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Abstract. The present paper is to investigate the existence of the scattering operators for the Klein-Gordon
equations with a potential which depends on both the space and time variables, and admits a singularity in Lq(Rn)

sense. The main tool is the Strichartz estimates of solutions.

1. Introduction and Result

This paper is devoted to the scattering theory for the Klein-Gordon equation with a po-
tential:

utt − ∆u + m2u + V (x, t)u = 0 , (x, t) ∈ Rn × R ,(1.1)

where utt = ∂2u/∂t2, ∆ is the n-dimensional Laplacian, n ≥ 1, m is a positive constant and

V (x, t) is a real-valued potential. E is the space of all pairs �f = t (f1, f2) of functions such
that

‖ �f ‖2
E = 1

2

∫
Rn

{|∇f1(x)|2 + m2f1(x)2 + f2(x)2} dx < ∞ ;

this norm is called the energy.

As an evolution equation in E, the perturbed problem (1.1) with the initial data �f =
t (f1, f2) ∈ E is rewritten in the matrix form

i∂t �u = Λ0 �u + �V (t)�u ,(1.2)

where i = √−1, �u(t) = t (u(t), ut (t)),

Λ0 = i

(
0 1

∆ − m2 0

)
, �V (t) = −i

(
0 0

V (x, t) 0

)
.

Let U0(t), t ∈ R, be the unitary group in E which represents the solution of the free equation

i∂t �u0 = Λ0�u0 ,(1.3)
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and is of the form

U0(t) =
(

K̇(t) K(t)

K̈(t) K̇(t)

)
,

where K(t) = A−1 sin(tA), A = (m2 − ∆)1/2. By using the operator U0(t), the problem
(1.2) is reduced to the integral equation

�u(t) = U0(t) �f − i

∫ t

0
U0(t − τ ) �V (τ)�u(τ) dτ .(1.4)

It will be proved in Proposition 2.3 that, for given �f ∈ E, (1.4) has a unique solution �u(t) ∈
C(R; E), if V (x, t) is small in the space Lν(Rt ; Lq(Rn

x)) for some pair (q, ν). We denote by
U(t, s) ∈ B(E) (the space of all bounded linear operators on E) the evolution operator which
maps the solutions at time s to those at time t:

�u(t) = U(t, s)�u(s) .

The unique existence of the solutions of (1.4) implies that, for any fixed s and t , U(t, s)

defines a bijection on E. In the present paper we write
∫

Rn = ∫
for brevity. We define also

the energy of the solutions of (1.1) at time t:

‖�u(t)‖2
E = 1

2

∫
{|ut (x, t)|2 + |∇u(x, t)|2 + m2|u(x, t)|2}dx ,

where ∇u is the gradient of u.
If V is small in C1(R; X) with a suitable Banach space X and the coefficient m =

m(x) decays in the space variable x, then it is shown in [11] that the scattering operators are
constructed on the basis of the weighted energy method due to [9, 10] which treated, in fact,
the energy decay-nondecay problems for the dissipative wave equations. But then, compared
with [11], it is rather natural in physical criterion that the mass m is constant and V (x, t) has
a singularity in some point x0 ∈ Rn. However, the method of [9, 10, 11] is not effective
in the present case. Our strategy is forced to be different from [9, 10, 11], say, to use the
appropriate Strichartz estimates for (1.1) (see Lemma 2.1 below) which can be obtained by
the crucial results of Hayashi and Naumkin [2] for the potentially free Klein-Gordon equations
(see also D’Ancona and Fanelli [1] for the end point Strichartz estimates). On the basis of
these estimates the scattering operators will be constructed (see Theorem 1.1).

In contrast with the novelty of our problem, we mention the related problems with time-
dependent potentials. For example, Mochizuki and Motai constructed the scattering operators
for the Schrödinger equations with time-dependent complex potentials under the smallness
conditions on the potential (see [8]). Their method is based on the Strichartz estimates for
the free and the perturbed solutions. However, as far as we know, there is no result on the
scattering problems for the Klein-Gordon equations with time-dependent potentials. Note
that time-dependent real potentials have been treated in Howland [3], Kitada and Yajima [6],
Yafaev [12] and Yajima [13] without requiring any smallness condition on the potentials. For
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the time independent complex potentials, the so called smooth perturbation theory has been
developed in Kato’s classical paper [4] (see also [5]). Repeatedly speaking, our potential V

depends on x and t; thus the theory of [4] could not be applied to our case.
In order to state our result, we make the following assumption:

ASSUMPTION A. V (x, t) belongs to Lν(R; Lq), where

0 ≤ 1

q
≤ 2

n + 2
,

1

ν
= 1 − n

2q
,(1.5)

and is assumed to be the following smallness condition:

C1‖V ‖Lν(R;Lq) < 1 ,(1.6)

with a certain constant C1 = C1(n, q) given in Lemma 2.1 below.
For the convenience of the readers, let us introduce some examples satisfying Assump-

tion A.

EXAMPLES. The functions V (x, t) satisfying Assumption A are as follows:

(i) V (x, t) = V0(1 + r)−α(1 + t)−β, α >
n

q
, β >

1

ν
,

with a small constant V0 ∈ R.
(ii) Let χj (x) ∈ C∞

0 (Rn) be equal to 1 in a small neighborhood of xj (j = 1, . . . , N),
and 0 outside of a neighborhood of xj , and let V0 ∈ R be a small constant. We put

V (x, t) = V0




N∑
j=1

χj (x)|x − xj |−αj +
N∑

j=1

(1 − χj (x))w(x)


 (1 + t)−β ,

where αj < n
q

(j = 1, . . . , N), β > 1
ν

and w(x) ∈ Lq(Rn).

We shall prove here the following:

THEOREM 1.1. Let n ≥ 1 and suppose Assumption A. Then the following assertions
hold:

(i) For every �f ∈ E there exists �f ±
0 ∈ E such that

∥∥∥U(t, 0) �f − U0(t) �f ±
0

∥∥∥
E

→ 0 as t → ±∞ .

(ii) Put

Z± = s − lim
t→±∞ U0(−t)U(t, 0) .

Then Z± defines a nontrivial bounded operator on E.
(iii) If we restrict (1.6) in Assumption A to

(C1 + C2)‖V ‖Lν(R;Lq) < 1 ,
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with a certain constant C2 = C2(n, q,m) given in Lemma 2.2 below, then Z± gives a bijec-
tion on E. Thus, the scattering operator

S = Z+(Z−)−1 : �f −
0 → �f +

0

is well-defined and also gives a bijection on E.

This paper is organized as follows: In section 2 we will give the Strichartz estimates
which play an important role to prove our theorem. Finally in section 3 we prove Theorem
1.1.

2. Strichartz estimates

In this section, we shall derive some Strichartz estimates for (1.2)–(1.3). Let us first in-
troduce the Strichartz estimates for the free solutions due to D’Ancona and Fanelli [1] and
Hayashi and Naumkin [2], and then use it to obtain similar estimates for the perturbed solu-
tions. In the sequel we often use the following notation: Hk

p = Hk
p(Rn) is the usual Sobolev

space for 1 ≤ p ≤ ∞ and k ∈ R with norm

‖u‖Hk
p

=
∥∥∥F−1(〈 ξ 〉kû(ξ))

∥∥∥
Lp

,

where û(ξ) denotes the Fourier transformation of u(x), F−1 is its inverse and 〈 ξ 〉 = (1 +
|ξ |2)1/2. We also write Hk = Hk

2 . Denote the space-time norm of φ in Lr(I ; Lq) by

‖φ‖Lr(I ;Lq) = ‖‖φ(t)‖Lq (Rn)‖Lr(I ) ,

where I is a bounded or unbounded time interval. The following lemma is proved in
D’Ancona and Fanelli [1] and Hayashi and Naumkin [2].

LEMMA 2.1 ([1, 2]). Let n ≥ 1, n−2
2n

≤ 1
p

≤ 1
2 and 1

r
= n

2

( 1
2 − 1

p

)
. Then there exists

a constant C1 = C1(n, p) > 0 such that∥∥∥∥
∫ t

s

ei(t−τ )Ag(τ ) dτ

∥∥∥∥
Lr (I ;Lp)

≤ C1‖g‖
Lr′ (I ;H 2µ

p′ )
,(2.1)

∥∥∥∥
∫ t

s

ei(t−τ )Ag(τ ) dτ

∥∥∥∥
L∞(I ;L2)

≤ C
1/2
1 ‖g‖

Lr′ (I ;Hµ

p′ ) ,(2.2)

and

‖eitAφ‖Lr(I ;Lp) ≤ C
1/2
1 ‖φ‖Hµ ,(2.3)

where 1
r

+ 1
r ′ = 1, 1

p
+ 1

p′ = 1 and µ = (
1 + n

2

)( 1
2 − 1

p

)
.

By using the estimate (2.3) from Lemma 2.1, we have the following estimates for the
free solution u0(t) of (1.3).
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LEMMA 2.2. Let n, p, r and µ be as in Lemma 2.1. Then the solution �u0(t) =
t (u0(t), u0t (t)) of (1.3) with the data �f0 = t (f01, f02) ∈ E satisfies the following estimates:

‖u0‖Lr (I ;H 1−µ
p )

≤ (2C2)
1/2‖ �f0‖E,(2.4)

‖u0t‖Lr(I ;H−µ
p )

≤ (2C2)
1/2‖ �f0‖E.(2.5)

PROOF. We can write �u0(t) as

�u0(t) =
(

K̇(t) K(t)

K̈(t) K̇(t)

)
�f0 , K(t) = A−1 sin(tA) .

We can estimate, by using (2.3),

‖u0‖Lr(I ;H 1−µ
p )

≤ ‖ cos(tA)f01‖Lr(I ;H 1−µ
p )

+ ‖A−1 sin(tA)f02‖Lr(I ;H 1−µ
p )

≤ C
1/2
1 (‖f01‖H 1 + ‖f02‖L2)

≤ (2C1)
1/2(‖f01‖2

H 1 + ‖f02‖2
L2)

1/2

≤ (2C2)
1/2‖ �f0‖E .

This proves (2.4). In the same way, we have the required estimate (2.5):

‖u0t‖Lr (I ;H−µ
p )

≤ ‖A sin(tA)f01‖Lr(I ;H−µ
p )

+ ‖ cos(tA)f02‖Lr(I ;H−µ
p )

≤ C
1/2
1 (‖f01‖H 1 + ‖f02‖L2)

≤ (2C1)
1/2(‖f01‖2

H 1 + ‖f02‖2
L2)

1/2

≤ (2C2)
1/2‖ �f0‖E .

This ends the proof of Lemma 2.2. �

For 1 ≤ γ ≤ ∞ and ±s ≥ 0, we put

L
γ
±,sX = Lγ (R±,s; X) ,

where R+,s = [s,∞) for s ≥ 0, R−,s = (−∞, s] for s ≤ 0 and X is a Banach space. In case
of s = 0, we simply write R±,0 = R±. By Assumption A we have V (x, t) ∈ Lν±,sL

q for any
±s ≥ 0. Moreover, we see from (1.6) that the following inequality

C1‖V ‖Lν±,sL
q < 1(2.6)

holds for any ±s ≥ 0. In the following we restrict the pair (p, r) in Lemma 2.1 as follows:

n

2(n + 2)
≤ 1

p
≤ 1

2
,

1

r
= n

2

(
1

2
− 1

p

)
.(2.7)
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For this exponent p, it can be checked that the condition on µ in Lemma 2.1 is to be µ ≤ 1
2 .

Moreover, we choose the pair (p, r) in (2.7), related to (q, ν), as follows:

1

p
= 1

2

(
1 − 1

q

)
,

1

r
= 1

2

(
1 − 1

ν

)
.(2.8)

As is easily seen, the condition for (q, ν) in Assumption A is equivalent to that for (p, r) in
(2.7). Then we have the following:

PROPOSITION 2.3. Let n ≥ 1 and suppose Assumption A. Let s ∈ R be arbitrarily

fixed. Then for each �f = t (f1, f2) ∈ E, the following assertions hold:
(i) The integral equation

u(t) = K̇(t − s)f1 + K(t − s)f2 −
∫ t

s

K(t − τ )V (τ)u(τ )dτ(2.9)

has a unique solution u(t) ∈ Lr±,sH
1−µ
p .

(ii) The solution u(t) of (2.9) belongs to C(R±,s; H 1) and coincides with U(t, s) �f .
Moreover, we have

‖u‖
Lr±,sH

1−µ
p

≤ (2C2)
1/2

1 − C1‖V ‖Lν±,sL
q
‖ �f ‖E ,(2.10)

∥∥∥∥
∫ t

s

K(t − τ )V (τ)u(τ )dτ

∥∥∥∥
H 1

≤
√

2C1C2‖V ‖Lν±,sL
q

1 − C1‖V ‖Lν±,sL
q

‖ �f ‖E .(2.11)

PROOF. (i) For g = g(x, t) ∈ Lr±,sH
1−µ
p , we put

Φ±,s [g](t) = −
∫ t

s

K(t − τ )V (τ)g(τ )dτ , t ∈ R± .

Then it can be checked that

‖Φ±,s [g]‖
Lr±,sH

1−µ
p

≤ C1‖V ‖Lν±,sL
q ‖g‖

Lr±,sH
1−µ
p

.(2.12)

Indeed, by the estimate (2.1) we have∥∥∥∥
∫ t

s

K(t − τ )V (τ)g(τ )dτ

∥∥∥∥
Lr±,sH

1−µ
p

≤ C1‖V g‖
Lr′±,sH

µ

p′
≤ C1‖V g‖

Lr′±,sH
1−µ

p′
,(2.13)

since µ ≤ 1

2
. Here, by using Hölder’s inequality, we see

‖V g‖
Lr′±,sH

1−µ

p′
≤ ‖V ‖Lν±,sL

q ‖g‖
L

r′ν/(ν−r′)
±,s H

1−µ

p′q/(q−p′)
.(2.14)

Since (2.8) implies p′q
q−p′ = p and r ′ν

ν−r ′ = r , the estimate (2.14) together with (2.13) imply

(2.12). As a consequence of (2.12), we have also

‖Φ±,s‖B(Lr±,sH
1−µ
p )

≤ C1‖V ‖Lν±,sL
q .(2.15)
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Now, going back to the integral equation (2.9), we consider the solution u(t) of (2.9). For
�f = t (f1, f2) ∈ E we define {uk(t)} successively as follows:

u0(t) = K̇(t − s)f1 + K(t − s)f2 , uk(t) = u0(t) + Φ±,s [uk−1](t), k = 1, 2, . . . .

The fact that u0(t) ∈ Lr±,sH
1−µ
p follows from Lemma 2.2, and hence, we conclude from

(2.12) that uk(t) ∈ Lr±,sH
1−µ
p holds for k ∈ N, successively. Moreover, since

‖uk − uk−1‖Lr±,sH
1−µ
p

≤ ‖Φ±,s‖B(Lr±,sH
1−µ
p )

‖uk−1 − uk−2‖Lr±,sH
1−µ
p

· · ·
≤ ‖Φ±,s‖k

B(Lr±,sH
1−µ
p )

‖u0‖Lr±,sH
1−µ
p

,

we see from (2.6) and (2.15) that {uk(t)} converges in Lr±,sH
1−µ
p as k → ∞. Thus u(t) is, in

fact, the weak solution of (1.1). Moreover, we can write

u(t) = u0(t) +
∞∑

k=1

{uk(t) − uk−1(t)} ,(2.16)

on account of the uniform estimates (2.9) and (2.12).

(ii) It follows from (2.2) that∥∥∥∥
∫ t

s

K(t − τ )V (τ)u(τ )dτ

∥∥∥∥
H 1

≤ C
1/2
1 ‖V u‖

Lr′±,sH
µ

p′

≤ C
1/2
1 ‖V ‖Lν±,sL

q ‖u‖
Lr±,sH

1−µ
p

.

(2.17)

(2.16) together with (2.9) imply that the solution u(t) of (2.9) is in C(R±,s; H 1). Obviously,

this u(t) coincides with U(t, s) �f . Moreover, the estimate (2.10) easily follows from (2.12), if

we note ‖u0‖Lr±,sH
1−µ
p

≤ (2C2)
1/2‖ �f ‖E . In fact, we have

‖u‖
Lr±,sH

1−µ
p

≤ ‖u0‖Lr±,sH
1−µ
p

+
∞∑

k=1

‖Φ±,s‖k

B(Lr±,sH
1−µ
p )

‖u0‖Lr±,sH
1−µ
p

≤ ‖u0‖Lr±,sH
1−µ
p

+
C1‖V ‖Lν±,sL

q ‖u0‖Lr±,sH
1−µ
p

1 − C1‖V ‖Lν±,sL
q

≤ (2C2)
1/2

1 − C1‖V ‖Lν±,sL
q

‖ �f ‖E ,

where we used (2.6) in the second step. Thus the estimate (2.11) follows from (2.10) combined
with (2.17). The proof of Proposition 2.3 is finished. �
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3. Proof of Theorem 1.1

In the following, we simply write �f = f, �f0 = f0. We put �u0(t) = U0(t)f0 and
�u(t) = U(t, 0)f , and consider the inner-product (�u(t), �u0(t))E in E. Then we get, by using
(1.2) and (1.3),

∂t (�u(t), �u0(t))E = −1

2
(V u(t), u0t (t)) ,(3.1)

where (·, ·) stands for the usual inner-product of L2.

PROOF OF THEOREM 1.1 (i). Since U(t, 0)f = U0(t)U0(−t)U(t, 0)f , to verify the
assertion we have only to show that U0(−t)U(t, 0) strongly converges in E as t → ±∞.
Integrating (3.1) over (s, t) (s < t), one gets

(U0(−t)U(t, 0)f − U0(−s)U(s, 0)f, f0)E = −1

2

∫ t

s

∫
V uu0τ dxdτ .

By the Schwarz inequality, we have

|(U0(−t)U(t, 0)f − U0(−s)U(s, 0)f, f0)E |(3.2)

≤1

2

(∫ t

s

∫
|V ||Aµu|2 dxdτ

)1/2 (∫ t

s

∫
|V ||A−µu0τ |2 dxdτ

)1/2

.

By Assumption A and (2.5) we have
(∫ t

s

∫
|V ||A−µu0τ |2 dxdτ

)1/2

≤ (2C2)
1/2‖V ‖1/2

Lν±,sL
q ‖f0‖E .(3.3)

Hence it follows from (3.2)–(3.3) that

|(U0(−t)U(t, 0)f − U0(−s)U(s, 0)f, f0)E |(3.4)

≤ 1√
2

∣∣∣∣
∫ ±∞

s

∫
|V ||Aµu|2 dxdτ

∣∣∣∣
1/2

· C1/2
2 ‖V ‖1/2

Lν±,sL
q ‖f0‖E .

Furthermore, it follows from Assumption A and Proposition 2.3 (ii) that
(∫ t

s

∫
|V ||Aµu|2 dxdτ

)1/2

≤ ‖V ‖1/2
Lν±,sL

q ‖u‖
L2ν′

±,sH
µ

2q′

≤ ‖V ‖1/2
Lν±,sL

q ‖u‖
Lr±,sH

1−µ
p

≤
(2C2)

1/2‖V ‖1/2
Lν±,sL

q

1 − C1‖V ‖Lν±,sL
q

‖f ‖E ,

(3.5)

where we have used the relations

1

2q ′ = 1

2

(
1 − 1

q

)
= 1

p
,

1

2ν′ = 1

r
.
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The estimate (3.5) means that∣∣∣∣
∫ ±∞

s

∫
|V ||Aµu|2 dxdτ

∣∣∣∣
1/2

→ 0 , (s → ±∞) .(3.6)

Thus we conclude from (3.4) and (3.6) that U0(−t)U(t, 0) converges strongly in E as t →
±∞.

To prove the assertion we put

f ±
0 = s − lim

t→±∞ U0(−t)U(t, 0)f .

Then, as is expected, we conclude that

‖U(t, 0)f − U0(t)f
±
0 ‖E = ‖U0(t){U0(−t)U(t, 0)f − f ±

0 }‖E → 0

as t → ±∞.

PROOF OF THEOREM 1.1 (ii). In this case we can apply the above argument to the
operator U0(s − t)U(t, s) with fixed s ∈ R. For this purpose, we put

Z±(s) = s − lim
t→±∞ U0(s − t)U(t, s) .

This defines a nontrivial bounded operator on E which is assured by the nondecay of the
energy. We shall show that for each 0 
= f ∈ E there exists sufficiently large ±s > 0 such
that Z±(s)U0(s)f 
= 0. Recall that Z± = s − lim

t→±∞ U0(−t)U(t, 0). Then since

Z±U(0, s)U0(s)f = U0(−s)Z±(s)U0(s)f ,

Z± is verified to be a nontrivial bounded operator. Let �u(t) = U(t, s)f and �u0(t) = U0(t −
s)f0 in (3.1). Then the argument of the proof of the assertion (i) yields

|(Z±(s)f, f0)E − (f, f0)E |(3.7)

≤ 1

2

∣∣∣∣
∫ ±∞

s

∫
|V ||Aµu|2 dxdτ

∣∣∣∣
1/2 ∣∣∣∣

∫ ±∞

s

∫
|V ||A−µu0τ |2 dxdτ

∣∣∣∣
1/2

≤ 1√
2

· C
1/2
2 ‖V ‖Lν±,sL

q

1 − C1‖V ‖Lν±,sL
q

‖f ‖E‖u0τ‖Lr±,sH
−µ
p

.

Let us choose here f = f0 = U0(s)g in (3.7), where g 
= 0, and assume that Z±(s)U0(s)g =
0 for any ±s > 0. Then we lead to a contradiction. It follows from Proposition 2.3 and (3.7)
that

‖U0(s)g‖E ≤ 1√
2

· C
1/2
2 ‖V ‖Lν±,sL

q

1 − C1‖V ‖Lν±,sL
q

‖U0(τ )g‖
Lr±,sH

−µ
p

.(3.8)

‖U0(s)g‖E is independent of s by the energy identity ‖U0(s)g‖E = ‖g‖E > 0, whereas
the right-hand side of (3.8) converges to 0 as s → ±∞. This is a contradiction. Thus the
assertion (ii) is proved.
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PROOF OF THEOREM 1.1 (iii). To verify the assertions (iii), we have only to show that
Z±(s) is a bijection on E. Assume that g ∈ E satisfies Z±(s)g = 0 or g ⊥ R(Z±(s)).
Then putting f = f0 = g in (3.7), we obtain

‖g‖E ≤ C2‖V ‖Lν±,sL
q

1 − C1‖V ‖Lν±,sL
q

‖g‖E .(3.9)

Since

C2‖V ‖Lν±,sL
q

1 − C1‖V ‖Lν±,sL
q

< 1 ,

(3.9) implies g = 0, and hence Z±(s) becomes a bijection. The assertion (iii) is proved. �
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