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Abstract. We prove a generalization of a lemma by Schmitt and Vogel which will allow us to compute the
arithmetical rank of new classes of monomial ideals.

Introduction

Given a commutative ring with identity R, the arithmetical rank of an ideal I of R,
denoted ara I , is defined as the minimum number of elements which generate I up to radical,
i.e., generate an ideal which has the same radical as I . Determining this number is, in general,
a very hard open problem; a trivial lower bound is given by the height of I , but this is the actual
value of ara I only in special cases (I is then called a set-theoretic complete intersection).
There are, however, techniques which allow us to provide upper bounds. Some results in
this direction have been recently proved by the author, as, e.g., in [1] and [2]. These apply
especially to the case where R is a polynomial ring over a field, and I is a monomial ideal (i.e.,
an ideal generated by products of indeterminates) and are essentially based on the following
criterion by Schmitt and Vogel (see [9], p. 249).

LEMMA 1. Let P be a finite subset of elements of R. Let P0, . . . , Pr be subsets of P

such that
(i)

⋃r
i=0 Pi = P ;

(ii) P0 has exactly one element;
(iii) if p and p′′ are different elements of Pl (0 < i ≤ r) there is an integer i ′ with

0 ≤ i ′ < i and an element p′ ∈ Pi′ such that pp′′ ∈ (p′).
Let 0 ≤ i ≤ r , and, for any p ∈ Pi , let e(p) ≥ 1 be an integer. We set ql = ∑

p∈Pi
pe(p). We

will write (P ) for the ideal of R generated by the elements of P . Then we get

√
(P ) = √

(q0, . . . , qr ) .
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If, in the construction given in the claim, we take all exponents e(p) to be equal to 1, then
q0, . . . , qr are sums of generators; in this paper we present a new method, which gives rise
to elements of the same form, but applies under a different assumption. It will enable us to
determine the arithmetical rank of certain monomial ideals which could not be treated by the
above lemma.
For the determination of the arithmetical rank, every ideal can be replaced by its radical. In
the sequel we will therefore throughout consider radical (or reduced) monomial ideals, i.e.,
ideals generated by squarefree monomials.
The problem of the arithmetical rank of monomial ideals has been intensively studied by
several other authors over the past three decades: see [4], [5], [7], [8], [9] and [10].

1. The main result and some applications

We consider the ring R = K[x1, . . . , xN ], where K is a field. We will determine the
arithmetical rank of certain ideals generated by monomials. We prove a result, based on
combinatorial considerations, which generalizes Lemma 1 for this class of ideals and which
will allow us to prove the set-theoretic intersection property in various examples.

PROPOSITION 1. Let G ⊂ R be a set of monomials. Suppose that there are subsets
S0, . . . , Sr of G such that

(i)
⋃r

i=0 Si = G;
(ii) S0 has exactly one element;

(iii) the following recursive procedure can always be performed and always comes to
an end regardless of the choice of the indeterminate z and the index j at each step.
0. Set T = S0.
1. Pick an indeterminate z dividing the only element of T .
2. Cancel all monomials divisible by z in every Si .
3. If no element of G is left, then end. Else pick an index j such that there is

exactly one element left in Sj and set T = Sj .
4. Go to 1.

For all i = 0, . . . , r we set qi = ∑
µ∈Si

µ. Then we get

√
(G) = √

(q0, . . . , qr ) .

PROOF. It suffices to show that (G) ⊂ √
(q0, . . . , qr). We proceed by induction on

r ≥ 0. For r = 0 we have that (G) = (S0) = (q0), so that the claim is trivially true.
Now suppose that r > 0 and that the claim is true for all smaller r . According to Hilbert’s
Nullstellensatz (see [6], Theorem 5.4), it suffices to show that, whenever all qi vanish at some
x ∈ KN , the same is true for all µ ∈ G. In the sequel, as long as this does not cause any
ambiguity, we will denote a polynomial and its value at x by the same symbol. So assume
that qi = 0 for all i = 0, . . . , r . From q0 = 0 we deduce that one of the indeterminates
dividing the only element of S0, say the indeterminate z, vanishes. Then all µ ∈ G that are
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divisible by z vanish. Let Ḡ be the set of µ ∈ G that are not divisible by z. We have to

show that all µ ∈ Ḡ vanish. If Ḡ = ∅, then there is nothing to be proven. Otherwise, for
all i = 1, . . . , r , set S̄i = Si ∩ Ḡ. By assumption we have that |S̄j | = 1 for some index

j ; up to a change of indices we may assume that j = 1. Then Ḡ and its subsets S̄1, . . . , S̄r

fulfil the assumption of the proposition. For all i = 1, . . . , r we set q̄i = ∑
µ∈S̄i

µ. Then by

induction
√

(Ḡ) = √
(q̄1, . . . , q̄r ). Since, by assumption, all q̄i vanish, this implies that all

µ ∈ Ḡ vanish, as required. This completes the proof.

REMARK 1. Proposition 1 generalizes Lemma 1 for ideals generated by monomials
over a field. In fact, if P is a set of monomials and and P0, . . . , Pr are as in the assumption
of Lemma 1, and we set G = P and Si = Pi for all i = 0, . . . , r , then the assumption of
Proposition 1 is fulfilled, as we are going to show next. Let z be any indeterminate dividing

the only element of S0. As in the proof of Proposition 1, for all i = 1, . . . , r , let S̄i denote
the set of monomials in Si which are not divisible by z. Let j be the smallest index j > 0
such that S̄j is not empty. Then the product of each two distinct monomials of Sj is divisible
by a monomial of some Si , i < j , which is divisible by z. Hence all but possibly one of the

monomials of Sj are divisible by z. Therefore |S̄j | ≤ 1. We conclude by finite descending
induction.

The above result can be used for computing the arithmetical rank of some monomial
ideals.

EXAMPLE 1. In the polynomial ring R = K[x1, . . . , x5], where K is any field, con-
sider the ideal

I = (x1x3, x1x4, x2x4, x2x5, x3x5) ,

It is of pure height 3. Then by Proposition 1 we have

I = √
(x1x3, x1x4 + x2x5, x2x4 + x3x5) .

Hence ara I = 3, and I is a set-theoretic complete intersection. Note that three elements of
R generating I up to radical cannot be found by applying Lemma 1 to the set of minimal
monomial generators of I .

EXAMPLE 2. In R = K[x1, . . . , x6] consider the ideal

I = (x1x3, x1x4, x1x6, x2x4, x2x5, x3x5, x3x6, x4x6) ,

It has pure height 4. It is a set-theoretic complete intersection, since, as we will see,

I = √
(x1x6, x3x5, x1x3 + x2x4 + x3x6, x1x4 + x2x5 + x4x6) . (1)

We only need to prove the inclusion ⊂. Note that, according to Proposition 1,
√

(x3x5, x3x6 + x2x4, x4x6 + x2x5) = (x3x5, x3x6, x2x4, x4x6, x2x5) .
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Therefore, to prove (1) it suffices to show that x1x3, x1x4 belong to the right-hand side of (1).
This is true, because, firstly

x3
1x3

3 = x2
3 (x2x4 − x1x3)x1x6 + x1x

2
2x3 · x3x5

+x2
1x2

3 (x1x3 + x2x4 + x3x6) − x1x2x
2
3(x1x4 + x2x5 + x4x6) ,

which proves the claim for x1x3, and secondly,

x2
1x2

4 = (x3x5 − x2
4)x1x6 + x2

1 · x3x5

− x1x5(x1x3 + x2x4 + x3x6) + x1x4(x1x4 + x2x5 + x4x6) .

Finally we apply Proposition 1 to a class of ideals which extends Example 1. We will deter-
mine the arithmetical rank of these ideals and show that they are not set-theoretic complete
intersections except for the ideal studied in that example.

EXAMPLE 3. Let m ≥ 2 be an integer, and let Im be the reduced monomial ideal of
R = K[x1, . . . , x3m+2] generated by the following monomials:

r1 = x1x2 , sn = x3n−2x3n+2

tn = x3nx3n+1

un = x3n+1x3n+2

vn = x3n−1x3n (n = 1, . . . ,m) .

We prove that

ara Im = 2m + 1 . (2)

Let Jm be the ideal of R generated by the following 2m + 1 elements:

x1x2 , sn + tn , un + vn (n = 1, . . . ,m) .

We first show that

ara Im ≤ 2m + 1 (3)

by proving that

Im = √
Jm .

It suffices to show that Im ⊂ √
Jm, i.e., that sn, tn, un, vn ∈ √

Jm for 1 ≤ n ≤ m. We proceed
by finite induction on n, 1 ≤ n ≤ m. For n = 1 the claim follows if we apply Proposition 1 to
S0 = {r1} = {x1x2}, S1 = {s1 + t1} = {x1x5 + x3x4} and S2 = {u1 + v1} = {x4x5 + x2x3}.
Now suppose that n > 1 and that the claim is true for n − 1. Then, in particular, un−1 =
x3n−2x3n−1 ∈ √

Jm. We have that

S0 = {un−1} , S1 = {sn + tn} , S2 = {un + vn}
fulfil the assumption of Proposition 1. It follows that

sn, tn, un, vn ∈ √
Jm ,
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which achieves the induction step and proves (3).
We now show the opposite inequality. Let

S = {x1} ∪ {x3n, x3n+2, | n = 1, . . . ,m} ,

and set P = (S). Then P is a prime ideal and Im ⊂ P , since x1 divides r1 and, for all
n = 1, . . . ,m, x3n+2 divides sn and un, and x3n divides tn and vn. Ideal P is in fact a minimal
prime of Im, because

r1 
∈ (S \ {x1}), and un 
∈ (S \ {x3n+2}), tn 
∈ (S \ {x3n}) (n = 1, . . .m) .

We have that height P = 2m+ 1. By Krull’s principal ideal theorem (see [6], Theorem 13.5),
it follows that

2m + 1 ≤ ara Im ,

as required. This completes the proof of (2). Now let

T = {x2} ∪ {x3n+1, x3n+2, | n = 1, . . . ,m − 1} ∪ {x3m+1} ,

and set Q = (T ). Then Im ⊂ Q, since

- x2 divides r1, v1;
- for n = 1, . . . ,m − 1, x3n+2 divides sn and un, and x3n+1 divides tn;
- for n = 2, . . . ,m, x3(n−1)+2 = x3n−1 divides vn;
- x3(m−1)+1 = x3m−2 divides sm;
- x3m+1 divides um and tm.

Ideal Q is a minimal prime of Im, because

- r1 
∈ (T \ {x2});
- tn 
∈ (T \ {x3n+1}) (n = 1, . . . ,m);
- vn+1 
∈ (T \ {x3n+2}) (n = 1, . . . ,m − 1).

We have that height Q = 1 + 2(m − 1) + 1 = 2m < 2m + 1, so that the height of Im is less
than 2m + 1. Hence I is not a set-theoretic complete intersection: as it is well known, any
reduced monomial ideal which is a set-theoretic complete intersection is Cohen-Macaulay,
and therefore, it has pure height (see [3], Corollary 5.1.5). Let us remark that for m = 1, ideal
Im is, up to a change of variables, the same as ideal I of Example 1.

ACKNOWLEDGEMENTS. The author is indebted to Naoki Terai for the interesting example that
motivated the main result of this paper.
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