Substitution Invariant Inhomogeneous Beatty Sequences

Takao KOMATSU

Nagaoka National College of Technology (Communicated by K. Shinoda)

1. Introduction.

Given a real irrational θ and an arbitrary real ϕ we get

$$f_n = f(n; \theta, \phi) = [(n+1)\theta + \phi] - [n\theta + \phi] - [\theta]$$
.

For brevity we write the infinite sequence (f_n) as $f_{\theta,\phi} = f_1 f_2 f_3 \cdots$. Here our purpose will be to find those substitutions W leaving $f_{\theta,\phi}$ invariant, that is, so that $W(f_{\theta,\phi}) = f_{\theta,\phi}$; and the θ and ϕ admitting such a substitution. We recall that a substitution is a pair of maps

$$W: 0 \longrightarrow W_0$$
, $1 \longrightarrow W_1$,

where W_0 and W_1 are finite strings of 0's and 1's. We considered the homogeneous case $\phi = 0$ in [5]. In this paper we shall give some solutions appropriate to the inhomogeneous case $\phi \neq 0$. The similar problem has been discussed by Ito and Yasutomi [3] and by Crisp [1], but we provide rather different argument.

Let $\theta = [a_0, a_1, a_2, \cdots]$ denote the continued fraction expansion of θ , where

$$\theta = a_0 + \theta_0$$
, $a_0 = [\theta]$,
 $1/\theta_{n-1} = a_n + \theta_n$, $a_n = [1/\theta_{n-1}]$ $(n = 1, 2, \cdots)$.

The *n*-th convergent $p_n/q_n = [a_0, a_1, \dots, a_n]$ of θ is given by the recurrence relations

$$p_n = a_n p_{n-1} + p_{n-2}$$
 $(n=0, 1, \dots), p_{-2} = 0, p_{-1} = 1,$
 $q_n = a_n q_{n-1} + q_{n-2}$ $(n=0, 1, \dots), q_{-2} = 1, q_{-1} = 0.$

Further, let $\phi = [b_0, b_1, b_2, \dots,]$ be the expansion of ϕ in terms of the sequence $\{\theta_0, \theta_1, \dots\}$, where

$$\phi = b_0 - \phi_0, \qquad b_0 = \lceil \phi \rceil,$$

$$\phi_{n-1}/\theta_{n-1} = b_n - \phi_n, \qquad b_n = \lceil \phi_{n-1}/\theta_{n-1} \rceil \quad (n = 1, 2, \cdots).$$

Received August 27, 1997 Revised April 27, 1998

2. Main results.

We define the sequence Γ_n $(n \ge 3)$ by

$$\Gamma_n = \{a_3 - b_3, a_4 - b_4, \dots, a_n - b_n\},\,$$

and write $\pi_n = a_n - b_n$ if $a_n > b_n$, $\varpi_n = a_n - b_n$ if $a_n \ge b_n$ —so, if the entry 0 is permitted. Let $\beta_n = (b_n - 1)q_{n-1} + b_{n-1}q_{n-2} + \cdots + b_2q_1 + 1$.

LEMMA 1 [4]. Let θ be irrational and let ϕ be real with $0 < \theta$, $\phi < 1$. If $k\theta + \phi \notin \mathbb{Z}$ for any integer $k = 0, 1, 2, \cdots$ then we have

$$\{ [(k+1)\theta + \phi] - [k\theta + \phi] \}_{k=1}^{\infty} = \lim_{n \to \infty} \underbrace{0 \cdots 01}_{b_1 - 1} w_n.$$

Here w_n is the word of length q_n whose symbols are defined inductively by

$$w_1 = \underbrace{0 \cdots 0}_{a_1 - 1} 1$$
, $w_2 = w_1^{b_2 - 1} 0 w_1^{a_2 - b_2 + 1}$, $w_n = w_{n-1}^{c_n} w_{n-2} w_{n-1}^{a_n - c_n}$,

where for some positive integer κ and a non-negative integer l

$$c_{n} = \begin{cases} b_{n}+1, & \text{if } \Gamma_{n} \text{ ends } (-1)0^{2\kappa-1}\pi_{n}; \\ 0, & \text{if } \Gamma_{n-1} \text{ ends } (-1)0^{2\kappa-2} \quad (\kappa \geq 2), \\ & \pi_{n-1-2}\underline{\varpi_{n-1-1}\cdots\varpi_{n-2}}(-1), \\ & \text{or } 0^{n-4}(-1); \\ 1, & \text{if } \Gamma_{n-1} \text{ ends } (-1)0^{2\kappa-2}(-1); \\ & \min(a_{n}, b_{n}), & \text{otherwise}. \end{cases}$$

REMARK. Γ_n does end neither $(-1)0^{2k-1}(-1)$ nor $(-1)0^{2k-2}\pi_n$ as seen in [4].

LEMMA 2. Suppose θ , ϕ satisfy the assumptions of Lemma 1 with $b_1 = 1$. Let W be a substitution. If there exists a positive integer m such that $W(w_i) = w_{i+m}$ for all large integers $i = l, l+1, \dots,$ then $W(f_{\theta,\phi}) = f_{\theta,\phi}$.

PROOF. From Lemma 1, if $w_l \rightarrow w_{l+m}$, $w_{l+1} \rightarrow w_{l+m+1}$, ..., then

$$W(f_{\theta,\phi}) = \lim_{l \to \infty} w_{l+m} = \lim_{l \to \infty} w_l = f_{\theta,\phi}.$$

We suppose throughout that $k\theta + \phi$ is never integral. As usual $\overline{a_2, \dots, a_n}$ is the pure periodic sequence with period a_2, \dots, a_n . We interpret $\overline{b_2, \dots, b_n}$ similarly. We may assume that $b_1 = 1$ without loss of generality, for $b_1 = 1$ if and only if $\theta + \phi > 1$. Otherwise, by $(1-\theta)+(1-\phi)>1$ and $f(n; 1-\theta, 1-\phi)=1-f(n; \theta, \phi)$, we simply interchange the roles of 0 and 1 below.

THEOREM 1. Set

$$\theta = [0, a_1, \overline{a_2, \dots, a_n}]$$
 and $\phi = \theta[1, 1, \overline{b_2, \dots, b_n}]$.

Then $f_{\theta,\phi}$ is invariant under the block-to-block substitution

$$W: w_3 \longrightarrow w_{n+2}, \qquad w_4 \longrightarrow w_{n+3},$$

except when Γ_{n+3} ends $(-1)0^{j+1}$ or $(-1)0^{2j}(-1)$ $(j \ge 1)$.

Moreover, if $c_4 = c_{n+3}$, then $f_{\theta,\phi}$ is invariant under

$$W: w_2 \longrightarrow w_{n+1}, \qquad w_3 \longrightarrow w_{n+2};$$

whilst if $c_3 = c_{n+2}$, then $f_{\theta,\phi}$ is invariant under

$$W: w_1 \longrightarrow w_n, \qquad w_2 \longrightarrow w_{n+1}.$$

PROOF. The point is the different scenarios defining c_n . When Γ_{n+3} ends $(-1)0^{j+1}$ or $(-1)0^{2j}(-1)$ $(j \ge 1)$, Γ_4 and Γ_{n+3} arise from a different scenario. Otherwise, from $a_5 = a_{n+4}$ and $c_5 = c_{n+4}$ we have

$$w_5 = w_4^{c_5} w_3 w_4^{a_5 - c_5} \longrightarrow w_{n+3}^{c_5} w_{n+2} w_{n+3}^{a_5 - c_5} = w_{n+4}$$
.

These may belong to the same scenario when Γ_{n+3} ends in an odd number of 0's, but then Γ_5 and Γ_{n+4} belong to different scenarios. Similarly, except for these exclusions we have $w_6 \to w_{n+5}$, $w_7 \to w_{n+6}$, \cdots , $w_i \to w_{n+i-1}$.

We need extra conditions to perform a descent on the substitutions. We can obtain

$$w_4 = w_3^{c_4} w_2 w_3^{a_4 - c_4} \longrightarrow w_{n+2}^{c_4} w_{n+1} w_{n+2}^{a_4 - c_4} = w_{n+3}$$

if and only if $c_4 = c_{n+3}$; and

$$w_3 = w_2^{c_3} w_1 w_2^{a_3 - c_3} \longrightarrow w_{n+1}^{c_3} w_n w_{n+1}^{a_3 - c_3} = w_{n+2}$$

if and only if $c_3 = c_{n+2}$.

We also have $w_2 \to w_{n+1}$ if and only if $b_2 - 1 = c_{n+1}$. But there is no substitution satisfying all the conditions above given the form of the expansion of ϕ .

We note that $c_{n+1}=0$, 1 or a_{n+1} . But if $c_{n+1}=0$, then from $a_2 \le b_2 = 1$ we have $a_2 = b_2$; since $a_3 > b_3$ to avoid the excluded scenario, we have $b_{n+2} + 1 = c_{n+2} \ne c_3 = b_3$. The other cases are checked in similar ways.

But, if we allow 'words' of the shape w^{-1} , then there is a case that can be expressed by substitutions in the usual form $0 \to W_0$, $1 \to W_1$.

COROLLARY 1. Let

$$\theta = [0, a_1, \overline{a_2, \dots, a_n}]$$
 and $\phi = [1, 1, \overline{b_2, \dots, b_n}]$.

If in addition to the conditions of Theorem 1 we have $b_2 = c_{n+1}$ then $f_{\theta,\phi}$ is invariant under the substitution

$$W: 0 \longrightarrow w_n w_{n-1} w_n^{-1}, \qquad 1 \longrightarrow w_n w_{n-1}^{1-a_1}.$$

Proof. We note that

$$w_1 = 0^{a_1 - 1} 1 \longrightarrow w_n w_{n-1}^{a_1 - 1} w_n^{-1} w_n w_{n-1}^{1 - a_n} = w_n,$$

$$w_2 = w_1^{b_2 - 1} 0 w_1^{a_2 - b_2 + 1} \longrightarrow w_n^{b_2 - 1} w_n w_{n-1} w_n^{-1} w_n^{a_2 - b_2 + 1} = w_{n+1},$$

and that the rest is readily checked by similar computations.

Example 1. Set

$$\theta = \sqrt{3} - 1 = [0, 1, \overline{2, 1}]$$
 and $\phi = \frac{\sqrt{3} - 1}{2} = \theta[1, 1, \overline{1, 1}],$

so that $k\theta + \phi \in \mathbb{Z}$ for any $k \in \mathbb{Z}$. Since $a_i \ge b_i$ $(i = 1, 2, \dots)$, the conditions of Corollary 1 are satisfied. Notice that

$$\theta_0 = \theta_2 = \theta_4 = \dots = \theta , \qquad \theta_1 = \theta_3 = \theta_5 = \dots = \frac{1 - \theta}{\theta} = \frac{\sqrt{3} - 1}{2} ,$$

$$\phi_0 = \phi_2 = \phi_4 = \dots = 1 - \phi = \frac{3 - \sqrt{3}}{2} , \quad \phi_1 = \phi_3 = \phi_5 = \dots = \frac{2 - \sqrt{3}}{2} .$$

Since $w_1 = 1$, $w_2 = 011$ and $w_3 = 0111$, the substitution W is given by

$$0 \longrightarrow 0111011(0111)^{-1}, 1 \longrightarrow 0111$$

or

$$01 \longrightarrow 0111011$$
, $1 \longrightarrow 0111$.

Therefore, we obtain

We shall make a small change to the form of the inhomogeneous continued fraction expansion in Theorem 1 to obtain a substitution not involving extraordinary words like w^{-1} .

THEOREM 2. Set

$$\theta = [0, a_1, \overline{a_2, \dots, a_n}]$$
 and $\phi = \theta[1, 1, b_2, \overline{b_3, \dots, b_n, b_2 - 1}]$.

If in addition to the conditions of Theorem 1, $b_2-1=c_{n+1}$ and Γ_n ends in $\varpi_3\cdots\varpi_n$ or $\pi_{n-l}\varpi_{n-l+1}\cdots\varpi_n$, then $f_{\theta,\phi}$ is invariant under the substitution

$$W: 0 \longrightarrow w_{n-1}$$
, $1 \longrightarrow w_{n-1}^{c_n+1-a_1} w_{n-2} w_{n-1}^{a_n-c_n}$,

where $c_n + 1 \ge a_1$ and $b_2 \ge 2$.

PROOF. Some of the conditions of Theorem 1 are not satisfied if Γ_n does not end in $\varpi_3 \cdots \varpi_n$ or $\pi_{n-1} \varpi_{n-l+1} \cdots \varpi_n$. Otherwise, since $b_2 - 1 = b_{n+1} = c_{n+1}$, we obtain

$$\begin{split} w_1 &= 0^{a_1-1} 1 & \longrightarrow w_{n-1}^{a_1-1} w_{n-1}^{c_n+1-a_1} w_{n-2} w_{n-1}^{a_n-c_n} = w_n \; , \\ w_2 &= w_1^{b_2-1} 0 w_1^{a_2-b_2+1} & \longrightarrow w_n^{b_2-1} w_{n-1} w_n^{a_2-b_2+1} = w_{n+1} \; ; \end{split}$$

the rest is readily checked by similar computations.

Example 2. Let

$$\theta = \sqrt{2} - 1 = [0, 2, \overline{2, 2}]$$
 and $\phi = \frac{3\sqrt{2}}{2}(\sqrt{2} - 1) = \theta[1, 1, 2, \overline{1, 1}],$

so that $k\theta + \phi \in \mathbb{Z}$ for any $k \in \mathbb{Z}$. Since $a_i \ge b_i$ $(i = 3, 4, \cdots)$, the conditions of Theorem 2 are satisfied. Notice that

$$\theta_0 = \theta_1 = \theta_2 = \dots = \theta$$
, $\phi_0 = 1 - \phi = \frac{3\sqrt{2} - 4}{2}$,
 $\phi_1 = \frac{\sqrt{2}}{2}$, $\phi_2 = \phi_3 = \phi_4 = \dots = \frac{2 - \sqrt{2}}{2}$.

Since $w_1 = 01$ and $w_2 = 01001$, the substitution W is given by

$$0 \longrightarrow w_2 = 01001$$
, $1 \longrightarrow w_2^{b_3 + 1 - a_1} w_1 w_2^{a_3 - b_3} = w_1 w_2 = 0101001$.

Therefore, we obtain

COROLLARY 2. If $\phi = {}_{\theta}[1, 1, b_2, \overline{b_3, \dots, b_n, b_2 - 2}]$ with $b_2 \ge 3$ but Γ_{n+1} ends $(-1)0^{2\kappa - 1}\pi_{n+1}$, then $f_{\theta,\phi}$ is invariant under the same substitution as that of Theorem 2.

From Lemma 3 below we know that for every pair of θ and ϕ above, θ is a quadratic irrational and $\phi \in \mathbf{Q}(\theta)$, $\phi \notin \theta \mathbf{Z}$.

If we allow the appearance of the 'partial quotient' 0 in the continued fraction expansion, then the different expressions in Theorem 1 and Theorem 2 become the same. We use the following Proposition:

PROPOSITION. Let s, t, u and v be integers with $t \ge v \ge 1$. Then

$$\theta = [\cdots, a_{i-1}, s+t, a_{i+1}, \cdots] = [\cdots, a_{i-1}, s, 0, t, a_{i+1}, \cdots],$$

$$\phi = [\cdots, b_{i-1}, u+v, b_{i+1}, \cdots] = [\cdots, b_{i-1}, u, 0, v, b_{i+1}, \cdots]$$

PROOF. The first assertion is a trivial consequence of

$$\begin{pmatrix} s & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} t & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} s+t & 1 \\ 1 & 0 \end{pmatrix}.$$

Indeed, if we set $a_i' = s$ instead of $a_i = s + t$, noting that $0 < \theta_{i-1} < 1/(s+t)$, we have

$$\theta'_{i} = \frac{1}{\theta_{i-1}} - s, \qquad a'_{i+1} = \left\lfloor \frac{1}{\theta'_{i}} \right\rfloor = \left\lfloor \frac{\theta_{i-1}}{1 - s\theta_{i-1}} \right\rfloor = 0,$$

$$\theta'_{i+1} = \frac{\theta_{i-1}}{1 - s\theta_{i-1}}, \qquad a'_{i+2} = \left\lfloor \frac{1}{\theta'_{i+1}} \right\rfloor = \left\lfloor \frac{1}{\theta_{i-1}} - s \right\rfloor = t,$$

$$\theta'_{i+2} = \frac{1}{\theta_{i-1}} - s - t = \theta_{2}, \qquad a'_{i+3} = \left\lfloor \frac{1}{\theta'_{i+2}} \right\rfloor = a_{i+1}.$$

If we put $b_i' = u$ instead of $b_i = u + v$, noting that $-t \le -v < u - \phi_{i-1}/\theta_{i-1} < 0$, we obtain

$$\phi'_{i} = u - \frac{\phi_{i-1}}{\theta_{i-1}}, \qquad b'_{i+1} = \left\lceil \frac{\phi'_{i}}{\theta'_{i}} \right\rceil = \left\lceil \left(u - \frac{\phi_{i-1}}{\theta_{i-1}} \right) \left(\frac{\theta_{i-1}}{1 - s\theta_{i-1}} \right) \right\rceil = 0,$$

$$\phi'_{i+1} = -\frac{\phi'_{i}}{\theta'_{i}}, \qquad b'_{i+2} = \left\lceil \frac{\phi'_{i+1}}{\theta'_{i+1}} \right\rceil = \left\lceil \frac{\phi_{i-1}}{\theta_{i-1}} - u \right\rceil = v,$$

$$\phi'_{i+2} = u + v - \frac{\phi_{i-1}}{\theta_{i-1}} = \phi_{i}, \qquad b'_{i+3} = \left\lceil \frac{\phi'_{i+2}}{\theta'_{i+2}} \right\rceil = b_{i+1}.$$

This provides the expansion of ϕ in terms of the sequence because

$$b_{i}' - \theta_{i}'b_{i+1}' + \theta_{i}'\theta_{i+1}'b_{i+2}' = b_{i}$$

(compare the proof of Lemma 3 below).

Therefore, the expansions of θ and ϕ in Theorem 2 become

$$\theta = [0, a_1, 0, 0, \overline{a_2, \dots, a_n}]$$
 and $\phi = \theta[1, 1, 1, 0, \overline{b_2 - 1, b_3, \dots, b_n}]$.

On the other hand those in Theorem 1 become

$$\theta = [0, a_1, 0, 0, \overline{a_2, \dots, a_n}]$$
 and $\phi = [1, 1, 0, 0, \overline{b_2, b_3, \dots, b_n}]$.

3. Inhomogeneous continued fraction expansion.

We investigate the case where θ is a quadratic irrational and $\phi \in \mathbf{Q}(\theta)$. Similar results about a different type of inhomogeneous continued fraction expansion have already been obtained by Hara-Mimachi and Ito [2].

LEMMA 3. If for some integers l, m, l', m' with $l, l' \ge 0$ and $m, m' \ge 1$

$$\theta = [a_0, a_1, \dots, a_l, \overline{a_{l+1}, \dots, a_{l+m}}],$$

$$\phi = {}_{\theta} [b_0, b_1, \dots, b_{l'}, \overline{b_{l'+1}, \dots, b_{l'+m'}}],$$

then we have $\phi \in \mathbf{Q}(\theta)$.

PROOF. We recall that θ is a quadratic irrational if and only if its continued fraction expansion is periodic, say $\theta = [a_0, a_1, \dots, a_l, \overline{a_{l+1}, \dots, a_{l+m}}]$. Thus, $\theta_i \in \mathbf{Q}(\theta)$ for every $i \ge 0$, So, clearly $\theta_0 \theta_1 \cdots \theta_i \in \mathbf{Q}(\theta)$ for every $i \ge 0$. By its definition ϕ is given by

$$\phi = b_0 + \sum_{i=1}^{n} (-1)^i \theta_0 \theta_1 \cdots \theta_{i-1} b_i + (-1)^{n-1} \theta_0 \theta_1 \cdots \theta_{n-1} \phi_n \quad (n \ge 0)$$

$$= b_0 + \sum_{i=1}^{\infty} (-1)^i \theta_0 \theta_1 \cdots \theta_{i-1} b_i$$

because $0 < \theta_i < 1$ $(i \ge 0)$ and the cardinality of the set $\{\theta_0, \theta_1, \theta_2, \cdots\}$ is finite. So $\phi \in \mathbf{Q}(\theta)$. Similarly,

$$\phi_{l} = \sum_{i=1}^{n} (-1)^{i-1} \theta_{l} \theta_{l+1} \cdots \theta_{l+i-1} b_{l+i} + (-1)^{n} \theta_{l} \theta_{l+1} \cdots \theta_{l+n-1} \phi_{l+n} \quad (n \ge 0)$$

$$= \sum_{i=1}^{\infty} (-1)^{i-1} \theta_{l} \theta_{l+1} \cdots \theta_{l+i-1} b_{l+i}$$

and

$$\phi_{l+m} = \sum_{i=1}^{n} (-1)^{i-1} \theta_{l+m} \theta_{l+m+1} \cdots \theta_{l+m+i-1} b_{l+m+i}$$

$$+ (-1)^{n} \theta_{l+m} \theta_{l+m+1} \cdots \theta_{l+m+n-1} \phi_{l+m+n} \quad (n \ge 0)$$

$$= \sum_{i=1}^{\infty} (-1)^{i-1} \theta_{l+m} \theta_{l+m+1} \cdots \theta_{l+m+i-1} b_{l+m+i}$$

yield $\phi_{l} = \phi_{l+m}$ because $\theta_{j} = \theta_{j+m}$ and $b_{j+1} = b_{j+m+1}$ $(j = l, l+1, l+2, \cdots)$.

LEMMA 4. If θ is a quadratic irrational and $\phi \in \mathbf{Q}(\theta)$, then the cardinality of the set $\{\phi_0, \phi_1, \phi_2, \cdots\}$ is finite.

PROOF. Firstly we shall show that the ϕ_i can be expressed by

$$\phi_i = \frac{u_i - u_{i-1}\theta_i}{t},$$

where $t \in \mathbb{N}$, and where $u_i \in \mathbb{Z}$ is defined recursively by $u_i = b_i t - a_i u_{i-1} + u_{i-2}$ $(i=1, 2, \cdots)$. If $\phi \in \mathbb{Q}(\theta)$, then there exist $u_0, u_{-1} \in \mathbb{Z}$ and $t \in \mathbb{N}$ such that $\phi_0 = (u_0 - u_{-1}\theta_0)/t$. For $i = 0, 1, 2, \cdots$ we have

$$\phi_{i+1} = b_{i+1} - \frac{\phi_i}{\theta_i} = b_{i+1} + \frac{u_{i-1}}{t} - \frac{u_i}{t} (a_{i+1} + \theta_{i+1}) = \frac{u_{i+1} - u_i \theta_{i+1}}{t}.$$

From $0 \le \phi_i < 1 \ (i = 0, 1, 2,)$ we have

$$u_i \theta_{i+1} \leq u_{i+1} < u_i \theta_{i+1} + t$$
.

If $u_{-1} \ge 0$, then u_0 , u_1 , u_2 , $\cdots > 0$. If $u_{-1} < 0$, then there exists some non-negative integer k such that $u_{-1} < u_0 < \cdots < u_{k-1} \le 0$ and u_k , u_{k+1} , $\cdots > 0$. Even if $u_{i+1} \ge u_i$ for some integer i, we obtain $u_{i+1} < u_i \theta_{i+1} + t \le u_{i+1} \theta_{i+1} + t$ or $u_{i+1} \le t/(1 - \theta_{i+1})$. Since θ is a quadratic irrational, the cardinality of the set $\{\theta_0, \theta_1, \theta_2, \cdots\}$ is finite. Thus, the cardinality of the set $\{u_{-1}, u_0, u_1, u_2, \cdots\}$ is also finite, yielding the claim.

By Lemma 4 there are integers l and m such that $\phi_l = \phi_{l+m}$. Together with Lemma 3 we obtain the following.

THEOREM 3. θ is a quadratic irrational, and $\phi \in \mathbf{Q}(\theta)$, if and only if there exist l, $m \in \mathbf{Z}$ with $l \ge 0$ and $m \ge 1$ such that

$$\theta = [a_0, a_1, \dots, a_l, \overline{a_{l+1}, \dots, a_{l+m}}],$$

$$\phi = {}_{\theta}[b_0, b_1, \dots, b_l, \overline{b_{l+1}, \dots, b_{l+m}}].$$

Similarly to Theorem 1, we obtain the following.

THEOREM 4. For $l \ge 2$ set

$$\theta = [0, a_1, \dots, a_l, \overline{a_{l+1}, \dots, a_{l+m}}]$$
 and $\phi = [0, 1, b_2, \dots, b_l, \overline{b_{l+1}, \dots, b_{l+m}}]$.

Then $f_{\theta,\phi}$ is invariant under the block-to-block substitution

$$W: w_{l+1} \longrightarrow w_{l+m+1}, \qquad w_{l+2} \longrightarrow w_{l+m+2},$$

except the following cases.

- (1) Γ_{l+m+2} ends $(-1)0^{j+1}$ $(j \ge 1)$ —and if $l \ge 3$,
- $(1a) \quad a_3 \ge b_3, \, \cdots, \, a_l \ge b_l,$
- (1b) $a_i > b_i$, $a_{i+1} \ge b_{i+1}$, \cdots , $a_l \ge b_l$ for an integer i with $3 \le i \le l$,
- (1c) $a_i = b_i 1$, $a_{i+1} = b_{i+1}$, \cdots , $a_l = b_l$ for an integer i with $3 \le i \le l$ and $i+j \equiv l \pmod{2}$, or
 - (2) Γ_{l+m+2} ends $(-1)0^{2j}(-1)$ $(j \ge 1)$ —and if $l \ge 3$, (1a) or (1b) is satisfied.

REMARK. Furthermore, if $c_{l+1} = c_{l+m+1}$ and $c_{l+2} = c_{l+m+2}$, then $f_{\theta,\phi}$ is invariant under

$$W: w_{l-1} \longrightarrow w_{l+m-1}, \qquad w_l \longrightarrow w_{l+m}.$$

References

- [1] D. J. Crisp, Inhomogeneous cutting sequences and substitution invariance, preprint.
- [2] Y. HARA-MIMACHI and Sh. Ito, A characterization of real quadratic numbers by Diophantine algorithms, Tokyo J. Math. 14 (1991), 251–267.

- [3] Sh. Ito and S. Yasutomi, On continued fractions, substitutions and characteristic sequences [nx+y]-[(n-1)x+y], Japan. J. Math. 16 (1990), 287-306.
- [4] T. Komatsu, A certain power series associated with a Beatty sequence, Acta Arith. 76 (1996), 109–129.
- [5] T. Komatsu and A. J. van der Poorten, Substitution invariant Beatty sequences, Japan. J. Math. 22 (1996), 349-354.

Present Address:

FACULTY OF EDUCATION, MIE UNIVERSITY, TSU, MIE, 514–8507 JAPAN e-mail: komatsu@edu.mie-u.ac.jp