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1. Introduction.

Given a real irrational 6 and an arbitrary real ¢ we get

fo=f(; 0, $)=[(n+1)0+ ] —[n6+¢p]—[0] .

For brevity we write the infinite sequence (f,) as f ,=/f1/>f3" - *. Here our purpose will
be to find those substitutions W leaving f; 4 invariant, that is, so that W(fy ,)=/fs4;
and the 6 and ¢ admitting such a substitution. We recall that a substitution is a pair
of maps

W:O—'—"Wo, 1_’W17

where W, and W, are finite strings of 0’s and 1’s. We considered the homogeneous
case ¢=0 in [5]. In this paper we shall give some solutions appropriate to the
inhomogeneous case ¢ # 0. The similar problem has been discussed by Ito and Yasutomi
[3] and by Crisp [1], but we provide rather different argument.

Let 0= [aQ, a,, a,, - - -] denote the continued fraction expansion of 8, where
0=ao+0,, a,=[0],
1/6,-1=a,+0,, a,=[1/0,-,1 (n=1,2,---).
The n-th convergent p,/q,=[a,, a,, - - *, a,] of 0 is given by the recurrence relations

Pn=0a,Dp—1tPn—> (n=0913'”)s P—-2=0, P—1=1,
qn=anqn—1+qn—2 (n:"oa 15 ' ”)a q-—2=1 ’ q—1=0'

Further, let ¢=,[b,, b, b,, -, ] be the expansion of ¢ in terms of the sequence
{00, 04, - - -}, where

$=bo—¢o., bo=r¢_|,
¢n—1/en—1=bn—¢na bn=r¢n-1/0n—l—] (n=1’2"”)'
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2. Main results.
We define the sequence I',, (n=3) by
r,= {a3'_b3, a4_b4’ T a,,—b,,} s

and write n,=a,—b, if a,>b,, w,=a,—b, if a,>b, —so, if the entry 0 is permitted.
Let ﬁnz(bn_l)qn—l+bn—lqn—2+ e -l-bqu—'_1

LEMMA 1 [4]. Let 0 be irrational and let ¢ be real with 0<0, ¢p<1. If kO+ P ¢Z
for any integer k=0, 1,2, - - - then we have

{[k+1)0+¢]—[kO+ 1} =1lim 0- - -0l w, .

n— o
by—1

Here w, is the word of length q, whose symbols are defined inductively by

w; =001, w,=wb2"10ws27b2*1 "y —pin w win i,

N~
al—]
where for some positive integer k and a non-negative integer |
rb,+1, if T, ends (—1)0%* !z, ;
0, if Ty_yends (—1)0%72 (k22),
Tn—1-20n~1-1"" .wn—j(—l) >
- :
or 0" 4-1);
1, if T,y ends (—1)0%*~3(—1);
\ min(a,, b,) , otherwise .

REMARK. I, does end neither (—1)0%*~1(—1) nor (—1)0%*"2x, as seen in [4].

LeMMA 2. Suppose 0, ¢ satisfy the assumptions of Lemma 1 with by =1. Let W be
a substitution. If there exists a positive integer m such that W(w;)=w;,,, for all large
integers i=1,1+1, - - -, then W(fy 4)=fo.¢-

Proor. From Lemma 1, if w,—» W, Wi 1 > Wiimer, *° °, then
W(fo.0)= llim Witm= 1hm Wi=fo4 -
— - 0

We suppose throughout that k0 + ¢ is never integral. As usual a,, - - -, a, is the pure
periodic sequence with period a,, - - -, a,. We interpret b,, - - -, b, similarly. We may
assume that b, = 1 without loss of generality, for b, =1 if and only if 8 + ¢ > 1. Otherwise,
by 1—0)+(1—¢)>1 and f(n;1—-6,1—-¢)=1—f(n; 0, ¢), we simply interchange the
roles of 0 and 1 below.
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THEOREM 1. Set
0=[0,a,,a,, ~-",a,] and ¢=,1,1,b,, ---,b,].
Then fy 4 is invariant under the block-to-block substitution
W:iws—Wyis, Wqg—>Wpss,
except when I',, . 5 ends (—1)07*1 or (—1)0%/(—1) (j=1).
Moreover, if ca=c, 43, then f, 4 is invariant under
W:WZ—_’wn+13 W3 ——>Wpi2;
whilst if c;=c,,, then f, , is invariant under
W.w,—w,, Wy —>W,iq -
Proor. The point is the different scenarios defining c,. When I',,, 5 ends (—1)07*!

or (—1)0%(—1) (j=1), I, and T, ; arise from a different scenario. Otherwise, from
as=a,,, and cs=c,,, we have

— wEs as—cs cs as—cs __
Ws=WgW3iW, T Wik 3WpyoWnit3 = Wpia o

These may belong to the same scenario when I',,, ; ends in an odd number of 0’s, but
then I's and I', ., belong to different scenarios. Similarly, except for these exclusions
we have W > W,y 5, Wy > Wi, " Wi Wy,

We need extra conditions to perform a descent on the substitutions. We can obtain

— [+ - - p—
Wa=W5Wows* ™ —— Wil oWy (W =W
if and only if ¢,=c,, ;; and
W3=wePwws ™ — Wik o Waw, S =W,

if and only if c3=c, ;.

We also have w, »w,,, if and only if b,—1=c,, ;. But there is no substitution
satisfying all the conditions above given the form of the expansion of ¢.

We note that ¢,, =0, 1 or a,,,. But if ¢,, =0, then from a,<b,=1 we have
a,=b,; since a;>b; to avoid the excluded scenario, we have b,, ,+1=c¢, ., #c3=>b,.
The other cases are checked in similar ways.

But, if we allow ‘words’ of the shape w1, then there is a case that can be expressed
by substitutions in the usual form 0 - W, 1 - W,.

COROLLARY 1. Let
6=[0,a1,a2, .”9an] and ¢=9[1,1,b2, ”"bn]'

If in addition to the conditions of Theorem 1 we have b, =c,, .., then f, , is invariant under
the substitution
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W:0—ww,_w, 1, 1—wwlof,

PrROOF. We note that
w,=01"11 —s wwit i tw wawl Zin=w,
wo=w 0w whr T lww, w twpr T =
and that the rest is readily checked by similar computations.
ExaMPLE 1. Set
0=./3 —1=[0,1,2,1] and ¢=@=9[1, 1,1,17,

so that k0+ ¢ € Z for any ke Z. Since a;>b; (i=1, 2, - - -), the conditions of Corollary
1 are satisfied. Notice that

90=02=04—_—...=6’ 91__:93:05:..‘:1;9:\/3—1,

¢o=¢2=¢4=-~=1—¢=3“—5/—?—, ¢1=¢3=¢5=---=2—_;/—?.

Since w; =1, w, =011 and w;=0111, the substitution W is given by
0—0111011(0111)~ ', 1—0111
or
01 — 0111011, 1—0111.
Therefore, we obtain

01 1 1 01 1 01 1 1 01 1 1 e,
0111011 0111 0111 0111011 O111 O111011 O111 O111 O111011 O111 O111 ---

We shall make a small change to the form of the inhomogeneous continued fraction
expansion in Theorem 1 to obtain a substitution not involving extraordinary words
like w1

THEOREM 2. Set

8=[0,a1,a2, "',an] and ¢=9[1’ 1,b2,b3, "',bn,bz—l].

If in addition to the conditions of Theorem 1, b,—1=c¢,,, and I', ends in w5 - -, or
Ty | Wyoy+1° "Dy, then fy 4 is invariant under the substitution

an~—Cn

. +1-
W.0—w,_,, 1 — w7 w,_wen o,

where c,+1>a, and b, =2.
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Proor. Some of the conditions of Theorem 1 are not satisfied if I', does not
end in w5 ' '@, OF M,_;W,_;4," * @, Otherwise, since b,—1=b,,,=c,,, we obtain

— _— + —_— —_—
wy=0"11 —s wh T twi T, _win =,

— - —_ —_ + .
wy=wh2TlQwez bt bty paemhet oy,

the rest is readily checked by similar computations.

ExAMPLE 2. Let

3

0=y/Z-1=[0,222] and $="Y2(/2 =il 12111,

so that k0+ ¢ e Z for any ke Z. Since a;>b; (i=3, 4, - - ), the conditions of Theorem
2 are satisfied. Notice that

3./2 —4
Oo=0,=0,=---=0, $o=1-¢="Y""",
N 2 2—./2
¢1=———2 , Gr=¢3=¢,="-= b :

Since w; =01 and w,=01001, the substitution W is given by
0— w,=01001, 1—wh*1 %y wis b=w w,=0101001.
Therefore, we obtain

0 I 0 0 1 0 1 0 1 0 R
01001 0101001 01001 01001 0101001 01001 0101001 01001 0101001 01001 ---

COROLLARY 2. If ¢=,[1,1,b,,b5, -+, b, b,—2] with by=>3 but I', ., ends
(—1)0**"'m, ., then fy, is invariant under the same substitution as that of Theorem 2.

From Lemma 3 below we know that for every pair of 8 and ¢ above, 0 is a
quadratic irrational and ¢ € Q(0), ¢ ¢ 0Z.

If we allow the appearance of the ‘partial quotient’ 0 in the continued fraction
expansion, then the different expressions in Theorem 1 and Theorem 2 become the
same. We use the following Proposition:

PROPOSITION. Let s, t, u and v be integers with t>v>1. Then
0=[”'sai—17s+taai+1a ”']=['”aai—1’s90’ taai+1”']’
bd=¢l ", b, utv,biq, =4l Wb u,0,0,b;4 4, 0]

Proor. The first assertion is a trivial consequence of
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(s 1)(0 1)(1: 1)_ s+t 1
1o0/\ro/\ro/ \1 o)
Indeed, if we set @/ =s instead of q;=s+1¢, noting that 0<8,_, <1/(s+1t), we have

1 1 6,
b= gy e |2 o,
0., GT e 1T 1=,

, 6y e IJ_LI SJ_,
i 1_591'—1, e L6+ ;-4 ’

1 1

7 ’ _ —

i+2= —s—t=0,, A;y3= 0 =iy -
i-1 L0;+2

If we put b =u instead of b;=u+v, noting that —t< —v<u—¢,;_,/0,_, <0, we obtain

¢{=u-—-¢i—l, i;+1= ¢:—'=lr<u__¢t—l)< oi—l )‘|=0’
01 0; 0:_, 1—50;_,
. P , _”d>.f+1‘|_|'¢i-1 ]_
¢i+l— 0: s i+2— i,+l - oi—l uil=v,
Gir=u+v— (gi_l =¢;, iv3= q;f+2—|=bi+1 .
i—1 i+2

This provides the expansion of ¢ in terms of the sequence because
bi—0ib{,,+0;0{,,b/,,=b;

(compare the proof of Lemma 3 below).
Therefore, the expansions of 8 and ¢ in Theorem 2 become

0=[0,a,,0,0,a,, ---,a,] and ¢=,[1,1,1,0,b,—1,b,5, ---,b,].
On the other hand those in Theorem 1 become

9=[0, al, 0, O, az, R an] and ¢=0[1, 1,0,0, bz,bs, "',b”].

3. Inhomogeneous continued fraction expansion.

We investigate the case where 6 is a quadratic irrational and ¢ eQ(6). Similar
results about a different type of inhomogeneous continued fraction expansion have
already been obtained by Hara-Mimachi and Ito [2].

LeEMMA 3. If for some integers I, m, ', m’ with l, I'>0 and m, m' > 1

0=[ao’ ay, " a4, " .sal+m] s

¢=0[b09 bla T, bl’7 bl'+19 T, bl’+m’] ’
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then we have ¢ € Q(0).

PrOOF. We recall that 8 is a quadratic irrational if and only if its continued
fraction expansion is periodic, say 0=[aq, a;, """, 4a;, a1+, ' "> A1+ m]. Thus, 6, Q(6)
for every i >0, So, clearly 0,0, - - -0, Q(0) for every i>0. By its definition ¢ is given by

b=bo+ Z ('—1)i9091' : 'ei—lbi+(_1)n_10091' 0,10, (n=0)
i=1

=bo+ .Z‘l (—1)'000, - 0;_1b;

because 0 < ;< 1(i>0)and the cardinality of the set {0,, 8,, 8,, - - - } is finite. So ¢ € Q(6).
Similarly,

¢= ,Ztl(_l)i—lelel-n' “Orpicabi i+ (=1)0,011 Oy 1 Prin (nZ20)

=i§1(—1)i—19191+1' " Ovio1bras
and
1+m=i§,1 (_l)i_191+m61+m+1‘ “Oremti-1bremi
F(=D0embrsm+1 " Orimin-1P14m+n =0)
= 3 D OBhmer B ibimes

yleld ¢I=¢l+m becallSC 0j=91+m and bj+1=bj+m+1 (j=l, l+ 1, l+2, ot ').

LemMMA 4. If 6 is a quadratic irrational and ¢ € Q(0), then the cardinality of the

set {¢o, b1, P, -} is finite.

Proor. Firstly we shall show that the ¢; can be expressed by

_ u;—u; 1 0;

Y=,
t

where teN, and where u; (€Z) is defined recursively by w,=b;t—a,u;_,+u;_,
(i=1,2, ). If ¢eQ(f), then there exist ug,u_,€Z and teN such that ¢,=
(uo—u_,04)/t. For i=0,1,2, - -+ we have

¢i+1=bi+1— (gi

U, u Uy —u;0; 4
=bji1+— ——tl'(ai+1+9i+1)=#'

i

From 0<¢;<1 (i=0, 1, 2,) we have
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w0, <ujy,<u6;,,+t.

Ifu_, >0, then uy, u;, u,, - - - >0. If u_; <0, then there exists some non-negative integer
k such that u_, <uy<---<u,_,<0 and w, #;,, -~ - >0. Even if u;,, >u; for some
integer i, we obtain u;,, <u;0;, +1<u;,10;4,+1t or u;; <t/(1—0;,,). Since 0 is a
quadratic irrational, the cardinality of the set {6, 0,, 0,, - - -} is finite. Thus, the
cardinality of the set {u_, uo, Uy, 4, - - -} is also finite, yielding the claim.

By Lemma 4 there are integers / and m such that ¢, =@, ,. Together with Lemma
3 we obtain the following.

THEOREM 3. 0 is a quadratic irrational, and ¢ € Q(0), if and only if there exist I,
meZ with [>0 and m>1 such that

0=[a0a Ay, ", 4140, 7 ',al+m] ’

¢=9[b09 bb o ',bb bl+1, o "bl+m] .

Similarly to Theorem 1, we obtain the following.

THEOREM 4. For l>2 set

9=[0aa13 ”'aabal+1, '.'aal+m] and

d=o[1, 1,02, - b briys " biem] -

Then fq 4 is invariant under the block-to-block substitution

W wii—Wiimt1s Wit2 > Witm+2,

except the following cases.
(1) Tyypssends (—1)07* (j=1)—and if 123,
(la) az=bs, - -, a2b,

(1b) a;>b,a;,,=b;\, ***,a,=b, for an integer i with 3<i<l,
(Ic) a,=b,—1,a;,,=b;11, -, a,=b, for an integer i with 3<i<l and i+j=l
(mod 2), or

(2) Tyipm+s ends (—1)0%(—1) (j=1)—and if I=3, (1a) or (1b) is satisfied.

REMARK. Furthermore, if ¢;41=Cym+1 @0d €142 =Cj4 m+2, then fy 4 is invariant
under

W:iwi_1——Wiim-1, Wi——=Wiim -
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