F_{A}^{0,2}$ is the $(0,2)$-part of the curvature of $A$ .
For a K\"ahler surface $X$ with a Spin structure $\xi$ , the Seiberg-Witten equations are
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equations for a pair $(A, \Phi)\in \mathscr{A}(L)\times C^{\infty}(S^{+})$ , where $\mathscr{A}(L)$ is the space of $unit^{\tau}$

connections of $L$ . The equations are

$D_{A}\Phi=0$ , $\frac{1}{2}F_{A}^{+}=\rho^{-1}(\Phi\otimes\Phi^{*}-\frac{|\Phi|^{2}}{2}Id)$ ,

where $F_{A}^{+}$ is the self-dual part of the curvature of $A$ . We note that the gau
transformations are given by

$g(A, \Phi)=(A-2g^{-1}dg, g\Phi)$ for $g\in \mathscr{G}=C^{\infty}(X, U(1))$ ,

and the solution space of these equations is $\mathscr{G}$-invariant. A solution $(A, \Phi)$ is call
reducible if $\Phi=0$ , and irreducible otherwise. The irreducible solutions form free orb
of $\mathscr{G}$-action, while the reducible solutions have stabilizer $U(1)$ .

Now we denote the component of $\Phi$ in $\mathscr{L}$ and in $K_{X}^{-1}\mathscr{L}$ as $\alpha and-i\beta$, respective
The curvature part of the Seiberg-Witten equations says that

$ iF_{A}^{2,0}=\alpha\beta$

(2.1) $iF_{A}^{\omega}=-\frac{\omega}{2}(|\alpha|^{2}-|\beta|^{2})$

$ iF_{A}^{0.2}=\overline{\alpha}\beta$ ,

where $F_{A}^{\omega}$ is the $(1, 1)$-part of $F_{A}^{+}$ . On the other hand the Dirac equation becomes

(2.2) $\partial_{A}\alpha-i\partial_{A}^{*}\beta=0$ .
Suppose that $(A, \alpha, \beta)$ is a solution of these equations. Then we have

$ 0=5_{A}(\partial_{A}\alpha-i\partial_{A}^{*}\beta)=\frac{1}{2}F_{A}^{0,2}\alpha-i\partial_{A}5_{A}^{*}\beta=-\frac{i}{2}|\alpha|^{2}\beta-i\partial_{A}\partial_{A}^{*}\beta$ .

Taking the $L^{2}$-inner product with $-i\beta$, we obtain
$0=+\Vert\alpha\beta\Vert_{L^{2}}^{2}+\Vert\partial_{A}^{*}\beta\Vert_{L^{2}}^{2}$ .

It follows that $\alpha\beta$ and $\partial_{A}^{*}\beta$ are zero. Thus we have $F_{A}^{2,0}=-\overline{F_{A}^{0.2}}=-i\alpha\beta=0$ . In otf
words $F_{A}$ is a $(1, 1)$-form, and so $A$ defines a holomorphic structure on $L$ , and $A$ al
determines a holomorphic structure on $\mathscr{L}$ . Moreover $\partial_{A}^{*}\beta=0$ implies $\partial_{A}\alpha=0$ a
$\partial_{-A}\beta=0$ , where $\partial_{-A}$ is a $\partial$ operator on $\mathscr{L}^{-1}$ defined by $A^{LC}$ and $A$ . Consequent13
is a holomorphic section of $\mathscr{L}$ with respect to $\partial_{A}$ , and $\beta$ is a holomorphic section
$K_{X}\mathscr{L}^{-1}$ with respect to $\partial_{-A}$ . Hence $\alpha$ and $\beta$ do not vanish on any open subset $unl($

they vanish identically. Furthermore,

$\omega\cdot c_{1}(L)=\int_{X}\omega\wedge\frac{i}{2\pi}F_{A}^{+}=-\frac{1}{2\pi}(\Vert\alpha\Vert_{L^{2}}^{2}-\Vert\beta\Vert_{L^{2}}^{2})$ ,

and so $\alpha$ is not zero $iff\omega\cdot c_{1}(L)<0$ and $\beta$ is not zero iff $\omega\cdot c_{1}(L)>0$ . In case $\omega\cdot c_{1}(L)=$
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any solution $(A, \alpha, \beta)$ is reducible, i.e. $\Phi=\alpha-i\overline{\beta}$ vanishes identically, and hence we do
not consider this case any more. In case $\omega\cdot c_{1}(L)<0$ , any solution $(A, \alpha, \beta)$ satisfies
$\alpha\neq 0$ and $\beta=0$ , and $\alpha$ defines effective divisor $(\alpha)$ , whose homology class is the Poincar\’e

dual of $c_{1}(\mathscr{L})$ . In case $\omega\cdot c_{1}(L)>0$ , any solution $(A, \alpha, \beta)$ satisfies $\beta\neq 0$ and $\alpha=0$ , and
$\beta$ defines effective divisor $(\beta)$ , whose homology class is the Poincar\’e dual of $c_{1}(K_{X}\mathscr{L}^{-1})$ .

For simplicity, we assume that $\omega\cdot c_{1}(L)<0$ . We have seen that each solution $(A, \alpha, 0)$

of the unperturbed equations defines effective divisor $(\alpha)$ . This correspondence can be
interpreted as follows. We write $\mathscr{A}^{1,1}(L)$ for the space of unitary connections whose
curvature are $(1,1)$-forms, and $V$ for the subspace

$\{(A, \alpha)\in \mathscr{A}^{1,1}(L)\times C^{\infty}(\mathscr{L})|\partial_{A}\alpha=0\}\subset \mathscr{A}^{1.1}(L)\times C^{\infty}(\mathscr{L})$ .

As described in [W], $\mathscr{A}^{1,1}(L)\times C^{\infty}(\mathscr{L})$ can be interpreted as a symplectic manifold and
the moduli space to the unperturbed equations can be realized as the moduli space of
the intersection of $V$ and the zero set of the moment map

$\mu$ : $\mathscr{A}^{1,1}(L)\times C^{\infty}(\mathscr{L})\rightarrow C^{\infty}(X, u(1))$

given by

(2.3) $\mu$ : $(A, \alpha)\mapsto\Lambda(F_{A}^{+}-\frac{i}{2}|\alpha|^{2}\omega)$ ,

where $\Lambda$ denote the contraction with $\omega$ . The complex gauge group $\mathscr{G}^{\mathbb{C}}=C^{\infty}(X, C^{*})$ acts
on $\mathscr{A}^{1,1}(L)\times C^{\infty}(\mathscr{L})$ by

$g(A, \alpha)=(A-2g^{-1}\partial g+2\overline{g^{-1}\partial g}, g\alpha)$

for $g\in \mathscr{G}^{C}$ . Note that the connection part of this action means
$\partial_{g(A)}=g\circ\partial_{A}\circ g^{-1}$

We write $Div^{+}(X)$ for the space of effective divisors of $X$, and $V^{st}$ for the $\mathscr{G}^{C}$-invariant
subset $\{(A, \alpha)\in V|\alpha\neq 0\}\subset V$. The correspondence described above can be interpreted
as the map

(2.4) $\mu^{-1}(0)\cap V/\mathscr{G}\rightarrow V^{st}/\mathscr{G}^{\mathbb{C}}=\{D\in Div^{+}(X)|c_{1}([D])=c_{1}(\mathscr{L})\}$ .

Here we shall prove that correspondence (2.4) is bijective. Suppose that $(A, \alpha)\in V^{st}$

is given, and set $\mu(e^{\lambda/2}(A, \alpha))=0$ where $\lambda\in C^{\infty}(X)$ . Then we obtain

$ F_{A}^{+}+2(\partial\partial\lambda)^{+}=\frac{i}{2}e^{\lambda}|\alpha|^{2}\omega$ .

Taking the contraction with $-(i/2)\omega$ yields

(2.5) $\Delta\lambda-\frac{|\alpha|^{2}}{2}e^{\lambda}-\frac{1}{2}*(iF_{A}^{+}\wedge\omega)=0$ .
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Here $\Delta$ is the negative Laplacian on $C^{\infty}(X)$ . According to results of Kazdan and Wame
[KW], there is a unique solution $\lambda\in C^{\infty}(X)$ to equation (2.5) if $\int_{X}iF_{A}^{+}\wedge\omega<0$ , whic
is just the condition that $\omega\cdot c_{1}(L)<0$ . Thus we have proved that correspondence (2.4
is bijective.

3. The perturbed equations.

Let $X$ be a closed K\"ahler surface with $b_{2}^{+}>1$ . Suppose that a Spin structure $\xi i$

given. Since the condition $b_{2}^{+}>1$ is equivalent to $H^{0}(X, \mathcal{O}(K_{X}))\neq 0$ , we can pick a nor
zero holomorphic 2-form $\eta$ . The perturbed equations introduced by Witten [W] are

$ iF_{A}^{2.0}=\alpha\beta-\eta$

(3.1) $iF_{A}^{\omega}=-\frac{\omega}{2}(|\alpha|^{2}-|\beta|^{2})$

$iF_{A}^{0,2}=\overline{\alpha}\beta-\overline{\eta}$

and

(3.2) $\partial_{A}\alpha-i\partial_{A}^{*}\beta=0$

where $(A, \alpha, \beta)\in \mathscr{A}(L)\times C^{\infty}(\mathscr{L})\times C^{\infty}(K_{X}\mathscr{L}^{-1})$ .
Now we assume that $L$ admits a holomorphic structure, since the moduli space $t|$

the unperturbed equations is empty otherwise. Under this assumption we have
$(F_{A}^{2,O}, \eta)_{L^{2}}=(F_{A}^{0,2},\overline{\eta})_{L^{2}}=0$ .

Suppose that $(A, \alpha, \beta)$ is a solution of the perturbed equations. Then we have

$ 0=\partial_{A}(\partial_{A}\alpha-i\partial_{A}^{*}\beta)=+F_{A}^{0.2}\alpha-i\partial_{A}\partial_{A}^{*}\beta$ .
Taking the $L^{2}$-inner product with $-i\beta$, we obtain

$0=+(iF_{A}^{0.2},\overline{\alpha}\beta)_{L^{2}}+\Vert\partial_{A}^{*}\beta\Vert_{L^{2}}^{2}$

$=\neq(iF_{A}^{0.2},\overline{\alpha}\beta-\overline{\eta})_{L^{2}}+\Vert\partial_{A}^{*}\beta\Vert_{L^{2}}^{2}$

$=\neq\Vert\alpha\beta-\eta\Vert_{L^{2}}^{2}+\Vert\partial_{A}^{*}\beta\Vert_{L^{2}}^{2}$ .
It follows that $(\alpha\beta-\eta)$ and $\partial_{A}^{*}\beta$ are zero. Thus we have $F_{A}^{2,0}=-\overline{F_{A}^{0,2}}=-i(\alpha\beta-\eta)=t$

and hence $A$ defines a holomorphic structure on $L$ and determines a holomorphi
structure on $\mathscr{L}$ . Moreover $\partial_{A}^{*}\beta=0$ implies $\partial_{A}\alpha=0$ and $\partial_{-A}\beta=0$ . Note that $\alpha$ and $\beta$ ar
non-zero because $\alpha\beta=\eta\neq 0$ . Consequently $\alpha$ is a non-zero holomorphic section of $S$

with respect to $\partial_{A}$ and $\beta$ is a non-zero holomorphic section of $K_{X}\mathscr{L}^{-1}$ with respect $t($

$\partial_{-A}$ . Therefore $(\alpha, \beta)$ defines pairs of effective divisors $((\alpha), (\beta))$ . This correspondenc
can be interpreted as follows. We write

$W=\{(A, \alpha, \beta)\in \mathscr{A}^{1,1}(L)\times C^{\infty}(\mathscr{L})\times C^{\infty}(K_{X}\mathscr{L}^{-1})|\alpha\beta=\eta, \partial_{A}\alpha=\partial_{-A}\beta=0\}$ .
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We can interpret $\mathscr{A}^{1,1}(L)\times C^{\infty}(\mathscr{L})\times C^{\infty}(K_{X}\mathscr{L}^{-1})$ as a symplectic manifold and realize
the moduli space to the perturbed equations as the moduli space of the intersection of
Wand the zero set of the moment map

$\mu$ : $\mathscr{A}^{1.1}(L)\times C^{\infty}(\mathscr{L})\times C^{\infty}(K_{X}\mathscr{L}^{-1})\rightarrow C^{\infty}(X, u(1))$

given by

(3.3) $\mu$ : $(A, \alpha, \beta)\mapsto\Lambda(F_{A}^{+}-\frac{i}{2}(|\alpha|^{2}-|\beta|^{2})\omega)$ .

The complex gauge group $\mathscr{G}^{\mathbb{C}}$ acts on $\mathscr{A}^{1,1}(L)\times C^{\infty}(\mathscr{L})\times C^{\infty}(K_{X}\mathscr{L}^{-1})$ by

$g(A, \alpha, \beta)=(A-2g^{-1}5g+2\overline{g^{-1}\partial g}, g\alpha, g^{-1}\beta)$

for $g\in \mathscr{G}^{C}$ . The correspondence described above can be interpreted as the map

(3.4) $\mu^{-1}(0)\cap W/\mathscr{G}\rightarrow W/\mathscr{G}^{\mathbb{C}}$

The purpose of this paper is to prove that (3.4) is bijective, which now implies the
following theorem.

THEOREM 3.5 (Main Theorem). Let $X$ be a closed Kahler surface with $b_{2}^{+}>1$ , and
$\xi$ be a Spin structure on $X$ whose associated line bundle admits a holomorphic structure.
Then for any non-zero holomorphic 2-form $\eta$ , the gauge equivalence classes of solutions

of the perturbed equations are in one-to-one correspondence with the pairs of effective
divisors $(D_{1}, D_{2})$ which satisfy

(i) $(\eta)=D_{1}+D_{2}$

(ii) $c_{1}([D_{1}])=c_{1}(\mathscr{L})$ and $c_{1}([D_{2}])=c_{1}(K_{X}\mathscr{L}^{-1})$ .

As mentioned in section 1, Theorem 3.5 is used in [W] without establishing
bijectivity of (3.4).

4. The proof of the main theorem.

In this section we shall prove Theorem 3.5. By the argument in section 3, it
remains only to show that (3.4) is bijective.

Suppose that $(A, \alpha, \beta)\in W$ is given, and set $\mu(e^{\lambda/2}(A, \alpha, \beta))=0$ where $\lambda\in C^{\infty}(X)$ .
Then we obtain

$ F_{A}^{+}+2(\partial\partial\lambda)^{+}=\frac{i}{2}(e^{\lambda}|\alpha|^{2}-e^{-\lambda}|\beta|^{2})\omega$ .

Taking the contraction with $-(i/2)\omega$ yields

(4.1) $\Delta\lambda-\frac{|\alpha|^{2}}{2}e^{\lambda}+\frac{|\beta|^{2}}{2}e^{-\lambda}-\frac{1}{2}*(iF_{A}^{+}\wedge\omega)=0$ .
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Let

$c=\frac{\int_{X}iF_{A}^{+}\wedge\omega}{\int_{X}\omega\wedge\omega}$ .

Then we can choose a $C^{\infty}$ function $v$ such that

$\Delta v=+*(iF_{A}^{+}\wedge\omega)-c$ .

For simplicity, write
$|\alpha|^{2}$ $|\beta|^{2}$

$u=\lambda+v$ , $a=e^{-v}\overline{2}$ and $b=e^{v}\overline{2}$

Equation (4.1) then becomes

(4.2) $\Delta u-ae^{u}+be^{-u}-c=0$ .
To establish bijectivity of (3.4), it is sufficient to prove the following theorem.

THEOREM 4.3. Let $M$ be an oriented, closed n-dimensional Riemannian manifold,
and let $a,$

$b$ be $C^{\infty}$ functions on $M$ which satisfy $a,$ $b\geq 0$ and $a,$ $b\not\equiv O$ . Then, for any $c\in R$ ,
there exists a unique solution $u\in C^{\infty}(M)$ of (4.2).

Following Kazdan and Wamer [KW \S 9, 10], we shall use the method of upper
and lower solutions. Let $p$ be a constant with $p>n$ . We shall call $u_{+}\in L_{2}^{p}(M)$ an upper
solution of (4.2) if

$\Delta u_{+}-ae^{u_{+}}+be^{-u_{+}}-c\leq 0$ ,

and $u_{-}\in L_{2}^{p}(M)$ a lower solution of (4.2) if
$\Delta u_{-}$ -ae $+be^{-u-}-c\geq 0$ .

LEMMA 4.4. Let $p$ be a constant with $p>n$ . If there exist upper and lower solutions,
$u_{+},$ $u_{-}\in L_{2}^{p}(M)$ of (4.2) and if $u_{-}\leq u_{+}$ , then there exists a unique solution $u\in C^{\infty}(M)$ of
(4.2).

PROOF. By the Sobolev embedding theorem, $u_{+}$ and $u_{-}$ are continuous. Let
$k(x)=a(x)e^{u_{\star}\langle x)}+b(x)e^{-u-\langle x)}$ .

Then $k$ is continuous and $k(x)\geq 0$ for all $x\in M$ but $k\not\equiv O$ . We shall find the desired
solution of (4.2) by iterations. Let $L=\Delta-k$ . Since $L$ is a self-adjoint, elliptic and negative
definite operator, there exist positive constants $c_{1},$ $c_{2}$ such that for any $u\in L_{2}^{p}(M)$ ,

(4.5) $\Vert u\Vert_{L^{p}}\leq c_{1}\Vert Lu\Vert_{L^{p}}2$

(4.6) $\Vert u\Vert_{\infty}+\Vert du\Vert_{\infty}\leq c_{2}\Vert Lu\Vert_{L^{p}}$

where $\Vert$ $\Vert_{\infty}$ denotes the uniform norm. Moreover $L:L_{2}^{p}(M)\rightarrow L^{p}(M)$ is a continuous
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bijection.
Let $u_{0}=u_{+}$ , and we define inductively $u_{j+1}\in L_{2}^{p}(M)$ as the unique solution of

$Lu_{j+1}=ae^{u_{j}}-be^{-u_{j}}+c-ku_{j}$ .

Then $\{u_{j}\}$ has the following property.
CLAIM. The functions $u_{j}$ are upper solutions of (4.2), and satisfy

(4.7) $u_{-}\leq\cdots\leq u_{j+1}\leq u_{j}\leq\cdots\leq u_{+}$ .

We shall show this claim inductively. First we assume that $u_{j}$ is an upper solution
with $u_{-}\leq u_{j}\leq u_{+}$ . Then we have

$L(u_{j+1}-u_{j})=-(\Delta u_{j}-ae^{u_{j}}+be^{-u_{j}}-c)\geq 0$ ,

$L(u_{-}-u_{j+1})=\Delta u_{-}-ku_{-}-(ae^{u_{j}}-be^{-u_{j}}+c-ku_{j})$

$=$ ( $\Delta u_{-}$ -ae $+be$
‘

$u--c$) $+a(e^{u-}-e^{u_{j}})+b(e^{-u_{j}}-e^{-u-})+k(u_{j}-u_{-})$

$\geq a(e^{u-}-e^{u_{j}})+b(e^{-u_{j}}-e^{-u-})+(ae^{u_{j}}+be^{-u-})(u_{j}-u_{-})$

$=ae^{u_{j}}\{e^{u--u_{j}}-1-(u_{-}-u_{j})\}+be^{-u-}\{e^{u--u_{j}}-1-(u_{-}-u_{j})\}\geq 0$ .

So the maximum principle says $u_{-}\leq u_{j+1}\leq u_{j}$ . Moreover

$\Delta u_{j+1}-ae^{u_{j+1}}+be^{-u_{j+1}}-c=Lu_{j+1}+ku_{j+1}-ae^{u_{j+1}}+be$
‘

$u_{j+1}-C$

$=(ae^{u_{j}}-be^{-u_{j}}+c-ku_{j})+ku_{j+1}-ae^{u_{j+1}}+be^{-u_{j+1}}-c$

$\leq a(e^{u_{j}}-e^{u_{j+1}})+b(e^{-u_{j+1}}-e^{-u_{j}})+(ae^{u_{j}}+be^{-u_{j+1}})(u_{j+1}-u_{j})$

$=ae^{u_{j}}\{1+(u_{j+1}-u_{j})-e^{u_{j+1}-u_{j}}\}+be^{-u_{j+1}}\{1+(u_{j+1}-u_{j})-e^{u_{j+1}-u_{j}}\}\leq 0$ .

This completes the proof of the claim.
Since $u_{+},$ $u_{-}$ and $u_{j}$ are continuous, inequality (4.7) shows that $\{u_{j}\}$ is uniformly

bounded. Then by (4.6),

$\Vert u_{j+1}\Vert_{\infty}+\Vert du_{j+1}\Vert_{\infty}\leq c_{2}\Vert Lu_{j+1}\Vert_{L^{p}}$

$\leq c_{2}\Vert ae^{u_{j}}-be$
‘

$u_{j}+c-ku_{j}\Vert_{L^{p}}\leq const$ ,

so the Arzela-Ascoli theorem implies that a subsequence of $\{u_{j}\}$ converges uniformly
to some continuous function $u$ . It follows, from the monotonicity (4.7), that $\{u_{j}\}$ itself
converges uniformly to $u$ . Then by (4.5),

$\Vert u_{i+1}-u_{j+1}\Vert_{L^{p}2}\leq const\Vert L(u_{i+1}-u_{j+1})\Vert_{L^{p}}$

$\leq const(\Vert a\Vert_{L^{p}}\Vert e^{u_{i}}-e^{u_{j}}\Vert_{\infty}+\Vert b\Vert_{L^{p}}\Vert e^{-u_{i}}-e^{-u_{j}}\Vert_{\infty}+\Vert k\Vert_{L^{p}}\Vert u_{i}-u_{j}\Vert_{\infty})$ .

Thus $\{u_{j}\}$ converges in $L_{2}^{p}(M)$ , and hence $u\in L_{2}^{p}(M)$ . Consequently $u$ satisfies

$Lu=ae^{u}-be^{-u}+c-ku$ ,

so $u\in L_{2}^{p}(M)$ is a solution of (4.2) with $u_{-}\leq u\leq u_{+}$ . The Sobolev embedding theorem
now implies $u\in C^{1}(M)$ . Therefore by a bootstrapping argument, one can prove that
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$u\in C^{\infty}(M)$ .
To prove the uniqueness, we suppose that $u$ and $v$ are $C^{\infty}$ solutions of (4.2). Then

we obtain

$\Delta(u-v)-a(e^{u}-e^{v})+b(e^{-u}-e^{-v})=0$ .
Taking the $L^{2}$ inner product with $(u-v)$ yields

$-\Vert d(u-v)\Vert_{L^{2}}^{2}-\int_{M}\{a(e^{u}-e^{v})+b(e^{-v}-e^{-u})\}(u-v)*1=0$ .

Here we note that $\{a(e^{u}-e^{v})+b(e^{-v}-e^{-u})\}(u-v)\geq 0$ . Hence we have

(4.8) $d(u-v)=0$

(4.9) $\{a(e^{u}-e^{v})+b(e^{-v}-e^{-u})\}(u-v)=0$ .

Equality (4.8) shows $u-v=const$ . Write $C$ for the constant $u-v$ , then equality (4.9)
shows

$(ae^{v}+be^{-u})(e^{C}-1)C=0$ .

Thus we conclude that $u=v$ . $\square $

To complete the proof of Theorem 4.3, it suffices to show that there exist upper
and lower solutions $u_{+},$ $u_{-}\in C^{\infty}(M)$ which satisfy $u_{-}\leq u_{+}$ . Firstly, we shall construct
an upper solution $u_{+}\in C^{\infty}(M)$ . According to [KW, Theorem $10.5(a)$], there exists a
$C^{\infty}$ function $u_{0}$ which satisfies $\Delta u_{0}-ae^{u_{0}}-c<0$ . Let

$\gamma=-\max_{x\in M}\{\Delta u_{0}(x)-a(x)e^{u_{O}\langle x)}-c\}>0$ ,

and choose a constant $\delta\geq 0$ such that $e^{\delta}\geq(b/\gamma)e^{-u_{O}}$ . Then $u_{1}$ $;=u_{0}+\delta$ satisfies
$\Delta u_{1}-ae^{u_{1}}+be^{-u_{1}}-c\leq(\Delta u_{O}-ae^{u_{O}}-c)+be^{-u_{O}}e^{-\delta}$

$\leq e^{-\delta}\gamma(-e^{\delta}+\frac{b}{\gamma}e^{-u_{O}})\leq 0$ ,

so $u_{1}$ is an upper solution of (4.2).
Secondly, we shall construct a lower solution $u_{-}\in C^{\infty}(M)$ with $u_{-}\leq u_{+}$ . Let

$u_{2}\in C^{\infty}(M)$ be an upper solution of $\Delta u-be^{u}+ae^{-u}-(-c)=0$ . Then $u_{3}:=-u_{2}$ is a
lower solution of (4.2). Choose a constant $\epsilon>0$ such that $u_{3}-\epsilon\leq u_{+}$ , and let $ u_{-}=u_{3}-\epsilon$ .
Then $u_{-}$ is a lower solution of (4.2) with $u_{-}\leq u_{+}$ . This completes the proof of Theorem
4.3.
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