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1. Introduction.

There are some invariants to measure how singular a hypersurface is. The log
canonical threshold is useful for classifying non log canonical pairs. In this paper, we
will study hypersurface singularities in C". The sigularities are not necessarily isolated.

Let f be a holomorphic function near 0eC", and let D=div(f). Then the log
canonical threshold of f at 0 is defined by

co(C", 1) :=sup{c: (C", c¢D) is log canonical near 0} .

We frequently write co(f) instead of c¢o(C”, f), if there is no confusion. If f#0,
then we see that 0<co(f)<1 and cy(f)e Q. The log canonical threshold cy(f) is an
interesting number, because it has some equivalent definitions (See Chapter 8, 9, 10 in
[4] for a detailed explanation):

1. co(f)=sup{c: | f| °is locally L? near 0}

2. co(f)= —(the largest root of the Bernstein-Sato polynomial of f).

Shokurov proposed the following conjecture in [8].

CONJECTURE. Let J,={co(C", f): f#0 is holomorphic near 0 C"}. For every
neN, the set , satisfies the ascending chain condition.

Shokurov proved it for the case n=2 in the paper. And this was proved for the
case n=3 by Alexeev [2].

It is an interesting problem to describe 7, explicitly. By Shokurov’s method, we
can find 7, (Lemma 3.1), but Alexeev’s method is ineffective and gives us little
information about Z5. So the case n>3 is unknown. We do not even know the
accumulation points of 3.

The aim of this paper is to show the following theorem.

THEOREM. Let f be a nonzero holomorphic function near 0€ C3. Then
all the list of {co(C3, f)=5/6} are as follows:
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5 1 5 2 5
oy >6), —+— (Mm>4), —+ >2),
6t =6, g (m24), o m22)
19 15 12 25 15 5
20° 167 137 28° 177 6

As a consequence, the largest accumulation point of 75 is 5/6.

NOTATION. [Ic expresses log canonical.

f~g means that f is holomorphically equivalent to g.

Numerical equivalence is denoted by =, and the convergent power series ring by
C{xl’ ) xn}’
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2. Preliminaries.

All propositions in this section are in Chapter 8 of [4]. The first proposition im-
plies a lower semicontinuity for the log canonical threshold. The other propositions are
basic techniques to find cq(f).

PROPOSITION 2.1. Given nonzero holomorphic functions f, g near 0 e C", let f,=f+ tg,
where te C. Pick a point tyeC. Then

colfi,) < colf) for t near t, .

ExaMPLE 2.2. Let fi=x%+1ty3 Then cy(fy)<co(f) for any teC. Indeed,
colfo)=1/2 and co(f)=5/6 for t#0.

ProposITION 2.3. Let f be a nonzero holomorphic function near 0€C". Let
d=multy(f). Let f,denote the degree d homogeneous part of the Taylor series of f. Then

(1) 1/d<co(f)<n/d.

(2) colN)=n/d iff P, F(f4=0)) is lc.

3) If(f;=0)=P"" ! is lc, then co(f)=min{l, n/d}.

PrROPOSITION 2.4. Let f be a holomorphic function near 0€C". Assign rational
weights w(x;) to the variables and let w(f') be the weighted multiplicity of f. Let f,, denote
the weighted homogeneous leading term of f. Then

Z w(x;)
w(f)
If (f,,=0)=C" is lc outside the origin 0, then equality holds.

co(f)<

ExXAMPLE 2.5. Let f=x3+yz2+x%y2+x%z. Let w=(4,2,5). Then f,=x3+
yz% +x2y2. Since Sing(f =0)=(x=z=0) and (f,,=0)=C? is Ic outside 0 C?>, we get
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44+2+5 11
Co(f)—*————lz 12
PROPOSITION 2.6. Let f(xy, ") Xps V1> ** s V) =9(X1, = s Xp) +H(y1, -, Vs) be

a sum of nonzero holomorphic functions near 0€C™, 0e€C". Then colC™*", f)=
min{1, co(C™, g)+ co(C", h)}.

ExampLE 2.7. Let f=Y x (n;eN for every i). Then co(f)=min{l, Y 1/n;}.

3. Proof of the main theorem.

LeMMA 3.1. Let f be a nonzero holomorphic function near 0€ C?. Then {co(f)} is
one of the following forms:

2
D — (neZ,,)

(—km, <n,—n,<km,, gcd(my, my)=1)
kmym,+nm, +n,m,

where k, m,, m,, n, n; and n, are all nonnegative integers.
In particular, the set of {co(f)} satisfies the ascending chain condition and the
accummulation points are 1/n (n=2,3, ---) and 0.

Proor. This result comes from Shokurov’s method in [8]. See also Chapter 16
in [6] for an explanation, and [7] for the proof itself. []

For ease of reference, we state the following result.

LemMMA 3.2. Let f be a nonzero holomorphic function near 0€C", with a not
necessarily isolated critical point at 0. Assign rational weights w(x;) to the variables.
Suppose that f=f, +g, where w(g)>w(f). Let {u;} be a basis for C{x,, - -, X,}/(0f/
0xq, * **, 0f,,/0x,). Then for any N>w(f), we can write

f~fot 2 au+o

w(ui) <N
for some a;e C and for some @ which satisfies w(¢@)> N.

REMARK. The basis {u;} is an infinite set unless the singularity of (f,,=0) at 0 is
isolated.

Proor. Let f=f, +g, where w(f)=d,<d; =w(g). Then g,, can be expressed as
n 0
gw= 2. @i+ > Uj fu .
w(u) =d, =1~ 0x;

Note that w(v;)=w(x;)+(d, —d,) for any i, and that
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Y(x,+vy, -, X 0)=Y(xy, 0, X))+ Z Uj_al/l__,_r
j=1 = 0x;

for any y e C{x,, - - -, x,}, where w(r)>w({)+(d, —d,). So

f(xl_vla B xn—vn)’:f(xb Y xn)— '=il vj Ea;f—+r (W(r)>dl)

J

+h)

—fw+gw+h Z U J
a “

=fw+( Y au+Zva£w)+h—i af‘”—iv,.ag+r

w(ui) =di =1 j j=1 ax] j=1 ax]

0
=fw+ Z aiui+(h——zvj—ai+r)
X

w(ui) = d; J

=f,+ Y au+o, (Wey)>d).

w(ug) =d;

We then take the coordinate change. We find that

S~fot Z a;u;+ @, where d,=w(g,)>d, .

wiu;) =d;

Next applying the similar process we get

f~fut X aui+o, where d;=w(p,)>d, .

w(ui) <d2
We repeat this process until we get w(g,)>N. [J
We now start to prove the main theorem.

PROOF OF THE MAIN THEOREM. Let d=mult,(f). Let f, denote the degree d
homogeneous part of the Taylor series of f.

(1) Case d=1: Then (f=0)=C?3 is smooth, so co(f)=1.

(2) Case d=2: Then f,~x%+y%+2z2, x2+y?, or x2. If (f,=0)=P? is Ic, then
co(f)=1, by Proposition 2.3. Otherwise, f~x2+g(y, z) (multy(g)=3) and c,(C3, f)=
min{1, 1/2+c,(C?, g)}, by Proposition 2.6. Applying Lemma 3.1, we get the following
list of cy(f) between 5/6 and 1:

—5—+—1— (m=7), i+—2— (m=5), i+ 4 (m=3), —12, 1—9, —22
6 m 6 3m 6 9m+6 16 20 28

(3) Case d=3: If (f35=0)cP? is Ic, then co(f)=1. Otherwise, the curve
(fs=0)=P? is one of five cases (a cuspidal cubic, a line tangent to a conic, three lines
through a point (two or three may coincide)). We use the rotating ruler method in
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Newton polyhedra to get an inequality in Proposition 2.4 and we then apply the latter
part of Proposition 2.4. The method basically comes from [3]. Arnol’d researched
isolated hypersurface singularities and their hierarchies. In this paper, singularities
are not necessarily isolated, and we have to classify them further in a part of (3.4) than
in [3].

(3.1) Case fi~x3+yz% Let w,=(2k, 2, 3k —1) be the weight. If f,, ~x3+yz?,
then f~x3+yz2+g(p)+xh(y)+ @ (wi(g) > 6k, w,(h) >4k, and w,(¢) is large enough). So
f can be expressed as

f~x3+y22+ay3k+1+bxy2k+l+cy3k+2+dxy2k+2+ey3k+3+ .

(3.1k;1) Case a#0: Let w,, =(6k+2,6,9k). Then fwk1=x3 +yziaaydtt,
(fur,=0)=C? has an isolated singularity at 0€ C>. By Proposition 2.4,

15k+8 5 1

18k+6 6 @ 6k+2

(3.1k;2) Case a=0, b#0: Let w,,=(4k+2,4,6k+1). Then f,, =x>+yz>+
bxy*** 1. (fw,,=0)=C? has an isolated singularity at 0e C*. By Proposition 2.4,
10k+7 5 1
_AO0k+7 5 k=1,2,3, ).
)= Tokr6 6 ekr3 )

(3.1.k;3) Case a=b=0, c#0: Let w,,=(6k+4, 6,9k +3). Then fwk3=x3+y22+
cy3**2 and (fwk3=x3 +yz2+cy3*2=0)cC?3 has an isolated singularity at 0e C3. By
Proposition 2.4,

colf)=

k=1,2,3,--°).

15k+13_5 1
18k+12 6 6k+4 |
(3.1.k;4) Case a=b=c=0, (d,¢)#(0,0): Let w,,=(2k+2,2,3k+2). Then f,, =
x?+yz? +dxy**? +ey3**3 and (f,, =0)=C? is lc outside 0 C*. By Proposition 2.4,
Sk+6 _5 1
6k+6 6 6k+6

(3.1.k;5) Case a=b=c=d=e=0: Let wk4=(2k+2; 2, 3k+2). Then fwk4=x3+
yz?. Since w,,=w,, ,, this case is (3.1.k + 1) and so we can repeat the process. Hence

5 1
=—+———  (i=2,3,4,6, keN).
co)=gtes; ¢ )

By similar methods, we will get the rest of these cases.
(3.2) Case fy~x%z+yz%:

co(f)= (k=1,2,3, ).

co(f)= (k=1,2,3,---).

9
48k +i

co(f)=%+ (i=0, 4,12,20,24, keN).
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In particular, if 5/6 <cqo(f)<1, then

(3.3) Case fi~x3+xz%
c(f)—2+ 2 (i=2,3,4,6, ke N)
° 3 6k+i e '
In particular, if 5/6 <cy(f)<1, then

11 8 13
=19 15

(3.4) Case f;~x2y: Since the ideal generated by partial derivatives of f3 is
(xy, x?), applying Lemma 3.2, f can be expressed as f~xZ2y+g(y,z)+xh(z)+ ¢,
where mult () is sufficiently large. Let w=(3, 2, 2). Then

fuo~x2y+azt+byz3+cy?z? +dy3z+ept.

If (f,=0)=C3 is Ic outside 0, then cy(f)=7/8, by Proposition 2.4. Otherwise, one of
the following five cases occurs.

(3.4.1) Case f,,~x2y+z*+z3y, or x2y+z3y: Then one of the following three
cases occurs:

S ~x2y+yz3+ay? (p=5, a#0) with respect to w, =(3p—3, 6,2p—2),
Sw,~x2y+yz3+byiz (=4, b#0) with respect to w,=(3q—3,4,29-2),
or co(f)<5/6.

Applying Proposition 2.4, we get

5q—
6g—2

o= +— (p=5), @24, or clf)<—.
6 6p 6

By a similar method, we get the rest of the cases.

(3.4.2) Case f,,~x%y+z* Then ¢o(f)=17/20, 27/32, or co(f)<5/6.

(3.4.3) Case f,~x2y+z%y2+2zy3, or x?>y+z2%y% Then co(f)=6/7, 17/20, or
co(f)<5/6.

(3.4.4) Case f,~x%y+zy* Then co(f)=16/19, or co(f)<5/6.

(3.4.5) Case f,~x2y+y*, or x%y: Then co(f)<5/6.

(3.5) Case fy~x3 Then f~x3+xg(y,z)+h(y,z)+¢@, where multy(g)=3,
multy(h)=>4 and mult,(@) is large enough. Let w=(4, 3, 3). Applying Proposition 2.4,
we get
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44343 5

Co(f)ﬁ-_-lz— e

(4) Case d>4: Then cy(f)<3/4, by Proposition 2.3. O

As a consequence of the main theorem, we get the following resuit.

COROLLARY 3.3. The following conjecture is true for the case n=3.
The largest accumulation point of 7, is max7,_,; n(0, 1).

PrROOF. We can get max7, N (0, 1)=-=2 from Lemma 3.1. Combine this with the
main theorem. We obtain this corollary. [

References

[1] V. I ArnNoL’D, S. M. GuUseIN-ZADE and A. N. VARCHENKO, Singularities of Differentiable Maps,
Birkhduser (1985).

[2] V.A. Atexeev, Two two-dimensional terminations, Duke, Math. J 69 (1993), 527-545.

[3] V.I. ArnoL’Dp, Critical points of smooth functions and their normal forms, Russian Math. Surveys
35:5 (1975), 1-75.

(47 J. KoLLAR, Singularities of Pairs, Proc. Sympos. Pure Math. 62 (1997), 221-287.

[5] J. KoLLAR, Log surfaces of general type; some conjectures, Contemp, Math. 162 (1994), Amer. Math.
Soc., 261-275.

[ 6] J. KOLLAR (with 14 coauthors), Flips and Abundance for Algebraic Threefolds, Astérisque (1992).

[7] T.KuwaTa, On log canonical thresholds of reducible plane curves, to appear in Amer. J. Math.

[81 V. SHokurov, 3-fold log flips, Izv. Ross. Akad. Nauk Ser. Mat. 56 (1992), 105-203.

Present Address:

Toxyo DENKI UNIVERSITY,
INzAI-sHI, CHIBA, 270-1382 JAPAN.
e-mail: kuwata@chiba.dendai.ac.jp



