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Introduction.

Let N be a positive integer greater than 6. Let I'(NV) denote the principal congruence
subgroup of level N and I'{(N) a subgroup of SL,(Z) defined by

rl(N)={(‘c’ Z)eSLz(Z)

a=d=1 mod N, ¢c=0 mod N}.

Let X(V) and X,(N) be the modular curves associated with the groups I'(N) and I',(N)
respectively. Further let A(N) and 4,(N) be the modular function fields associated with
the groups I'(N) and I',(N) respectively. Then the field A(N) (resp. 4,(N)) is identified
with the function field of X(N) (resp. X,;(N)) rational over C and A(N) is a Galois
extension over 4 (N) of degree N. In [3], the second author defined a family of modular
functions X,(t) of level 2N 2, for N and reZ, r#0 modN, by

nl(r— 1)(N_ 1)>N_ ! Kr,s(r)
2N s=0 K, (1)’

where K, ,(7) are the Klein forms of level N. For the Klein forms we refer to Kubert
and Lang [5]. Define an integer ¢y by

. _{1 if Nisodd,
N 2 if Niseven.

0.1 X, (1)= exp( —

Then we showed that X,(t)*¥, X;5(t) generate A(N) over C. This result was firstly proved
by the second author [3] for the cases N are primes and was extended to arbitrary N
greater than 6 by the first author [1]. Furthermore if N is a prime, then the authors
[2] showed X5(7) is integral over the ring Z[ X,(7)]. In general, in [1], it was shown
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that X5(t) is integral over the ring Q[ X ,(t)*¥]. Let Fy(X, Y)e Q[X, Y] be the polynomial
such that Fy(X3"(t), Y)=0 is the monic irreducible equation of X;(t) over Q[X%¥]. In
[1,2], we determined the polynomial Fy(X, Y) and gave an effective algorithm to
calculate it. The equation Fy(X, Y)=0 gives an affine singular model of X(N) over Q.

The purpose of this paper is to show that an affine model over Q (over Z if
N is prime) of the curve X;(N) can be obtained directly from the equation Fy(X, Y)=0.
At first we shall prove in §1 that 4,(N) is generated over C by X,(7)**" and X,()". For
a prime N, this was proved in [4]. From this we shall show that, for any two integers
my and n, such that 3my+8ny=eyN, 4,(N) is generated over C by two functions
X,()"X;(1)"™ and X,(t)®X5(r) 3. By a slight deformation of Fy(X, Y), in §2, we shall
obtain an equation satisfied with functions X,(t)™X;(z)" and X,(7)®X5(r)” 3. Hence we
can obtain at the same time affine models of 4(NV)and 4,(N)only by calculating F(X, Y).

In [7], Reichert obtained the defining equation of X, (N) explicitly for N=
11, 13, 14, 15, 16, 17 and 18. He used Kubert’s E(b, c¢) form to obtain one of equations
for X,(N) called “raw form”. In general, it seems to be very hard to transform “raw
form™ to the defining equation of X (). He writes that no general algorithm exists to
find the transformation from ‘““raw form” to the defining equation. In §3, we shall give
some examples.

1. Generators of A,(N).

Fix a positive integer N>7. Consider the functions X,(t), X5(t) defined by (0.1)
for N and r=2, 3. We shall find out generators of 4,(N) among functions of the form
X7X3, for m,neZ.

LEMMA 1. Let m, n be integers. Then
X7X3€ A (N) <= 3m+8n=0 modeyN .
Proor. By K1~K4 in §1 of Kubert and Lang [5], we know

ni(3m+ 8n)

X7X3(c+ 1>=exp( =

)(—I)MXZ'XS(T)-

Thus
X7X3€A(N) <= 3m+8n+Nm=0 mod2N.

It is easy to see that the above congruence is equivalent to a congruence 3m+8n=0
modeyN. [

By Lemma 1, we have
PROPOSITION 1. Let my, ny be integers such that 3mq+8n,=eyN. Then

X7oX5°, X3X5°, X5°, XTed (N).
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Let ¢ be the canonical map of X(N) to X{(N). Then for a function feA,(N) the
reciprocal image ¢ *((f)) of the divisor (/) of the function f is the divisor of the function
fo@. (See II of Silverman [8].) Let P be a point on X;(N) and e, the ramification index
of ¢ at the point P. Since X(V) is a Galois covering of X,(N) of degree N, the reciprocal
image of a divisor (P) is given by

Nlep
9*(P) =ep( ) Pj) :
j=

where Py, - - -, Py, are all points of X(N) lying over P. Let ordp(f) be the order of a
function f at a point P and ordp (f) the order of the function f-¢ at the point P,
Then ordp (f) is independent of the choice of the point P; and ordy(f)=ordp (f)/ep. If
X7 X3eA(N), then we have
1 {m
ordp( X7 X3)=— {— ordp (X3¥)+n ordpj(X3)} .

ep L&y

By definition, a function X7'X?% has zeros and poles only at cusps of I'|(N). Let us
calculate the order of the function X5 X3 at cusps. In Ogg [6], all inequivalent cusps

of I'(N) are given by pairs of integers <:), where 1 <v< N and if we write GCD(v, N)=d,
then u runs all over integers such that 1 <u<d/2, GCD(u, d)=1. Further we know the
ramification index of ¢ at the cusp (Z) is d. Therefore from Proposition 2 of [1], we
easily deduce

LemMMA 2. Let X5X%€ A;(N). Then the function X5 X5 has zeros and poles only at
cusps of I'y(N) and its order v, (X3X3) at a cusp (:) is given by

(3 -+ 8n)u® — (m + 2n)du if u<?
v, (XTXT) = 2 S
u, o\ 4243} (3m+8n)u2_(m+8n)du+2d 2n . d
2d Tuzg

where d= GCD(v, N).
This Lemma shows the order v, (X5'X73) depends only on # and GCD of v and N.
THEOREM 1. The functions XN and XY generate A,(N) over C.

Proor. The argument used in [1, 3] to prove that A(N) is generated by X3%, X,
over C can be applied to the present case also. We shall give a sketch of the proof.
(See [1] for details.) For a non-constant function f of 4,(N), denote by d(f) the degree
of 4,(N) over C(f). We know d(f) is equal to the total degree of poles of the function
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/- (See for example Proposition 2.11 of Shimura [9].) Let L be the subfield of 4,(N)
generated by Xi¥N and X% over C. We shall prove that there exist a finite number of
functions fi, - - -, f, of L such that GCD((f,), - - -, d(f))=1. Then, since the degree
of A,(N) over L is a common divisor of those d(f;), we have L=A4,(N). At first
let N be odd. By Lemma 2, we have

axy=- 5 ()N y

d|N d d O<u<d/3 2
d>3 GCD(u,d)=1

where ¢(*) is Euler’s function. We shall consider the functions of the form X3!+ X}/
for positive integers i, j and calculate d(X?'+ X}Y). By Lemma 2, the function XY +

X7 has poles only at the cusps (“), where l <v<Nand d,=GCD(v, N)>3,0<u<d,/3,
v

GCD(u,d,)=1. By the same lemma, we have

3u?—du\ N N
vu,v(Xév) = <—7—_~) 71, > vu,v(Xév) = (4“ 2— dvu) gv_ .
Take i, j such that i <2j. Then we have
. . 2j—i
XY = (X <0 s > T DD
’ ’ 8j—3i

Therefore further if we take i,j such that 1<(2j—i)N/(8—3i)<2, then we have
Vu (X)) —v, (X3 <0 for all cusps (u) except the cusp (1]\/) Thus we have
v

. , N\ N . {3u?—d
dXY+x¥)=-Y (P(_d_)7 Y mm{—li——li i (4u2—du)j}
g L]g G(()?B(uu<d‘)i/=3 1
2IN—4)j—(N-=-3)i
—id(XD)+ ( )12 ( )i .

Take (iy,j)=(N—3,(N—1)/2), (is, j)=(N—5,(N—3)/2). These pairs satisfy the
properties required above and we have

. . N-=5 . : N-3
d(X3" + X3 =1i,d(X7) + 5 d(X§'2+X§V”)=izd(X§')+—5—-

Hence, we see
GCD(XY), d( X} + xY), d(XY2+ X)) =1.

Therefore we have 4,(N)=L. In the case N is even, a similar argument can be applied.
(Cf.[1]) 0O
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THEOREM 2. Let myg, n, be integers such that 3mq + 8ny =eyN. Then X5°X5°, X3 X33
generate A,(N) over C.

PrROOF. By Proposition 1, we know X7°X%°, X5X;*e 4,(N). Since
XN = (X530 X3) (X5 X5 %), XY =(X7oX50)% "N (X5 X5 %) ol

Theorem 1 shows the assertion. [

2. An equation for 4,(N).

Let Fy(X, Y)eQ[X, Y] be the polynomial such that Fy(X5¥, Y)=0 is a monic
irreducible equation of X; over Q[ X%¥]. In [1, 2], we showed that it has of the form:

FyX, V)=Y% 4 &, _(X)Y> " 4. +&,(X)Y+By(X).

Here d, is the degree of A(N) over C(X3¥) and @(X)eQ[X] for all j and further the
degree of Fy(X, Y) as a polynomial of X is d; which is equal to the degree of A(N) over
C(X ;). Write @;(X*)=Y 5% C, .X". Then

Fy(X*™, Y)=Y%+) C, ,X'Y/,
i, j

where i,j of the sum run over integers such that 0 <i<eyd;, 0<j<d,. If N is prime,
then we showed in [2] that all coefficients C; ; are integers. Let T be the set of pairs
of integers (i, j) such that 0 <i<eyds, 0<j<d,, C; ;#0. Then we have

LemMA 3. Let (i, j)e€X. Then
(1) 3i+8j=8d, modeyN.
(2) (N=3)i2+(N—4)j<(N—4)d,.

Proor. For (1), see [1, 2]. For (2), it was proved only for primes N in Lemma 6
of [2]. However the same argument is applied to the general cases. Thus we shall here
explain the essential part of the proof. We shall use the notation and terminology in
§3 of [2]. Let 7T be an indeterminate and C((7T")) be the field of formal power series in
T. Let | | be the valuation on C(7)) defined by | T|=4 for a AeR, 0 <4< 1. Consider
a decomposition of the function T%F,(1/T, Y) into irreducible factors in C((T))[Y].
Then by the argument in §3 of [2] we have

T%Fy(/T, Y)=¥(T)= [] G..(Y),

(u,v)

where the indices (u, v) run all over the cusps <“) of I'(N) such that the function X3V
v
has poles, thus,

GCD(v, N)=d,>3, GCDu,d)=1, O<u<d,/3
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and G, (Y) is the irreducible factor corresponding to the cusp (") Further we know
v

that G, (Y) is pure of type (e, Y..), Where
2(d,u—3u?) (d,—du)ey
Cup™="" Yu,v =————1lo
EN 2(dv - 3“)
Since logl <0, we see easily that y, ,> 7y, y for all (u, v). Take a positive number ¢ such
that logc= —v, 5. Let | |. be the valuation of C((T))(Y) which coincides with | | on

C((T)). Then since vy, ,>7, n, We have |G, (Y)l.=I|9,.,|c**, where g,, is the leading
coefficient of the polynomial G, (Y). Therefore

I W(Y)(h:( I'[ |gu.v|>cze"’"=| Td3 |cdz___,1azcdz .

(u,v)

ga.

On the other hand, by definition, we have
IP(Y)|.=max {|®(1/T)T*c’|} .
J

Thus we have

)'da—des‘bj(x)c.isldacdz .
By taking logarithm of both sides, we have the statement (2). [

Let m,, n, be integers such that 3m,+8n,=¢eyN. We can always take mg, ng
such that m,>0, n,<0. We shall deduce an equation of X7°X%, X5X33 from the
polynomial Fy(X, Y). To simplify the notation, put 4= X5°X%, @=X3X; 3. Choose
(io, Jo) €T so that 3i,+8j, is the smallest value among 3i+8j, (i, j)€X. Then by (1)
of Lemma 3, for (i, j) € ¥, we have for a non-negative integer k, 3(i —iy) + 8(j —Jjo) = enNk.
By the definition of m,, n,, we know there exists an integer / such that

i'_‘i():kmo—8l, j—j0=kn0+31.
Thus we have X Xj=A*@ " 'XX)}. By (2) of Lemma 3,

. 6(N—4) N s

3i+8i<———~ (d,—j)+8

i+8j<— = (2 =))+¥
6(N—4) aN—®>.
= " d,+|[8——"——")).
N—3 2+( N=3 )V

Since 8 —6(N—4)/(N—3)>0, we have 3i+8j<8d, and the equality holds only for
(i, j)=(0, d,). Further since n,<0 and /=(j—j,—nk)/3, [ takes the greatest value at
(i,/)=(0, d3). Put

_ —3ip+8(d2—jo)

2.1 ko= .
(2.1) 0 e 0

_ d, —jo—noko
3
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For (i, j)e X, let

il e i ie—nok §
2.2) ki, j)= 3(i—io) +8(j—Jo) )=t G Jj)
enN 3

Then we have
FN(X;N, X3)=X£OX,§O(A’C0@_IO+ Z Ci’jAk(i’j)@_l(i'j)>=O .
(i,j)ex
Therefore we have
Ako 4+ Z Ci,jAk(i'j’@l°"‘i‘j’ =0.
(i, j)eX

Put

(2.3) Gy(X, Y)=Y*+ 3 C ;X GIyked,
G.j)eX

By the above argument we obtain

THEOREM 3. Let mq, no be integers such that 3mgy+8ny=¢eyN, my=>0, ny<0.
Then X5°X%5° is integral over Q[X3X33]. Further if N is prime, then X3°X%° is
integral over Z[X3X33]. Let Gy(X, Y) be the polynomial defined by (2.1)~(2.3). Then
Gu(X8X33, Y)=0 is the monic irreducible equation of X7°X%° over Q[X3X33] and
Gy(X, Y)=0 gives an affine model of X,(N). Further we have

FN(XEN, Y)=Xio—8lo Yj0+3IOGN(X8 Y—3, Xmo Yno) .

3. Examples.

Let g,(N) be the genus of X,(N). Since

W=1+2" 11 (l—i)—iz ()o(N/d)
g1 = 24 b p2 4dIN(P [ s
p:prime

we know ¢;(N)>0<N=11, N>13. Let us give examples of the polynomial
GMX, Y) for some N>7, which are corresponding to “raw forms” of Reichert. By
nature, they are not simpler than “raw form” of Reichert. Take m, and n, as given
in §2. Put A=XToX"™ @=X8X73.

(1) N=7(m0=5,n0=_1).
FAX,Y)=Y3—X3Y+X, G.X,Y)=Y>—XY2+X>.

Since G,(@, A)=0, we have @ =1/(2%—-Q3), where Q=A4/0@. Therefore we know
A,(7)=C(Q).
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(2) N=8 (my=8,n,=—1).
Fo(X2, V)=Y"42Y5+ Y3 —X8Y?2 4+ X8,
Gs(X, Y)=Y*+(2X—-X)Y+X*>+ X3,

Since Gg(@, A)=0, we have @ =(Q+ 1)?/(Q—1), where Q= A/O@. Therefore we know
A;(8)=C(Q).

(3) N=9 (my=3,n,=0).
Fo(X, Y)=Y°—(X°—X3)Y + X" —-2X*+ X,
Go(X, V)=Y’ —XY*+XY3+X?2Y?-2X2Y+ X2,
Since Go(©, A)=0, we know A = 1/(Q —Q?), where Q=(A—1)®/A3. Thus 4,(9)=C(R).
4 N=10 (my=12,ny= —2).
Fio(X2, Y)=Y"¥4+4X4Y'042Y° - X12Y" —2X3Y®+3X4Y3+ Y*
+X16Y3 _3X12Y2 4 3X4Y— X2,
GioX, =Y +(4X>—X)Y*+(X°-2X*+2X3) Y3 +3(X° - X®)Y?
+(X°+3X7)Y—X8.
5) N=11 (my=9,n,=-2).
Fi (X, N=Y"2—X"Y®342X®Y"—4X°Y®+5X*Y*-2X3Y*
+(XB+ XY —-(BX+ X)Y +3X1 Y- X0,
G (X, )=Y"—-X2Y5+2X3Y +(X°—4X*)Y*-(3X°-5X5)Y?
+(BX"-2X%) Y —(X®-X")Y—X8.
Since G(@, A)=0, by setting U=A/02, V=0/A, we deduce
U—(V=-12(V*+ V34312 + 1) U-V(V—1)>=0.
From this, by setting
71 (ZU—(V—I)Z(V“+V3+3V2+1)_H), S=——1——+1,
(V=1D3(V3*+V-1) vV

we have a Weierstrass equation:

2

T2 —T=S3-82.
(6) N=12 (my=8, n,=0).
Fi (X2, Y)=Y21 —2Y'18 4 (6X*+1)Y!5 — (X8 —14X%)Y!2
—(IXE+ XYY +(X124+6X8+9X4) Y
—(2X12—4XB4+2XM Y3+ X12_2X8 + X4,
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Go(X, Y)=Yo—(X3—6X24+2X)Y  + (X3 —TX*+ 14X+ X?)Y*
— X —6X S+ XYY +(X T +4X+9X5)Y?
— QX7 +2X)Y+ X7 .
(7) N=13 (mo=7, no=—1).

F13(X, Y)= Y20+Xyl8__X2yl6_X9yl5+2X3yl4+2X10Y13
_5X4yl2_7Xllyl1_X5yl0+14X12y9+(X19+6x6)Y8
—10X3Y7T—(BX2° +7X) YO +(AX 4 — X) Y3 +(BX?1 +5XB)V*
—4X1SY3 —X22Y2 4 2X16Y— X1,

Gi(X, V)=V~ (X2 - X)Y°+(2X3 - X)) VB + (X5 —TX*+2X3)Y’
—(3X5—14X5+5X4Y5+(3X7 — 10X — X°) Y5
—(X®—4X7 —6X)Y*—(4X®+7X")Y3 +(2X° +5X8)Y?
—X8Y—X'°.
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